organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-5-dodec­yl­oxy-1,3-thia­zole

aDepartamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
*Correspondence e-mail: adajb@qmc.ufsc.br

(Received 28 July 2010; accepted 13 August 2010; online 21 August 2010)

In the structure of the title compound, C21H30BrNOS, an important inter­mediate for the preparation of liquid crystal compounds, the saturated C12 chain shows a linear conformation while the benzene and thia­zole rings are essentially coplanar [dihedral angle = 4.5 (4)°]. The crystal packing shows no significant inter­molecular inter­actions.

Related literature

For technological applications of liquid crystals, see: Sonar et al. (2008[Sonar, P., Singh, S. P., Sudhakar, S., Dodabalapur, A. & Sellinger, A. (2008). Chem. Mater. 20, 3184-3190.]); Srivastava et al. (2008[Srivastava, R. M., Neves, R. A. W., Schneider, R., Vieira, A. A. & Gallardo, H. (2008). Liq. Cryst. 35, 737-742.]). For liquid-crystalline compounds containing heterocyclic units, see: Cristiano et al. (2006[Cristiano, R., Santos, D. M. P. O., Conte, G. & Gallardo, H. (2006). Liq. Cryst. 33, 997-1003.]); Kauhanka & Kauhanka (2006[Kauhanka, M. U. & Kauhanka, M. M. (2006). Liq. Cryst. 33, 121-127.]); Vieira et al. (2008[Vieira, A. A., Cristiano, R., Bortoluzzi, A. J. & Gallardo, H. (2008). J. Mol. Struct. 875, 364-371.]). For the properties of thia­zole derivatives, see: Gallardo et al. (2008[Gallardo, H., Bortoluzzi, A. J. & Santos, D. M. P. O. (2008). Liq. Cryst. 35, 719-725.]); Yamashita (2010[Yamashita, Y. (2010). ACS Appl. Mater. Interfaces, 5, 1303-1307.]); Parra et al. (2001[Parra, M., Alderete, J., Zuniga, C., Gallardo, H., Hidalgo, P., Vergara, J. & Hernandez, S. (2001). Liq. Cryst. 28, 1659-1666.]); Cohen et al. (2010[Cohen, F., Koehler, M. F. T., Bergeron, P., Elliott, L. O., Flygare, J. A., Franklin, M. C., Gazzard, L., Keteltas, S. F., Lau, K., Ly, C., Tsui, V. & Fairbrother, W. J. (2010). Bioorg. Med. Chem. Lett. 7, 2229-2233.]). For the synthesis, see: Kiryanov et al. (2001[Kiryanov, A. A., Sampson, P. & Seed, A. J. (2001). J. Org. Chem. 23, 7925-7929.]). For related structures, see: Metzger (1984[Metzger, J. V. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. R. Katritzky & C. N. Rees, p. 238. Oxford: Pergamon Press.]); Krapivin et al. (1992[Krapivin, G. D., Usova, E. B., Zavodnik, V. E. & Kul'nevich, V. G. (1992). Chem. Heterocycl. Compd, 28, 890-894.]).

[Scheme 1]

Experimental

Crystal data
  • C21H30BrNOS

  • Mr = 424.43

  • Monoclinic, P 21 /c

  • a = 5.507 (1) Å

  • b = 46.999 (6) Å

  • c = 8.326 (1) Å

  • β = 99.68 (1)°

  • V = 2124.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 293 K

  • 0.47 × 0.47 × 0.36 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan [North et al. (1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])] Tmin = 0.447, Tmax = 0.527

  • 4001 measured reflections

  • 3740 independent reflections

  • 1486 reflections with I > 2σ(I)

  • Rint = 0.101

  • 3 standard reflections every 25 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.248

  • S = 1.05

  • 3740 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996[Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Liquid crystals are fascinating materials with a broad range of applications. The most famous application of these materials is in liquid crystal displays (LCDs), but over the past year new applications have appeared, such as organic light emitting diodes (OLEDs) (Sonar et al., 2008; Srivastava et al., 2008). The molecular shape has a dominant influence on the existence of the liquid crystalline state. Over several years a large number of liquid-crystalline compounds containing heterocyclic units have been synthesized (Cristiano et al., 2006). Heterocycles are of great importance as core units in thermotropic liquid crystals due to their ability to impart lateral and/or longitudinal dipoles combined with changes in the molecular shape. The incorporation of heteroatoms can also result in large changes in the corresponding liquid crystalline phases and/or in the physical properties of the observed phases, because most of the heteroatoms (S, O, and N) commonly introduced are chemically classified as more polarizable than carbon (Kauhanka & Kauhanka, 2006; Vieira et al., 2008). As part of our studies of liquid crystal derivatives of thiazoles, we now report the synthesis and structure of the title compound C21H30BrNOS (I). In (I) (Fig. 1), the saturated C12 chain shows a linear conformation while the benzene and thiazole rings are essentially coplanar [dihedral angle, 4.5 (4)°]. The crystal packing shows no significant intermolecular interactions.

Related literature top

For technological applications of liquid crystals, see: Sonar et al. (2008); Srivastava et al. (2008). For liquid-crystalline compounds containing heterocyclic units, see: Cristiano et al. (2006); Kauhanka & Kauhanka (2006); Vieira et al. (2008). For the properties of thiazole derivatives, see: Gallardo et al. (2008); Yamashita (2010); Parra et al. (2001); Cohen et al. (2010). For the synthesis, see: Kiryanov et al. (2001). For related structures, see Katrinsky & Metzger (1984); Krapivin et al. (1992).

Experimental top

Dodecyl-2-(4-bromobenzamido)acetate (4.26 g, 10 mmol) and 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide (Lawesson's reagent) (8.10 g, 20 mmol) was mixed with dry toluene (150 ml) and heated under reflux for 6 h. The crude product was separated by column chromatography (dichloromethane) and after evaporation of the solvent the solid was recrystallized from methanol to afford the title compound as a white solid (3.8 g, 95%): 1H NMR (CDCl3) = 7.64 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.06 (s, 1H), 4.03 (t, J = 6.5 Hz, 2H), 1.81 (q, J = 7.0 Hz, 2H), 1.52–1.20 (m, 18H), 0.89 (t, J = 6.8 Hz, 3H); Elemental analysis for C21H30BrNOS: calc.: C 59.43; H 7.12; N 3.30; S 7.55%. Found: C 59.42; H 7.16; N 3.43; S 8.25%.

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. H atoms were placed at their idealized positions with C—HAr = 0.93 Å, C—Hmethylene = 0.97 Å and C—Hmethyl = 0.96 Å and treated as riding, with Uiso = 1.2 or 1.5 times Ueq(C) for aromatic/methylene and methyl groups, respectively.

Structure description top

Liquid crystals are fascinating materials with a broad range of applications. The most famous application of these materials is in liquid crystal displays (LCDs), but over the past year new applications have appeared, such as organic light emitting diodes (OLEDs) (Sonar et al., 2008; Srivastava et al., 2008). The molecular shape has a dominant influence on the existence of the liquid crystalline state. Over several years a large number of liquid-crystalline compounds containing heterocyclic units have been synthesized (Cristiano et al., 2006). Heterocycles are of great importance as core units in thermotropic liquid crystals due to their ability to impart lateral and/or longitudinal dipoles combined with changes in the molecular shape. The incorporation of heteroatoms can also result in large changes in the corresponding liquid crystalline phases and/or in the physical properties of the observed phases, because most of the heteroatoms (S, O, and N) commonly introduced are chemically classified as more polarizable than carbon (Kauhanka & Kauhanka, 2006; Vieira et al., 2008). As part of our studies of liquid crystal derivatives of thiazoles, we now report the synthesis and structure of the title compound C21H30BrNOS (I). In (I) (Fig. 1), the saturated C12 chain shows a linear conformation while the benzene and thiazole rings are essentially coplanar [dihedral angle, 4.5 (4)°]. The crystal packing shows no significant intermolecular interactions.

For technological applications of liquid crystals, see: Sonar et al. (2008); Srivastava et al. (2008). For liquid-crystalline compounds containing heterocyclic units, see: Cristiano et al. (2006); Kauhanka & Kauhanka (2006); Vieira et al. (2008). For the properties of thiazole derivatives, see: Gallardo et al. (2008); Yamashita (2010); Parra et al. (2001); Cohen et al. (2010). For the synthesis, see: Kiryanov et al. (2001). For related structures, see Katrinsky & Metzger (1984); Krapivin et al. (1992).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: SET4 in CAD-4 Software (Enraf–Nonius, 1989); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labelling scheme. Displacement ellipsoids are shown at the 40% probability level.
2-(4-Bromophenyl)-5-dodecyloxy-1,3-thiazole top
Crystal data top
C21H30BrNOSF(000) = 888
Mr = 424.43Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 5.507 (1) Åθ = 3.8–11.5°
b = 46.999 (6) ŵ = 2.04 mm1
c = 8.326 (1) ÅT = 293 K
β = 99.68 (1)°Block, colorless
V = 2124.3 (5) Å30.47 × 0.47 × 0.36 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1486 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.101
Graphite monochromatorθmax = 25.0°, θmin = 0.9°
ω–2θ scansh = 66
Absorption correction: ψ scan
[North et al. (1968) and PLATON (Spek, 2009)]
k = 550
Tmin = 0.447, Tmax = 0.527l = 90
4001 measured reflections3 standard reflections every 25 reflections
3740 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.248H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1139P)2]
where P = (Fo2 + 2Fc2)/3
3740 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C21H30BrNOSV = 2124.3 (5) Å3
Mr = 424.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.507 (1) ŵ = 2.04 mm1
b = 46.999 (6) ÅT = 293 K
c = 8.326 (1) Å0.47 × 0.47 × 0.36 mm
β = 99.68 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1486 reflections with I > 2σ(I)
Absorption correction: ψ scan
[North et al. (1968) and PLATON (Spek, 2009)]
Rint = 0.101
Tmin = 0.447, Tmax = 0.5273 standard reflections every 25 reflections
4001 measured reflections intensity decay: 1%
3740 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.248H-atom parameters constrained
S = 1.05Δρmax = 0.61 e Å3
3740 reflectionsΔρmin = 0.47 e Å3
227 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4151 (15)0.5923 (2)0.0151 (9)0.045 (2)
C20.6447 (17)0.5928 (2)0.1107 (10)0.055 (2)
H20.72900.57580.13570.067*
C30.7521 (17)0.6180 (2)0.1703 (11)0.064 (3)
H30.90670.61770.23560.077*
C40.6371 (19)0.6430 (2)0.1357 (11)0.059 (3)
C50.4059 (19)0.6436 (2)0.0409 (12)0.067 (3)
H50.32440.66090.01840.081*
C60.2960 (16)0.6186 (2)0.0206 (10)0.057 (2)
H60.14170.61910.08620.068*
C70.3088 (14)0.5663 (2)0.0520 (9)0.050 (2)
C80.0587 (16)0.52788 (19)0.1924 (10)0.051 (2)
C90.2786 (16)0.51987 (19)0.1131 (11)0.057 (3)
H90.33380.50120.11290.069*
C100.0700 (15)0.48362 (19)0.2965 (10)0.053 (2)
H10A0.03490.47530.18850.063*
H10B0.07410.48120.34800.063*
C110.2887 (16)0.46862 (19)0.3963 (11)0.056 (2)
H11A0.43320.47140.34560.067*
H11B0.32220.47680.50460.067*
C120.2390 (14)0.43752 (19)0.4087 (10)0.051 (2)
H12A0.20780.42950.29990.061*
H12B0.09130.43500.45620.061*
C130.4524 (15)0.42099 (19)0.5121 (11)0.054 (2)
H13A0.60000.42370.46470.065*
H13B0.48280.42910.62070.065*
C140.4093 (14)0.3900 (2)0.5259 (11)0.060 (3)
H14A0.37040.38210.41720.072*
H14B0.26700.38730.57880.072*
C150.6280 (16)0.37363 (19)0.6215 (11)0.057 (2)
H15A0.77140.37740.57130.069*
H15B0.66180.38130.73110.069*
C160.6002 (16)0.3421 (2)0.6340 (11)0.059 (3)
H16A0.55170.33430.52530.071*
H16B0.46860.33810.69490.071*
C170.8306 (16)0.32698 (18)0.7151 (12)0.063 (3)
H17A0.96270.33150.65550.075*
H17B0.87670.33460.82440.075*
C180.8118 (16)0.2954 (2)0.7266 (11)0.068 (3)
H18A0.76130.28770.61800.082*
H18B0.68480.29080.79010.082*
C191.0484 (16)0.28141 (19)0.8031 (11)0.066 (3)
H19A1.09430.28860.91330.079*
H19B1.17680.28700.74270.079*
C201.0392 (17)0.2490 (2)0.8096 (13)0.071 (3)
H20A0.91860.24350.87610.086*
H20B0.98290.24190.70030.086*
C211.2787 (18)0.2351 (2)0.8758 (17)0.104 (4)
H21A1.34740.24380.97770.156*
H21B1.39060.23740.79990.156*
H21C1.25210.21520.89230.156*
N10.4170 (14)0.54122 (16)0.0321 (9)0.061 (2)
O10.1218 (10)0.51313 (14)0.2839 (7)0.0612 (17)
S10.0169 (4)0.56399 (5)0.1715 (3)0.0572 (7)
Br10.7883 (2)0.67797 (3)0.20868 (16)0.0951 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (5)0.061 (7)0.033 (5)0.002 (5)0.000 (4)0.001 (4)
C20.061 (6)0.053 (7)0.055 (6)0.012 (5)0.014 (5)0.007 (5)
C30.048 (6)0.071 (8)0.071 (7)0.001 (6)0.001 (5)0.002 (6)
C40.067 (7)0.063 (7)0.048 (6)0.013 (6)0.017 (5)0.005 (5)
C50.071 (7)0.047 (7)0.083 (7)0.002 (5)0.011 (6)0.007 (5)
C60.046 (5)0.048 (6)0.072 (7)0.002 (5)0.002 (5)0.005 (5)
C70.037 (5)0.074 (7)0.034 (5)0.007 (5)0.006 (4)0.012 (5)
C80.045 (5)0.047 (6)0.054 (6)0.001 (5)0.017 (5)0.002 (5)
C90.059 (6)0.036 (6)0.068 (6)0.000 (5)0.016 (5)0.017 (5)
C100.053 (6)0.045 (6)0.056 (6)0.003 (5)0.001 (5)0.013 (5)
C110.059 (6)0.053 (7)0.056 (6)0.013 (5)0.008 (5)0.004 (5)
C120.043 (5)0.056 (6)0.051 (6)0.006 (5)0.000 (4)0.002 (5)
C130.049 (6)0.056 (7)0.054 (6)0.001 (5)0.002 (5)0.007 (5)
C140.031 (5)0.079 (8)0.066 (6)0.012 (5)0.005 (5)0.003 (5)
C150.051 (6)0.048 (7)0.071 (6)0.011 (5)0.003 (5)0.009 (5)
C160.046 (6)0.076 (8)0.054 (6)0.015 (5)0.006 (5)0.006 (5)
C170.051 (6)0.053 (7)0.082 (7)0.006 (5)0.003 (5)0.013 (5)
C180.057 (6)0.058 (7)0.081 (7)0.005 (5)0.010 (5)0.004 (6)
C190.061 (6)0.047 (7)0.085 (7)0.001 (5)0.003 (5)0.003 (5)
C200.070 (7)0.050 (7)0.090 (8)0.005 (5)0.002 (6)0.016 (6)
C210.074 (8)0.054 (8)0.171 (12)0.015 (6)0.017 (8)0.031 (8)
N10.060 (5)0.037 (5)0.079 (6)0.016 (4)0.010 (4)0.003 (4)
O10.050 (4)0.058 (5)0.069 (4)0.012 (3)0.010 (3)0.009 (3)
S10.0479 (13)0.0455 (15)0.0700 (16)0.0069 (12)0.0138 (12)0.0077 (12)
Br10.1110 (11)0.0733 (9)0.1017 (10)0.0372 (7)0.0199 (7)0.0262 (7)
Geometric parameters (Å, º) top
C1—C21.376 (11)C12—H12B0.9700
C1—C61.407 (12)C13—C141.481 (12)
C1—C71.428 (12)C13—H13A0.9700
C2—C31.381 (12)C13—H13B0.9700
C2—H20.9300C14—C151.535 (11)
C3—C41.343 (13)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C4—C51.381 (13)C15—C161.497 (12)
C4—Br11.895 (9)C15—H15A0.9700
C5—C61.383 (12)C15—H15B0.9700
C5—H50.9300C16—C171.510 (11)
C6—H60.9300C16—H16A0.9700
C7—N11.317 (11)C16—H16B0.9700
C7—S11.746 (8)C17—C181.490 (12)
C8—C91.332 (11)C17—H17A0.9700
C8—O11.339 (9)C17—H17B0.9700
C8—S11.725 (9)C18—C191.503 (11)
C9—N11.367 (10)C18—H18A0.9700
C9—H90.9300C18—H18B0.9700
C10—O11.423 (10)C19—C201.525 (12)
C10—C111.517 (11)C19—H19A0.9700
C10—H10A0.9700C19—H19B0.9700
C10—H10B0.9700C20—C211.492 (12)
C11—C121.494 (12)C20—H20A0.9700
C11—H11A0.9700C20—H20B0.9700
C11—H11B0.9700C21—H21A0.9600
C12—C131.544 (11)C21—H21B0.9600
C12—H12A0.9700C21—H21C0.9600
C2—C1—C6117.2 (8)C13—C14—C15114.3 (7)
C2—C1—C7121.1 (8)C13—C14—H14A108.7
C6—C1—C7121.6 (8)C15—C14—H14A108.7
C1—C2—C3121.2 (9)C13—C14—H14B108.7
C1—C2—H2119.4C15—C14—H14B108.7
C3—C2—H2119.4H14A—C14—H14B107.6
C4—C3—C2121.1 (9)C16—C15—C14117.0 (8)
C4—C3—H3119.4C16—C15—H15A108.1
C2—C3—H3119.4C14—C15—H15A108.1
C3—C4—C5119.8 (9)C16—C15—H15B108.1
C3—C4—Br1121.6 (8)C14—C15—H15B108.1
C5—C4—Br1118.6 (8)H15A—C15—H15B107.3
C4—C5—C6119.8 (9)C15—C16—C17114.1 (8)
C4—C5—H5120.1C15—C16—H16A108.7
C6—C5—H5120.1C17—C16—H16A108.7
C5—C6—C1120.7 (8)C15—C16—H16B108.7
C5—C6—H6119.6C17—C16—H16B108.7
C1—C6—H6119.6H16A—C16—H16B107.6
N1—C7—C1124.7 (7)C18—C17—C16115.7 (8)
N1—C7—S1111.8 (7)C18—C17—H17A108.4
C1—C7—S1123.6 (7)C16—C17—H17A108.4
C9—C8—O1131.4 (9)C18—C17—H17B108.4
C9—C8—S1110.7 (7)C16—C17—H17B108.4
O1—C8—S1117.9 (6)H17A—C17—H17B107.4
C8—C9—N1115.0 (8)C17—C18—C19113.5 (8)
C8—C9—H9122.5C17—C18—H18A108.9
N1—C9—H9122.5C19—C18—H18A108.9
O1—C10—C11110.1 (7)C17—C18—H18B108.9
O1—C10—H10A109.7C19—C18—H18B108.9
C11—C10—H10A109.7H18A—C18—H18B107.7
O1—C10—H10B109.6C18—C19—C20114.9 (8)
C11—C10—H10B109.7C18—C19—H19A108.5
H10A—C10—H10B108.2C20—C19—H19A108.5
C12—C11—C10110.8 (7)C18—C19—H19B108.5
C12—C11—H11A109.5C20—C19—H19B108.5
C10—C11—H11A109.5H19A—C19—H19B107.5
C12—C11—H11B109.5C21—C20—C19114.7 (8)
C10—C11—H11B109.5C21—C20—H20A108.6
H11A—C11—H11B108.1C19—C20—H20A108.6
C11—C12—C13113.6 (7)C21—C20—H20B108.6
C11—C12—H12A108.9C19—C20—H20B108.6
C13—C12—H12A108.9H20A—C20—H20B107.6
C11—C12—H12B108.9C20—C21—H21A109.5
C13—C12—H12B108.9C20—C21—H21B109.5
H12A—C12—H12B107.7H21A—C21—H21B109.5
C14—C13—C12114.9 (7)C20—C21—H21C109.5
C14—C13—H13A108.5H21A—C21—H21C109.5
C12—C13—H13A108.5H21B—C21—H21C109.5
C14—C13—H13B108.5C7—N1—C9113.0 (7)
C12—C13—H13B108.5C8—O1—C10114.0 (6)
H13A—C13—H13B107.5C8—S1—C789.5 (4)
C6—C1—C2—C30.6 (13)C11—C12—C13—C14179.7 (8)
C7—C1—C2—C3177.3 (8)C12—C13—C14—C15177.0 (7)
C1—C2—C3—C40.6 (14)C13—C14—C15—C16177.5 (8)
C2—C3—C4—C50.9 (14)C14—C15—C16—C17174.3 (8)
C2—C3—C4—Br1177.2 (7)C15—C16—C17—C18178.7 (9)
C3—C4—C5—C61.3 (14)C16—C17—C18—C19178.0 (8)
Br1—C4—C5—C6176.9 (7)C17—C18—C19—C20177.2 (9)
C4—C5—C6—C11.3 (14)C18—C19—C20—C21176.3 (9)
C2—C1—C6—C50.9 (13)C1—C7—N1—C9178.2 (8)
C7—C1—C6—C5177.6 (8)S1—C7—N1—C91.8 (10)
C2—C1—C7—N11.1 (13)C8—C9—N1—C72.0 (12)
C6—C1—C7—N1175.5 (8)C9—C8—O1—C101.0 (13)
C2—C1—C7—S1178.9 (6)S1—C8—O1—C10179.1 (6)
C6—C1—C7—S14.5 (12)C11—C10—O1—C8177.7 (7)
O1—C8—C9—N1179.5 (9)C9—C8—S1—C70.2 (7)
S1—C8—C9—N11.2 (11)O1—C8—S1—C7178.7 (7)
O1—C10—C11—C12179.2 (7)N1—C7—S1—C80.9 (7)
C10—C11—C12—C13178.7 (7)C1—C7—S1—C8179.0 (7)

Experimental details

Crystal data
Chemical formulaC21H30BrNOS
Mr424.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.507 (1), 46.999 (6), 8.326 (1)
β (°) 99.68 (1)
V3)2124.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.47 × 0.47 × 0.36
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
[North et al. (1968) and PLATON (Spek, 2009)]
Tmin, Tmax0.447, 0.527
No. of measured, independent and
observed [I > 2σ(I)] reflections
4001, 3740, 1486
Rint0.101
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.248, 1.05
No. of reflections3740
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.47

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SET4 in CAD-4 Software (Enraf–Nonius, 1989), HELENA (Spek, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Instituto Nacional de Ciência e Tecnologia (INCT) - Catálize for financial assistance.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCohen, F., Koehler, M. F. T., Bergeron, P., Elliott, L. O., Flygare, J. A., Franklin, M. C., Gazzard, L., Keteltas, S. F., Lau, K., Ly, C., Tsui, V. & Fairbrother, W. J. (2010). Bioorg. Med. Chem. Lett. 7, 2229–2233.  Web of Science CrossRef Google Scholar
First citationCristiano, R., Santos, D. M. P. O., Conte, G. & Gallardo, H. (2006). Liq. Cryst. 33, 997–1003.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGallardo, H., Bortoluzzi, A. J. & Santos, D. M. P. O. (2008). Liq. Cryst. 35, 719–725.  Web of Science CSD CrossRef CAS Google Scholar
First citationKauhanka, M. U. & Kauhanka, M. M. (2006). Liq. Cryst. 33, 121–127.  Web of Science CrossRef CAS Google Scholar
First citationKiryanov, A. A., Sampson, P. & Seed, A. J. (2001). J. Org. Chem. 23, 7925–7929.  Web of Science CrossRef Google Scholar
First citationKrapivin, G. D., Usova, E. B., Zavodnik, V. E. & Kul'nevich, V. G. (1992). Chem. Heterocycl. Compd, 28, 890–894.  CrossRef Google Scholar
First citationMetzger, J. V. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. R. Katritzky & C. N. Rees, p. 238. Oxford: Pergamon Press.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationParra, M., Alderete, J., Zuniga, C., Gallardo, H., Hidalgo, P., Vergara, J. & Hernandez, S. (2001). Liq. Cryst. 28, 1659–1666.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonar, P., Singh, S. P., Sudhakar, S., Dodabalapur, A. & Sellinger, A. (2008). Chem. Mater. 20, 3184–3190.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, R. M., Neves, R. A. W., Schneider, R., Vieira, A. A. & Gallardo, H. (2008). Liq. Cryst. 35, 737–742.  Web of Science CrossRef CAS Google Scholar
First citationVieira, A. A., Cristiano, R., Bortoluzzi, A. J. & Gallardo, H. (2008). J. Mol. Struct. 875, 364–371.  Web of Science CSD CrossRef CAS Google Scholar
First citationYamashita, Y. (2010). ACS Appl. Mater. Interfaces, 5, 1303–1307.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds