organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-(2-Chloro­phen­yl)imino­meth­yl]-6-methyl­phenol

aSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
*Correspondence e-mail: chm_zhuph@ujn.edu.cn

(Received 18 August 2010; accepted 23 August 2010; online 28 August 2010)

The title compound, C14H12ClNO, a Schiff base derived from 3-methyl­salicyl­aldehyde, crystallizes in the phenol–imine tautomeric form with an E conformation for the imine functionality. The mol­ecule is not planar, the dihedral angle between the aromatic rings being 36.38 (5)°. The hy­droxy H atom is involved in a strong intra­molecular O—H⋯N hydrogen bond, generating an S(6) ring.

Related literature

For background information and applications of Schiff base complexes, see: Barton & Ollis (1979[Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon Press.]); Layer (1963[Layer, R. W. (1963). Chem. Rev. 63, 489-510.]); Ingold (1969[Ingold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca: Cornell University Press.]); Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]); Henrici-Olive & Olive (1984[Henrici-Olive, G. & Olive, S. (1984). The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide. Berlin: Springer.]); Garnovskii et al. (1993[Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]). For related structures, see: Köysal et al. (2007[Köysal, Y., Işık, Ş. & Ağar, A. (2007). Acta Cryst. E63, o4916.]); Kılıç et al. (2009[Kılıç, I., Işık, Ş., Ağar, E. & Erşahin, F. (2009). Acta Cryst. E65, o1347.]); Şahin et al. (2009[Şahin, Z. S., Işık, Ş., Erşahin, F. & Ağar, E.(2009). Acta Cryst. E65, o811.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO

  • Mr = 245.70

  • Orthorhombic, P 21 21 21

  • a = 7.8318 (14) Å

  • b = 11.693 (2) Å

  • c = 13.250 (2) Å

  • V = 1213.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.21 × 0.11 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.982

  • 6803 measured reflections

  • 2477 independent reflections

  • 1486 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.096

  • S = 1.00

  • 2477 reflections

  • 158 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1034 Friedel pairs

  • Flack parameter: −0.06 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.87 (1) 1.84 (2) 2.615 (3) 148 (3)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are used as starting materials in the synthesis of important drugs (Layer, 1963; Ingold, 1969). A large number of Schiff bases and their complexes have been studied for their interesting and important properties, e.g. catalytic activity (Henrici-Olive & Olive, 1984), photochromic properties (Cohen et al., 1964), biological activity (Barton et al., 1979). On the other hand, Schiff base ligands play a vital role in coordination chemistry due to their metal binding ability (Garnovskii et al., 1993).

The structure of the title compound is shown in Fig. 1. The C7N1 double bond of 1.283 (3) Å is slightly longer than the literature values found in similar structures (Köysal et al., 2007; Kılıç et al., 2009; Şahin et al., 2009) in the range of 1.262 (8)-1.279 (3) Å. The title molecule is not planar with a dihedral angle between the aromatic rings C1/C6 and C8/C13 of 36.38 (5) °. The imino group is coplanar with the hydroxyphenyl ring with the torsion angle C13—C8—C7—N1 of 1.6 (4) °.

The molecular structure is stabilized by a strong intramolecular O—H···N hydrogen bond.

Related literature top

For background information and applications of Schiff base complexes, see: Barton & Ollis (1979); Layer (1963); Ingold (1969); Cohen et al. (1964); Henrici-Olive & Olive (1984); Garnovskii et al. (1993). For related structures, see: Köysal et al. (2007); Kılıç et al. (2009); Şahin et al. (2009).

Experimental top

A solution of 3-methylsalicylaldehyde (0.0681 g, 0.5 mmol) in ethanol (10 ml) was added to a solution of 2-chlorobenzenamine (0.0638 g, 0.5 mmol) in ethanol (20 ml). The reaction mixture was stirred for 2 h under reflux. Single crystals suitable for a X-ray analysis were obtained from ethanol by slow evaporation (0.0749 g, 61%).

Refinement top

The H atom bounded to O1 was located in the difference Fourier map and freely refined with Uiso(H) = 1.2Ueq (O). All other H atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Structure description top

Schiff bases are used as starting materials in the synthesis of important drugs (Layer, 1963; Ingold, 1969). A large number of Schiff bases and their complexes have been studied for their interesting and important properties, e.g. catalytic activity (Henrici-Olive & Olive, 1984), photochromic properties (Cohen et al., 1964), biological activity (Barton et al., 1979). On the other hand, Schiff base ligands play a vital role in coordination chemistry due to their metal binding ability (Garnovskii et al., 1993).

The structure of the title compound is shown in Fig. 1. The C7N1 double bond of 1.283 (3) Å is slightly longer than the literature values found in similar structures (Köysal et al., 2007; Kılıç et al., 2009; Şahin et al., 2009) in the range of 1.262 (8)-1.279 (3) Å. The title molecule is not planar with a dihedral angle between the aromatic rings C1/C6 and C8/C13 of 36.38 (5) °. The imino group is coplanar with the hydroxyphenyl ring with the torsion angle C13—C8—C7—N1 of 1.6 (4) °.

The molecular structure is stabilized by a strong intramolecular O—H···N hydrogen bond.

For background information and applications of Schiff base complexes, see: Barton & Ollis (1979); Layer (1963); Ingold (1969); Cohen et al. (1964); Henrici-Olive & Olive (1984); Garnovskii et al. (1993). For related structures, see: Köysal et al. (2007); Kılıç et al. (2009); Şahin et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme and 25% probability displacement ellipsoids for the non-H atoms.
2-[(E)-(2-Chlorophenyl)iminomethyl]-6-methylphenol top
Crystal data top
C14H12ClNOF(000) = 512
Mr = 245.70Dx = 1.345 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1163 reflections
a = 7.8318 (14) Åθ = 3.1–28.8°
b = 11.693 (2) ŵ = 0.30 mm1
c = 13.250 (2) ÅT = 293 K
V = 1213.4 (4) Å3Needle, yellow
Z = 40.21 × 0.11 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2477 independent reflections
Radiation source: fine-focus sealed tube1486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
φ and ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.940, Tmax = 0.982k = 1414
6803 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0358P)2 + 0.0414P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2477 reflectionsΔρmax = 0.15 e Å3
158 parametersΔρmin = 0.14 e Å3
1 restraintAbsolute structure: Flack (1983), 1034 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (9)
Crystal data top
C14H12ClNOV = 1213.4 (4) Å3
Mr = 245.70Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.8318 (14) ŵ = 0.30 mm1
b = 11.693 (2) ÅT = 293 K
c = 13.250 (2) Å0.21 × 0.11 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2477 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1486 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.982Rint = 0.070
6803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096Δρmax = 0.15 e Å3
S = 1.00Δρmin = 0.14 e Å3
2477 reflectionsAbsolute structure: Flack (1983), 1034 Friedel pairs
158 parametersAbsolute structure parameter: 0.06 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.30427 (11)0.84282 (9)0.18201 (8)0.0873 (3)
C110.2023 (4)0.5269 (3)0.6436 (3)0.0609 (9)
H110.13580.49490.69450.073*
C20.6147 (5)0.8244 (3)0.0959 (3)0.0673 (9)
H20.57270.87400.04690.081*
C40.8405 (4)0.7124 (3)0.1622 (3)0.0704 (10)
H40.95180.68510.15770.085*
C130.2304 (4)0.5959 (2)0.4763 (2)0.0460 (7)
N10.4592 (3)0.68266 (18)0.32559 (19)0.0510 (6)
C80.4038 (3)0.6210 (2)0.4942 (2)0.0446 (7)
C50.7384 (3)0.6793 (3)0.2418 (3)0.0600 (8)
H50.78170.63050.29100.072*
C10.5125 (4)0.7905 (2)0.1741 (2)0.0546 (8)
C30.7793 (5)0.7849 (3)0.0899 (3)0.0726 (10)
H30.84920.80750.03680.087*
C90.4702 (4)0.5986 (2)0.5894 (2)0.0568 (8)
H90.58350.61670.60300.068*
C70.5128 (3)0.6658 (2)0.4159 (2)0.0476 (7)
H70.62570.68300.43130.057*
C120.1285 (3)0.5488 (2)0.5514 (2)0.0509 (8)
C60.5706 (3)0.7186 (2)0.2491 (2)0.0495 (7)
C100.3721 (4)0.5507 (3)0.6631 (2)0.0638 (9)
H100.41900.53420.72600.077*
C140.0568 (4)0.5250 (3)0.5305 (3)0.0781 (11)
H14C0.11430.59530.51500.117*
H14A0.06620.47370.47420.117*
H14B0.10810.49070.58890.117*
O10.1569 (2)0.61668 (18)0.38591 (17)0.0618 (6)
H10.233 (3)0.648 (3)0.3472 (19)0.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0762 (5)0.1058 (7)0.0799 (7)0.0203 (5)0.0073 (5)0.0146 (6)
C110.072 (2)0.0524 (19)0.058 (2)0.0033 (17)0.0238 (19)0.0008 (17)
C20.089 (3)0.054 (2)0.059 (2)0.0124 (19)0.002 (2)0.0131 (19)
C40.064 (2)0.065 (2)0.083 (3)0.0066 (17)0.016 (2)0.000 (2)
C130.0515 (19)0.0393 (16)0.0471 (19)0.0069 (13)0.0008 (15)0.0042 (15)
N10.0543 (13)0.0510 (14)0.0477 (16)0.0051 (11)0.0029 (14)0.0016 (14)
C80.0473 (18)0.0412 (17)0.0452 (19)0.0026 (12)0.0044 (15)0.0075 (15)
C50.0581 (18)0.0538 (19)0.068 (2)0.0021 (15)0.0058 (17)0.0120 (18)
C10.0629 (18)0.0511 (16)0.0499 (19)0.0042 (15)0.0015 (18)0.0013 (18)
C30.087 (3)0.064 (2)0.067 (2)0.0186 (19)0.022 (2)0.002 (2)
C90.0564 (17)0.0652 (18)0.049 (2)0.0009 (15)0.0027 (17)0.0051 (19)
C70.0468 (15)0.0460 (16)0.050 (2)0.0023 (14)0.0025 (16)0.0025 (17)
C120.0527 (17)0.0432 (16)0.057 (2)0.0023 (14)0.0098 (18)0.0034 (16)
C60.0539 (18)0.0423 (16)0.0523 (19)0.0094 (13)0.0014 (16)0.0013 (17)
C100.079 (2)0.071 (2)0.042 (2)0.0057 (18)0.0028 (18)0.0004 (19)
C140.057 (2)0.085 (2)0.093 (3)0.0041 (17)0.0114 (19)0.004 (2)
O10.0516 (12)0.0784 (16)0.0554 (15)0.0011 (11)0.0025 (11)0.0044 (12)
Geometric parameters (Å, º) top
Cl1—C11.745 (3)C8—C91.388 (4)
C11—C121.376 (4)C8—C71.442 (4)
C11—C101.384 (4)C5—C61.396 (4)
C11—H110.9300C5—H50.9300
C2—C11.369 (4)C1—C61.378 (4)
C2—C31.372 (4)C3—H30.9300
C2—H20.9300C9—C101.363 (4)
C4—C31.366 (4)C9—H90.9300
C4—C51.379 (4)C7—H70.9300
C4—H40.9300C12—C141.503 (4)
C13—O11.351 (3)C10—H100.9300
C13—C121.389 (4)C14—H14C0.9600
C13—C81.410 (4)C14—H14A0.9600
N1—C71.283 (3)C14—H14B0.9600
N1—C61.402 (3)O1—H10.87 (3)
C12—C11—C10122.2 (3)C2—C3—H3120.1
C12—C11—H11118.9C10—C9—C8121.2 (3)
C10—C11—H11118.9C10—C9—H9119.4
C1—C2—C3119.7 (3)C8—C9—H9119.4
C1—C2—H2120.1N1—C7—C8122.2 (3)
C3—C2—H2120.1N1—C7—H7118.9
C3—C4—C5120.5 (3)C8—C7—H7118.9
C3—C4—H4119.8C11—C12—C13117.9 (3)
C5—C4—H4119.8C11—C12—C14122.3 (3)
O1—C13—C12117.5 (3)C13—C12—C14119.8 (3)
O1—C13—C8121.4 (3)C1—C6—C5117.5 (3)
C12—C13—C8121.1 (3)C1—C6—N1119.9 (3)
C7—N1—C6121.1 (2)C5—C6—N1122.5 (3)
C9—C8—C13118.3 (3)C9—C10—C11119.3 (3)
C9—C8—C7120.0 (3)C9—C10—H10120.3
C13—C8—C7121.7 (3)C11—C10—H10120.3
C4—C5—C6120.4 (3)C12—C14—H14C109.5
C4—C5—H5119.8C12—C14—H14A109.5
C6—C5—H5119.8H14C—C14—H14A109.5
C2—C1—C6122.0 (3)C12—C14—H14B109.5
C2—C1—Cl1119.4 (3)H14C—C14—H14B109.5
C6—C1—Cl1118.6 (2)H14A—C14—H14B109.5
C4—C3—C2119.9 (3)C13—O1—H1108 (2)
C4—C3—H3120.1
O1—C13—C8—C9179.2 (2)C10—C11—C12—C14178.9 (3)
C12—C13—C8—C90.7 (4)O1—C13—C12—C11179.7 (2)
O1—C13—C8—C72.5 (4)C8—C13—C12—C110.4 (4)
C12—C13—C8—C7177.6 (2)O1—C13—C12—C141.0 (4)
C3—C4—C5—C60.6 (4)C8—C13—C12—C14178.9 (3)
C3—C2—C1—C61.1 (5)C2—C1—C6—C51.1 (4)
C3—C2—C1—Cl1179.1 (3)Cl1—C1—C6—C5179.1 (2)
C5—C4—C3—C20.6 (5)C2—C1—C6—N1177.5 (3)
C1—C2—C3—C40.2 (5)Cl1—C1—C6—N14.5 (3)
C13—C8—C9—C101.8 (4)C4—C5—C6—C10.2 (4)
C7—C8—C9—C10176.5 (3)C4—C5—C6—N1176.6 (3)
C6—N1—C7—C8175.4 (2)C7—N1—C6—C1146.1 (3)
C9—C8—C7—N1176.7 (3)C7—N1—C6—C537.6 (4)
C13—C8—C7—N11.6 (4)C8—C9—C10—C111.8 (5)
C10—C11—C12—C130.4 (4)C12—C11—C10—C90.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.87 (1)1.84 (2)2.615 (3)148 (3)

Experimental details

Crystal data
Chemical formulaC14H12ClNO
Mr245.70
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.8318 (14), 11.693 (2), 13.250 (2)
V3)1213.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.21 × 0.11 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.940, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
6803, 2477, 1486
Rint0.070
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.096, 1.00
No. of reflections2477
No. of parameters158
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.14
Absolute structureFlack (1983), 1034 Friedel pairs
Absolute structure parameter0.06 (9)

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.871 (10)1.835 (18)2.615 (3)148 (3)
 

Acknowledgements

This work was supported by Shandong Province (2007BS02016).

References

First citationBarton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon Press.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationHenrici-Olive, G. & Olive, S. (1984). The Chemistry of the Catalyzed Hydrogenation of Carbon Monoxide. Berlin: Springer.  Google Scholar
First citationIngold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca: Cornell University Press.  Google Scholar
First citationKılıç, I., Işık, Ş., Ağar, E. & Erşahin, F. (2009). Acta Cryst. E65, o1347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKöysal, Y., Işık, Ş. & Ağar, A. (2007). Acta Cryst. E63, o4916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLayer, R. W. (1963). Chem. Rev. 63, 489–510.  CrossRef CAS Web of Science Google Scholar
First citationŞahin, Z. S., Işık, Ş., Erşahin, F. & Ağar, E.(2009). Acta Cryst. E65, o811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds