organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Ethyl­sulfanyl-7-fluoro-3-(1H-1,2,4-triazol-1-yl)-4H-thio­chromen-4-one

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: taoxiao@njut.edu.cn

(Received 17 July 2010; accepted 29 July 2010; online 4 August 2010)

The asymmetric unit of the title compound, C13H10FN3OS2, contains two independent mol­ecules, which differ slightly in the relative orientations of the triazole and ethyl­sulfanyl groups with respect to the planar thio­chromen-4-one frameworks. The dihedral angles between the mean planes of the triazole groups and the corresponding six-membered C5OS rings are 56.8 (1) and 52.9 (1)°, while the S—C—S—C dihedral angles are −11.7 (2) and −16.3 (2)°. In the crystal structure, inter­molecular C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules in a stacked arrangement along the a axis. A weak intramolecular C—H⋯·O interaction results in the formation of a non-planar five-membered ring.

Related literature

For related compounds containing the 4H-thio­chromen-4-one fragment, see: Adams et al. (1991[Adams, H., Bailey, N. A., Giles, P. R. & Marson, C. M. (1991). Acta Cryst. C47, 1332-1334.]); Nakazumi et al. (1992[Nakazumi, H., Watanabe, S. & Kitao, T. (1992). J. Chem. Res. 212, 1616-1641.]); Weiss et al. (2008[Weiss, R., Bess, M., Huber, S. M. & Heinemann, F. W. (2008). J. Am. Chem. Soc. 130, 4610-4617.]); Li, Xiao, Liu & Yu (2010[Li, Y., Xiao, T., Liu, D. & Yu, G. (2010). Acta Cryst. E66, o694.]); Li, Xiao, Yu & Liu (2010[Li, Y., Xiao, T., Yu, G. & Liu, D. (2010). Acta Cryst. E66, o2072.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10FN3OS2

  • Mr = 307.36

  • Triclinic, [P \overline 1]

  • a = 8.1060 (16) Å

  • b = 11.288 (2) Å

  • c = 15.163 (3) Å

  • α = 83.12 (3)°

  • β = 83.15 (3)°

  • γ = 79.36 (3)°

  • V = 1347.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.888, Tmax = 0.961

  • 5271 measured reflections

  • 4892 independent reflections

  • 3725 reflections with I > 2σ(I)

  • Rint = 0.020

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.135

  • S = 1.00

  • 4892 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O2i 0.93 2.40 3.231 (4) 149
C8—H8A⋯O1 0.93 2.45 2.764 (4) 100
C8—H8A⋯N6ii 0.93 2.56 3.381 (4) 147
C18—H18A⋯O1iii 0.93 2.51 3.334 (4) 147
C21—H21A⋯O2 0.93 2.46 2.772 (4) 100
C21—H21A⋯N3iv 0.93 2.47 3.326 (4) 154
Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z-1; (iii) -x, -y, -z; (iv) x, y, z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound, C13H10ON3S2F, is a new molecule which has a potential use as antifungal. Its molecular structure of is shown in Fig. 1 and selected geometric parameters are given in Table 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The asymmetric unit of the title compound contains two independent molecules. They differ slightly in the relative orientations of the triazole and ethylsulfanyl groups with respect to the planar thiochromen-4-one frameworks. The dihedral angles between the mean planes of the triazole groups and the corresponding six-membered C5OS rings are 56.8 (1) and 52.9 (1)° while the dihedral angles S2-C3-C1-C2 and S4-C16-S3-C15 are -11.7 (2) and -16.3 (2)°. In the crystal structure, intermolecular C—H···O and C—H···N hydrogen bonds (Table 2) link the molecules in a stacked arrangement along the a axis (Fig. 2).

Related literature top

For related compounds containing the 4H-thiochromen-4-one fragment, see: Adams et al. (1991); Nakazumi et al. (1992); Weiss et al. (2008); Li, Xiao, Liu & Yu (2010); Li, Xiao, Yu & Liu (2010). For bond-length data, see: Allen et al. (1987).

Experimental top

CS2 (2.0 g, 26.3 mmol) was dropwise added to a solution of 1-(2,4- difluorophenyl)-2-(1H-1,2,4-triazol-1-yl) ethanone (5 g, 22.4 mmol) in DMSO (20 ml) containing NaOH (1.8 g, 45 mmol). The yellow solution was stirred for about 2 h at room temperature. Then bromethyl (2.5 g, 22.4 mmol) was dropwise added to the intermediate. After 3 h, the solution was poured into water (50 ml). The crystalline product was isolated by filtration, washed with water (300 ml). The crystals were obtained by dissolving the product in acetone (20 ml) and evaporating acetone slowly at room temperature for about 7 d.

Refinement top

The H atoms were positioned geometrically with C—H = 0.93 Å for aromatic H atoms, C—H = 0.97 Å for methylene H atoms, and with C—H = 0.96 Å for methyl H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic and methylene H atoms and x = 1.5 for the other H atoms.

Structure description top

The title compound, C13H10ON3S2F, is a new molecule which has a potential use as antifungal. Its molecular structure of is shown in Fig. 1 and selected geometric parameters are given in Table 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The asymmetric unit of the title compound contains two independent molecules. They differ slightly in the relative orientations of the triazole and ethylsulfanyl groups with respect to the planar thiochromen-4-one frameworks. The dihedral angles between the mean planes of the triazole groups and the corresponding six-membered C5OS rings are 56.8 (1) and 52.9 (1)° while the dihedral angles S2-C3-C1-C2 and S4-C16-S3-C15 are -11.7 (2) and -16.3 (2)°. In the crystal structure, intermolecular C—H···O and C—H···N hydrogen bonds (Table 2) link the molecules in a stacked arrangement along the a axis (Fig. 2).

For related compounds containing the 4H-thiochromen-4-one fragment, see: Adams et al. (1991); Nakazumi et al. (1992); Weiss et al. (2008); Li, Xiao, Liu & Yu (2010); Li, Xiao, Yu & Liu (2010). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). The shortest interactions are shown as dashed lines.
2-Ethylsulfanyl-7-fluoro-3-(1H-1,2,4-triazol-1-yl)-4H- thiochromen-4-one top
Crystal data top
C13H10FN3OS2Z = 4
Mr = 307.36F(000) = 632
Triclinic, P1Dx = 1.516 Mg m3
Hall symbol: -P 1Melting point: 432 K
a = 8.1060 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.288 (2) ÅCell parameters from 25 reflections
c = 15.163 (3) Åθ = 9–14°
α = 83.12 (3)°µ = 0.41 mm1
β = 83.15 (3)°T = 293 K
γ = 79.36 (3)°Block, yellow
V = 1347.0 (5) Å30.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
3725 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.3°, θmin = 1.4°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.888, Tmax = 0.961l = 1818
5271 measured reflections3 standard reflections every 200 reflections
4892 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.087P)2]
where P = (Fo2 + 2Fc2)/3
4892 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H10FN3OS2γ = 79.36 (3)°
Mr = 307.36V = 1347.0 (5) Å3
Triclinic, P1Z = 4
a = 8.1060 (16) ÅMo Kα radiation
b = 11.288 (2) ŵ = 0.41 mm1
c = 15.163 (3) ÅT = 293 K
α = 83.12 (3)°0.30 × 0.20 × 0.10 mm
β = 83.15 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3725 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.888, Tmax = 0.9613 standard reflections every 200 reflections
5271 measured reflections intensity decay: 1%
4892 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
4892 reflectionsΔρmin = 0.29 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15082 (10)0.40138 (7)0.02746 (5)0.0448 (2)
S20.05140 (10)0.20004 (7)0.07527 (4)0.0415 (2)
F10.4481 (3)0.17048 (19)0.17733 (13)0.0733 (6)
O10.1829 (3)0.05374 (19)0.18751 (13)0.0564 (6)
N10.0026 (3)0.2800 (2)0.18726 (14)0.0374 (5)
N20.0365 (4)0.3935 (2)0.21190 (16)0.0474 (6)
N30.0921 (4)0.3345 (2)0.31908 (16)0.0505 (7)
C10.3454 (5)0.5338 (3)0.0936 (2)0.0671 (10)
H1A0.38490.54520.15470.101*
H1B0.43910.52980.06150.101*
H1C0.29200.60050.06710.101*
C20.2196 (4)0.4170 (3)0.08944 (19)0.0483 (8)
H2B0.27190.34880.11610.058*
H2C0.12420.41990.12160.058*
C30.0111 (3)0.2636 (2)0.02745 (17)0.0346 (6)
C40.1860 (3)0.0661 (2)0.05066 (17)0.0335 (6)
C50.2616 (4)0.0010 (3)0.12351 (19)0.0423 (7)
H5A0.23860.02500.18030.051*
C60.3705 (4)0.1061 (3)0.1084 (2)0.0489 (8)
C70.4072 (4)0.1493 (3)0.0251 (2)0.0476 (7)
H7A0.48160.22140.01730.057*
C80.3312 (4)0.0832 (3)0.04493 (19)0.0419 (7)
H8A0.35340.11160.10100.050*
C90.2199 (3)0.0267 (2)0.03439 (17)0.0335 (6)
C100.1509 (4)0.0959 (2)0.11443 (17)0.0369 (6)
C110.0459 (3)0.2127 (2)0.10583 (17)0.0340 (6)
C120.0763 (4)0.2477 (3)0.25322 (19)0.0460 (7)
H12A0.11150.17370.25240.055*
C130.0206 (4)0.4192 (3)0.29026 (19)0.0485 (8)
H13A0.01220.49240.32440.058*
S30.37421 (11)0.30227 (7)0.49425 (5)0.0502 (2)
S40.26104 (10)0.08916 (6)0.39414 (4)0.0418 (2)
F20.1135 (3)0.31666 (19)0.28874 (13)0.0754 (7)
O20.2316 (3)0.0220 (2)0.66100 (13)0.0554 (6)
N40.3399 (3)0.1897 (2)0.65791 (14)0.0391 (5)
N50.2627 (4)0.3070 (2)0.67609 (17)0.0596 (8)
N60.4426 (4)0.2446 (2)0.79373 (16)0.0547 (7)
C140.4777 (5)0.4194 (3)0.3729 (3)0.0699 (11)
H14A0.50440.42170.31330.105*
H14B0.57560.42670.41410.105*
H14C0.38830.48520.38690.105*
C150.4220 (4)0.3008 (3)0.3800 (2)0.0519 (8)
H15A0.51100.23350.36580.062*
H15B0.32270.29240.33880.062*
C160.3121 (3)0.1627 (2)0.49766 (17)0.0367 (6)
C170.2133 (3)0.0464 (2)0.41911 (17)0.0355 (6)
C180.1784 (4)0.1276 (3)0.34501 (19)0.0441 (7)
H18A0.18130.10850.28730.053*
C190.1398 (4)0.2359 (3)0.3600 (2)0.0487 (8)
C200.1302 (4)0.2667 (3)0.4445 (2)0.0492 (8)
H20A0.10240.34080.45240.059*
C210.1624 (4)0.1861 (3)0.51620 (19)0.0427 (7)
H21A0.15500.20540.57340.051*
C220.2065 (3)0.0748 (2)0.50541 (17)0.0359 (6)
C230.2438 (4)0.0071 (3)0.58617 (17)0.0383 (6)
C240.2987 (3)0.1197 (2)0.57607 (17)0.0359 (6)
C250.4443 (4)0.1566 (3)0.72971 (19)0.0439 (7)
H25A0.50980.08010.73330.053*
C260.3311 (5)0.3339 (3)0.7569 (2)0.0652 (10)
H26A0.30430.41050.78730.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0554 (5)0.0408 (4)0.0355 (4)0.0018 (3)0.0064 (3)0.0074 (3)
S20.0526 (5)0.0448 (4)0.0255 (3)0.0000 (3)0.0058 (3)0.0078 (3)
F10.0731 (14)0.0811 (14)0.0548 (12)0.0135 (11)0.0248 (11)0.0130 (10)
O10.0879 (17)0.0500 (12)0.0260 (10)0.0068 (12)0.0063 (11)0.0105 (9)
N10.0508 (14)0.0344 (12)0.0284 (11)0.0104 (11)0.0063 (10)0.0021 (9)
N20.0697 (18)0.0384 (13)0.0372 (13)0.0180 (12)0.0082 (12)0.0000 (10)
N30.0672 (18)0.0487 (15)0.0369 (13)0.0085 (13)0.0183 (13)0.0007 (11)
C10.062 (2)0.067 (2)0.070 (2)0.0081 (19)0.0055 (19)0.0280 (19)
C20.0549 (19)0.0489 (17)0.0391 (16)0.0026 (15)0.0006 (14)0.0117 (13)
C30.0408 (15)0.0357 (14)0.0293 (13)0.0092 (12)0.0068 (12)0.0049 (11)
C40.0333 (14)0.0389 (15)0.0297 (13)0.0108 (12)0.0036 (11)0.0016 (11)
C50.0457 (17)0.0504 (17)0.0317 (15)0.0112 (14)0.0054 (13)0.0013 (13)
C60.0417 (17)0.0577 (19)0.0442 (18)0.0061 (15)0.0110 (14)0.0104 (15)
C70.0420 (17)0.0426 (17)0.0541 (19)0.0012 (14)0.0004 (15)0.0018 (14)
C80.0465 (17)0.0412 (16)0.0366 (15)0.0066 (13)0.0025 (13)0.0058 (12)
C90.0340 (14)0.0377 (14)0.0294 (13)0.0090 (12)0.0005 (11)0.0039 (11)
C100.0431 (16)0.0393 (15)0.0287 (14)0.0089 (13)0.0013 (12)0.0044 (11)
C110.0430 (16)0.0354 (14)0.0256 (13)0.0106 (12)0.0048 (11)0.0031 (11)
C120.060 (2)0.0435 (16)0.0386 (16)0.0134 (15)0.0140 (14)0.0045 (13)
C130.067 (2)0.0403 (16)0.0354 (16)0.0082 (15)0.0043 (15)0.0032 (13)
S30.0691 (6)0.0424 (4)0.0421 (4)0.0165 (4)0.0088 (4)0.0015 (3)
S40.0586 (5)0.0421 (4)0.0258 (4)0.0112 (3)0.0035 (3)0.0048 (3)
F20.1168 (19)0.0736 (14)0.0465 (11)0.0540 (13)0.0166 (11)0.0177 (10)
O20.0827 (17)0.0599 (14)0.0287 (11)0.0237 (12)0.0071 (11)0.0062 (9)
N40.0420 (14)0.0436 (13)0.0289 (12)0.0032 (11)0.0011 (10)0.0009 (10)
N50.073 (2)0.0467 (15)0.0439 (15)0.0110 (14)0.0090 (14)0.0074 (12)
N60.0624 (18)0.0575 (17)0.0366 (14)0.0042 (14)0.0075 (13)0.0038 (12)
C140.087 (3)0.064 (2)0.068 (2)0.023 (2)0.015 (2)0.0210 (19)
C150.061 (2)0.0527 (19)0.0441 (18)0.0092 (16)0.0056 (16)0.0123 (15)
C160.0371 (15)0.0382 (15)0.0328 (14)0.0022 (12)0.0023 (12)0.0028 (11)
C170.0354 (15)0.0426 (15)0.0276 (13)0.0050 (12)0.0030 (11)0.0028 (11)
C180.0482 (18)0.0550 (18)0.0309 (15)0.0136 (15)0.0058 (13)0.0023 (13)
C190.0531 (19)0.0575 (19)0.0384 (16)0.0210 (16)0.0079 (14)0.0052 (14)
C200.054 (2)0.0489 (18)0.0495 (18)0.0194 (15)0.0093 (15)0.0039 (14)
C210.0459 (17)0.0492 (17)0.0353 (15)0.0101 (14)0.0077 (13)0.0073 (13)
C220.0338 (15)0.0408 (15)0.0332 (14)0.0049 (12)0.0063 (12)0.0031 (12)
C230.0423 (16)0.0433 (16)0.0277 (14)0.0027 (13)0.0038 (12)0.0036 (12)
C240.0356 (15)0.0418 (15)0.0270 (13)0.0002 (12)0.0012 (11)0.0018 (11)
C250.0454 (17)0.0479 (17)0.0356 (15)0.0048 (14)0.0039 (13)0.0060 (13)
C260.083 (3)0.053 (2)0.0447 (19)0.0065 (19)0.0102 (18)0.0120 (15)
Geometric parameters (Å, º) top
S1—C31.747 (3)S3—C161.749 (3)
S1—C21.813 (3)S3—C151.817 (3)
S2—C31.727 (3)S4—C161.727 (3)
S2—C41.745 (3)S4—C171.740 (3)
F1—C61.350 (3)F2—C191.351 (3)
O1—C101.238 (3)O2—C231.238 (3)
N1—C121.342 (3)N4—C251.343 (4)
N1—N21.375 (3)N4—N51.367 (3)
N1—C111.427 (3)N4—C241.428 (3)
N2—C131.308 (4)N5—C261.308 (4)
N3—C121.313 (4)N6—C251.303 (4)
N3—C131.344 (4)N6—C261.350 (4)
C1—C21.513 (4)C14—C151.509 (4)
C1—H1A0.9600C14—H14A0.9600
C1—H1B0.9600C14—H14B0.9600
C1—H1C0.9600C14—H14C0.9600
C2—H2B0.9700C15—H15A0.9700
C2—H2C0.9700C15—H15B0.9700
C3—C111.375 (4)C16—C241.360 (4)
C4—C91.394 (4)C17—C221.393 (4)
C4—C51.400 (4)C17—C181.398 (4)
C5—C61.367 (4)C18—C191.368 (4)
C5—H5A0.9300C18—H18A0.9300
C6—C71.387 (4)C19—C201.381 (4)
C7—C81.364 (4)C20—C211.364 (4)
C7—H7A0.9300C20—H20A0.9300
C8—C91.407 (4)C21—C221.401 (4)
C8—H8A0.9300C21—H21A0.9300
C9—C101.472 (4)C22—C231.479 (4)
C10—C111.443 (4)C23—C241.452 (4)
C12—H12A0.9300C25—H25A0.9300
C13—H13A0.9300C26—H26A0.9300
C3—S1—C2104.62 (14)C16—S3—C15104.65 (14)
C3—S2—C4103.44 (13)C16—S4—C17103.64 (13)
C12—N1—N2108.8 (2)C25—N4—N5108.5 (2)
C12—N1—C11130.1 (2)C25—N4—C24129.6 (2)
N2—N1—C11120.9 (2)N5—N4—C24121.8 (2)
C13—N2—N1101.4 (2)C26—N5—N4101.7 (3)
C12—N3—C13102.1 (2)C25—N6—C26101.7 (3)
C2—C1—H1A109.5C15—C14—H14A109.5
C2—C1—H1B109.5C15—C14—H14B109.5
H1A—C1—H1B109.5H14A—C14—H14B109.5
C2—C1—H1C109.5C15—C14—H14C109.5
H1A—C1—H1C109.5H14A—C14—H14C109.5
H1B—C1—H1C109.5H14B—C14—H14C109.5
C1—C2—S1107.1 (2)C14—C15—S3107.2 (2)
C1—C2—H2B110.3C14—C15—H15A110.3
S1—C2—H2B110.3S3—C15—H15A110.3
C1—C2—H2C110.3C14—C15—H15B110.3
S1—C2—H2C110.3S3—C15—H15B110.3
H2B—C2—H2C108.6H15A—C15—H15B108.5
C11—C3—S2123.5 (2)C24—C16—S4123.6 (2)
C11—C3—S1120.6 (2)C24—C16—S3121.9 (2)
S2—C3—S1115.83 (15)S4—C16—S3114.44 (15)
C9—C4—C5121.1 (3)C22—C17—C18120.8 (3)
C9—C4—S2124.0 (2)C22—C17—S4124.2 (2)
C5—C4—S2114.9 (2)C18—C17—S4115.0 (2)
C6—C5—C4117.8 (3)C19—C18—C17117.9 (3)
C6—C5—H5A121.1C19—C18—H18A121.0
C4—C5—H5A121.1C17—C18—H18A121.0
F1—C6—C5118.7 (3)F2—C19—C18118.0 (3)
F1—C6—C7118.2 (3)F2—C19—C20119.1 (3)
C5—C6—C7123.2 (3)C18—C19—C20122.9 (3)
C8—C7—C6118.2 (3)C21—C20—C19118.6 (3)
C8—C7—H7A120.9C21—C20—H20A120.7
C6—C7—H7A120.9C19—C20—H20A120.7
C7—C8—C9121.6 (3)C20—C21—C22121.3 (3)
C7—C8—H8A119.2C20—C21—H21A119.4
C9—C8—H8A119.2C22—C21—H21A119.4
C4—C9—C8118.1 (3)C17—C22—C21118.4 (3)
C4—C9—C10123.7 (2)C17—C22—C23123.1 (3)
C8—C9—C10118.1 (2)C21—C22—C23118.5 (2)
O1—C10—C11121.0 (2)O2—C23—C24121.0 (3)
O1—C10—C9120.2 (2)O2—C23—C22120.0 (3)
C11—C10—C9118.8 (2)C24—C23—C22118.9 (2)
C3—C11—N1118.0 (2)C16—C24—N4118.9 (3)
C3—C11—C10126.2 (2)C16—C24—C23126.2 (3)
N1—C11—C10115.8 (2)N4—C24—C23114.9 (2)
N3—C12—N1111.0 (3)N6—C25—N4111.7 (3)
N3—C12—H12A124.5N6—C25—H25A124.2
N1—C12—H12A124.5N4—C25—H25A124.2
N2—C13—N3116.7 (3)N5—C26—N6116.4 (3)
N2—C13—H13A121.7N5—C26—H26A121.8
N3—C13—H13A121.7N6—C26—H26A121.8
C12—N1—N2—C131.0 (3)C25—N4—N5—C261.2 (4)
C11—N1—N2—C13176.8 (3)C24—N4—N5—C26177.5 (3)
C3—S1—C2—C1178.5 (2)C16—S3—C15—C14179.7 (2)
C4—S2—C3—C111.7 (3)C17—S4—C16—C244.9 (3)
C4—S2—C3—S1179.60 (15)C17—S4—C16—S3177.84 (15)
C2—S1—C3—C11169.6 (2)C15—S3—C16—C24166.5 (2)
C2—S1—C3—S211.7 (2)C15—S3—C16—S416.2 (2)
C3—S2—C4—C92.3 (3)C16—S4—C17—C225.2 (3)
C3—S2—C4—C5177.1 (2)C16—S4—C17—C18175.8 (2)
C9—C4—C5—C60.4 (4)C22—C17—C18—C190.9 (4)
S2—C4—C5—C6179.1 (2)S4—C17—C18—C19180.0 (2)
C4—C5—C6—F1178.3 (3)C17—C18—C19—F2177.1 (3)
C4—C5—C6—C70.9 (5)C17—C18—C19—C201.5 (5)
F1—C6—C7—C8178.9 (3)F2—C19—C20—C21177.9 (3)
C5—C6—C7—C80.3 (5)C18—C19—C20—C210.7 (5)
C6—C7—C8—C90.8 (5)C19—C20—C21—C220.8 (5)
C5—C4—C9—C80.6 (4)C18—C17—C22—C210.5 (4)
S2—C4—C9—C8180.0 (2)S4—C17—C22—C21178.5 (2)
C5—C4—C9—C10177.0 (3)C18—C17—C22—C23179.4 (3)
S2—C4—C9—C102.4 (4)S4—C17—C22—C231.6 (4)
C7—C8—C9—C41.2 (4)C20—C21—C22—C171.4 (4)
C7—C8—C9—C10176.5 (3)C20—C21—C22—C23178.5 (3)
C4—C9—C10—O1178.1 (3)C17—C22—C23—O2178.3 (3)
C8—C9—C10—O14.3 (4)C21—C22—C23—O21.8 (4)
C4—C9—C10—C111.8 (4)C17—C22—C23—C243.3 (4)
C8—C9—C10—C11175.8 (2)C21—C22—C23—C24176.6 (2)
S2—C3—C11—N1174.04 (19)S4—C16—C24—N4178.25 (19)
S1—C3—C11—N14.6 (4)S3—C16—C24—N41.2 (4)
S2—C3—C11—C106.3 (4)S4—C16—C24—C231.1 (4)
S1—C3—C11—C10175.1 (2)S3—C16—C24—C23178.1 (2)
C12—N1—C11—C3126.8 (3)C25—N4—C24—C16128.4 (3)
N2—N1—C11—C358.4 (4)N5—N4—C24—C1656.1 (4)
C12—N1—C11—C1052.9 (4)C25—N4—C24—C2352.2 (4)
N2—N1—C11—C10121.8 (3)N5—N4—C24—C23123.3 (3)
O1—C10—C11—C3173.5 (3)O2—C23—C24—C16177.9 (3)
C9—C10—C11—C36.4 (4)C22—C23—C24—C163.7 (4)
O1—C10—C11—N16.2 (4)O2—C23—C24—N41.4 (4)
C9—C10—C11—N1173.9 (2)C22—C23—C24—N4177.0 (2)
C13—N3—C12—N11.4 (4)C26—N6—C25—N40.1 (4)
N2—N1—C12—N31.6 (4)N5—N4—C25—N60.7 (4)
C11—N1—C12—N3176.8 (3)C24—N4—C25—N6176.7 (3)
N1—N2—C13—N30.1 (4)N4—N5—C26—N61.4 (5)
C12—N3—C13—N20.8 (4)C25—N6—C26—N51.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O2i0.932.403.231 (4)149
C8—H8A···O10.932.452.764 (4)100
C8—H8A···N6ii0.932.563.381 (4)147
C18—H18A···O1iii0.932.513.334 (4)147
C21—H21A···O20.932.462.772 (4)100
C21—H21A···N3iv0.932.473.326 (4)154
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z1; (iii) x, y, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H10FN3OS2
Mr307.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.1060 (16), 11.288 (2), 15.163 (3)
α, β, γ (°)83.12 (3), 83.15 (3), 79.36 (3)
V3)1347.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.888, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
5271, 4892, 3725
Rint0.020
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.135, 1.00
No. of reflections4892
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.29

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
S1—C31.747 (3)S3—C161.749 (3)
S1—C21.813 (3)S3—C151.817 (3)
S2—C31.727 (3)S4—C161.727 (3)
S2—C41.745 (3)S4—C171.740 (3)
F1—C61.350 (3)F2—C191.351 (3)
O1—C101.238 (3)O2—C231.238 (3)
N1—C121.342 (3)N4—C251.343 (4)
N1—N21.375 (3)N4—N51.367 (3)
N1—C111.427 (3)N4—C241.428 (3)
N2—C131.308 (4)N5—C261.308 (4)
N3—C121.313 (4)N6—C251.303 (4)
N3—C131.344 (4)N6—C261.350 (4)
C3—S1—C2104.62 (14)C25—N4—N5108.5 (2)
C3—S2—C4103.44 (13)C25—N4—C24129.6 (2)
C12—N1—N2108.8 (2)N5—N4—C24121.8 (2)
C12—N1—C11130.1 (2)C26—N5—N4101.7 (3)
C13—N2—N1101.4 (2)C25—N6—C26101.7 (3)
C12—N3—C13102.1 (2)C14—C15—S3107.2 (2)
C1—C2—S1107.1 (2)C24—C16—S4123.6 (2)
C11—C3—S2123.5 (2)C24—C16—S3121.9 (2)
C11—C3—S1120.6 (2)S4—C16—S3114.44 (15)
S2—C3—S1115.83 (15)C22—C17—C18120.8 (3)
C9—C4—S2124.0 (2)C22—C17—S4124.2 (2)
C6—C5—C4117.8 (3)C18—C17—S4115.0 (2)
F1—C6—C5118.7 (3)C19—C18—H18A121.0
F1—C6—C7118.2 (3)F2—C19—C20119.1 (3)
O1—C10—C9120.2 (2)O2—C23—C24121.0 (3)
C3—C11—N1118.0 (2)O2—C23—C22120.0 (3)
N1—C11—C10115.8 (2)C24—C23—C22118.9 (2)
N3—C12—N1111.0 (3)C16—C24—N4118.9 (3)
N2—C13—N3116.7 (3)N4—C24—C23114.9 (2)
C16—S3—C15104.65 (14)N6—C25—N4111.7 (3)
C16—S4—C17103.64 (13)N5—C26—N6116.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O2i0.93002.40003.231 (4)149.00
C8—H8A···O10.93002.45002.764 (4)100.00
C8—H8A···N6ii0.93002.56003.381 (4)147.00
C18—H18A···O1iii0.93002.51003.334 (4)147.00
C21—H21A···O20.93002.46002.772 (4)100.00
C21—H21A···N3iv0.93002.47003.326 (4)154.00
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z1; (iii) x, y, z; (iv) x, y, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAdams, H., Bailey, N. A., Giles, P. R. & Marson, C. M. (1991). Acta Cryst. C47, 1332–1334.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLi, Y., Xiao, T., Liu, D. & Yu, G. (2010). Acta Cryst. E66, o694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y., Xiao, T., Yu, G. & Liu, D. (2010). Acta Cryst. E66, o2072.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakazumi, H., Watanabe, S. & Kitao, T. (1992). J. Chem. Res. 212, 1616–1641.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeiss, R., Bess, M., Huber, S. M. & Heinemann, F. W. (2008). J. Am. Chem. Soc. 130, 4610–4617.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds