organic compounds
2-(4-Bromophenyl)-5-dodecyloxy-1,3-thiazole
aDepartamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
*Correspondence e-mail: adajb@qmc.ufsc.br
In the structure of the title compound, C21H30BrNOS, an important intermediate for the preparation of compounds, the saturated C12 chain shows a linear conformation while the benzene and thiazole rings are essentially coplanar [dihedral angle = 4.5 (4)°]. The crystal packing shows no significant intermolecular interactions.
Related literature
For technological applications of liquid crystals, see: Sonar et al. (2008); Srivastava et al. (2008). For liquid-crystalline compounds containing heterocyclic units, see: Cristiano et al. (2006); Kauhanka & Kauhanka (2006); Vieira et al. (2008). For the properties of thiazole derivatives, see: Gallardo et al. (2008); Yamashita (2010); Parra et al. (2001); Cohen et al. (2010). For the synthesis, see: Kiryanov et al. (2001). For related structures, see: Metzger (1984); Krapivin et al. (1992).
Experimental
Crystal data
|
Data collection
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810032666/zs2055sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810032666/zs2055Isup2.hkl
Dodecyl-2-(4-bromobenzamido)acetate (4.26 g, 10 mmol) and 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide (Lawesson's reagent) (8.10 g, 20 mmol) was mixed with dry toluene (150 ml) and heated under reflux for 6 h. The crude product was separated by
(dichloromethane) and after evaporation of the solvent the solid was recrystallized from methanol to afford the title compound as a white solid (3.8 g, 95%): 1H NMR (CDCl3) = 7.64 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.06 (s, 1H), 4.03 (t, J = 6.5 Hz, 2H), 1.81 (q, J = 7.0 Hz, 2H), 1.52–1.20 (m, 18H), 0.89 (t, J = 6.8 Hz, 3H); Elemental analysis for C21H30BrNOS: calc.: C 59.43; H 7.12; N 3.30; S 7.55%. Found: C 59.42; H 7.16; N 3.43; S 8.25%.All non-H atoms were refined with anisotropic displacement parameters. H atoms were placed at their idealized positions with C—HAr = 0.93 Å, C—Hmethylene = 0.97 Å and C—Hmethyl = 0.96 Å and treated as riding, with Uiso = 1.2 or 1.5 times Ueq(C) for aromatic/methylene and methyl groups, respectively.
Liquid crystals are fascinating materials with a broad range of applications. The most famous application of these materials is in
displays (LCDs), but over the past year new applications have appeared, such as organic light emitting diodes (OLEDs) (Sonar et al., 2008; Srivastava et al., 2008). The molecular shape has a dominant influence on the existence of the liquid crystalline state. Over several years a large number of liquid-crystalline compounds containing heterocyclic units have been synthesized (Cristiano et al., 2006). Heterocycles are of great importance as core units in thermotropic liquid crystals due to their ability to impart lateral and/or longitudinal dipoles combined with changes in the molecular shape. The incorporation of heteroatoms can also result in large changes in the corresponding liquid crystalline phases and/or in the physical properties of the observed phases, because most of the heteroatoms (S, O, and N) commonly introduced are chemically classified as more polarizable than carbon (Kauhanka & Kauhanka, 2006; Vieira et al., 2008). As part of our studies of derivatives of thiazoles, we now report the synthesis and structure of the title compound C21H30BrNOS (I). In (I) (Fig. 1), the saturated C12 chain shows a linear conformation while the benzene and thiazole rings are essentially coplanar [dihedral angle, 4.5 (4)°]. The crystal packing shows no significant intermolecular interactions.For technological applications of liquid crystals, see: Sonar et al. (2008); Srivastava et al. (2008). For liquid-crystalline compounds containing heterocyclic units, see: Cristiano et al. (2006); Kauhanka & Kauhanka (2006); Vieira et al. (2008). For the properties of thiazole derivatives, see: Gallardo et al. (2008); Yamashita (2010); Parra et al. (2001); Cohen et al. (2010). For the synthesis, see: Kiryanov et al. (2001). For related structures, see Katrinsky & Metzger (1984); Krapivin et al. (1992).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
SET4 in CAD-4 Software (Enraf–Nonius, 1989); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with atom labelling scheme. Displacement ellipsoids are shown at the 40% probability level. |
C21H30BrNOS | F(000) = 888 |
Mr = 424.43 | Dx = 1.327 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 5.507 (1) Å | θ = 3.8–11.5° |
b = 46.999 (6) Å | µ = 2.04 mm−1 |
c = 8.326 (1) Å | T = 293 K |
β = 99.68 (1)° | Block, colorless |
V = 2124.3 (5) Å3 | 0.47 × 0.47 × 0.36 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 1486 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.101 |
Graphite monochromator | θmax = 25.0°, θmin = 0.9° |
ω–2θ scans | h = −6→6 |
Absorption correction: ψ scan [North et al. (1968) and PLATON (Spek, 2009)] | k = −55→0 |
Tmin = 0.447, Tmax = 0.527 | l = −9→0 |
4001 measured reflections | 3 standard reflections every 25 reflections |
3740 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.081 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.248 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.1139P)2] where P = (Fo2 + 2Fc2)/3 |
3740 reflections | (Δ/σ)max < 0.001 |
227 parameters | Δρmax = 0.61 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
C21H30BrNOS | V = 2124.3 (5) Å3 |
Mr = 424.43 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.507 (1) Å | µ = 2.04 mm−1 |
b = 46.999 (6) Å | T = 293 K |
c = 8.326 (1) Å | 0.47 × 0.47 × 0.36 mm |
β = 99.68 (1)° |
Enraf–Nonius CAD-4 diffractometer | 1486 reflections with I > 2σ(I) |
Absorption correction: ψ scan [North et al. (1968) and PLATON (Spek, 2009)] | Rint = 0.101 |
Tmin = 0.447, Tmax = 0.527 | 3 standard reflections every 25 reflections |
4001 measured reflections | intensity decay: 1% |
3740 independent reflections |
R[F2 > 2σ(F2)] = 0.081 | 0 restraints |
wR(F2) = 0.248 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.61 e Å−3 |
3740 reflections | Δρmin = −0.47 e Å−3 |
227 parameters |
x | y | z | Uiso*/Ueq | ||
C1 | −0.4151 (15) | 0.5923 (2) | −0.0151 (9) | 0.045 (2) | |
C2 | −0.6447 (17) | 0.5928 (2) | −0.1107 (10) | 0.055 (2) | |
H2 | −0.7290 | 0.5758 | −0.1357 | 0.067* | |
C3 | −0.7521 (17) | 0.6180 (2) | −0.1703 (11) | 0.064 (3) | |
H3 | −0.9067 | 0.6177 | −0.2356 | 0.077* | |
C4 | −0.6371 (19) | 0.6430 (2) | −0.1357 (11) | 0.059 (3) | |
C5 | −0.4059 (19) | 0.6436 (2) | −0.0409 (12) | 0.067 (3) | |
H5 | −0.3244 | 0.6609 | −0.0184 | 0.081* | |
C6 | −0.2960 (16) | 0.6186 (2) | 0.0206 (10) | 0.057 (2) | |
H6 | −0.1417 | 0.6191 | 0.0862 | 0.068* | |
C7 | −0.3088 (14) | 0.5663 (2) | 0.0520 (9) | 0.050 (2) | |
C8 | −0.0587 (16) | 0.52788 (19) | 0.1924 (10) | 0.051 (2) | |
C9 | −0.2786 (16) | 0.51987 (19) | 0.1131 (11) | 0.057 (3) | |
H9 | −0.3338 | 0.5012 | 0.1129 | 0.069* | |
C10 | 0.0700 (15) | 0.48362 (19) | 0.2965 (10) | 0.053 (2) | |
H10A | 0.0349 | 0.4753 | 0.1885 | 0.063* | |
H10B | −0.0741 | 0.4812 | 0.3480 | 0.063* | |
C11 | 0.2887 (16) | 0.46862 (19) | 0.3963 (11) | 0.056 (2) | |
H11A | 0.4332 | 0.4714 | 0.3456 | 0.067* | |
H11B | 0.3222 | 0.4768 | 0.5046 | 0.067* | |
C12 | 0.2390 (14) | 0.43752 (19) | 0.4087 (10) | 0.051 (2) | |
H12A | 0.2078 | 0.4295 | 0.2999 | 0.061* | |
H12B | 0.0913 | 0.4350 | 0.4562 | 0.061* | |
C13 | 0.4524 (15) | 0.42099 (19) | 0.5121 (11) | 0.054 (2) | |
H13A | 0.6000 | 0.4237 | 0.4647 | 0.065* | |
H13B | 0.4828 | 0.4291 | 0.6207 | 0.065* | |
C14 | 0.4093 (14) | 0.3900 (2) | 0.5259 (11) | 0.060 (3) | |
H14A | 0.3704 | 0.3821 | 0.4172 | 0.072* | |
H14B | 0.2670 | 0.3873 | 0.5788 | 0.072* | |
C15 | 0.6280 (16) | 0.37363 (19) | 0.6215 (11) | 0.057 (2) | |
H15A | 0.7714 | 0.3774 | 0.5713 | 0.069* | |
H15B | 0.6618 | 0.3813 | 0.7311 | 0.069* | |
C16 | 0.6002 (16) | 0.3421 (2) | 0.6340 (11) | 0.059 (3) | |
H16A | 0.5517 | 0.3343 | 0.5253 | 0.071* | |
H16B | 0.4686 | 0.3381 | 0.6949 | 0.071* | |
C17 | 0.8306 (16) | 0.32698 (18) | 0.7151 (12) | 0.063 (3) | |
H17A | 0.9627 | 0.3315 | 0.6555 | 0.075* | |
H17B | 0.8767 | 0.3346 | 0.8244 | 0.075* | |
C18 | 0.8118 (16) | 0.2954 (2) | 0.7266 (11) | 0.068 (3) | |
H18A | 0.7613 | 0.2877 | 0.6180 | 0.082* | |
H18B | 0.6848 | 0.2908 | 0.7901 | 0.082* | |
C19 | 1.0484 (16) | 0.28141 (19) | 0.8031 (11) | 0.066 (3) | |
H19A | 1.0943 | 0.2886 | 0.9133 | 0.079* | |
H19B | 1.1768 | 0.2870 | 0.7427 | 0.079* | |
C20 | 1.0392 (17) | 0.2490 (2) | 0.8096 (13) | 0.071 (3) | |
H20A | 0.9186 | 0.2435 | 0.8761 | 0.086* | |
H20B | 0.9829 | 0.2419 | 0.7003 | 0.086* | |
C21 | 1.2787 (18) | 0.2351 (2) | 0.8758 (17) | 0.104 (4) | |
H21A | 1.3474 | 0.2438 | 0.9777 | 0.156* | |
H21B | 1.3906 | 0.2374 | 0.7999 | 0.156* | |
H21C | 1.2521 | 0.2152 | 0.8923 | 0.156* | |
N1 | −0.4170 (14) | 0.54122 (16) | 0.0321 (9) | 0.061 (2) | |
O1 | 0.1218 (10) | 0.51313 (14) | 0.2839 (7) | 0.0612 (17) | |
S1 | −0.0169 (4) | 0.56399 (5) | 0.1715 (3) | 0.0572 (7) | |
Br1 | −0.7883 (2) | 0.67797 (3) | −0.20868 (16) | 0.0951 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.037 (5) | 0.061 (7) | 0.033 (5) | −0.002 (5) | 0.000 (4) | 0.001 (4) |
C2 | 0.061 (6) | 0.053 (7) | 0.055 (6) | −0.012 (5) | 0.014 (5) | 0.007 (5) |
C3 | 0.048 (6) | 0.071 (8) | 0.071 (7) | 0.001 (6) | 0.001 (5) | −0.002 (6) |
C4 | 0.067 (7) | 0.063 (7) | 0.048 (6) | 0.013 (6) | 0.017 (5) | 0.005 (5) |
C5 | 0.071 (7) | 0.047 (7) | 0.083 (7) | 0.002 (5) | 0.011 (6) | −0.007 (5) |
C6 | 0.046 (5) | 0.048 (6) | 0.072 (7) | 0.002 (5) | −0.002 (5) | 0.005 (5) |
C7 | 0.037 (5) | 0.074 (7) | 0.034 (5) | 0.007 (5) | −0.006 (4) | 0.012 (5) |
C8 | 0.045 (5) | 0.047 (6) | 0.054 (6) | −0.001 (5) | −0.017 (5) | 0.002 (5) |
C9 | 0.059 (6) | 0.036 (6) | 0.068 (6) | 0.000 (5) | −0.016 (5) | 0.017 (5) |
C10 | 0.053 (6) | 0.045 (6) | 0.056 (6) | −0.003 (5) | −0.001 (5) | 0.013 (5) |
C11 | 0.059 (6) | 0.053 (7) | 0.056 (6) | 0.013 (5) | 0.008 (5) | 0.004 (5) |
C12 | 0.043 (5) | 0.056 (6) | 0.051 (6) | 0.006 (5) | 0.000 (4) | 0.002 (5) |
C13 | 0.049 (6) | 0.056 (7) | 0.054 (6) | 0.001 (5) | 0.002 (5) | 0.007 (5) |
C14 | 0.031 (5) | 0.079 (8) | 0.066 (6) | −0.012 (5) | −0.005 (5) | 0.003 (5) |
C15 | 0.051 (6) | 0.048 (7) | 0.071 (6) | 0.011 (5) | 0.003 (5) | 0.009 (5) |
C16 | 0.046 (6) | 0.076 (8) | 0.054 (6) | 0.015 (5) | 0.006 (5) | 0.006 (5) |
C17 | 0.051 (6) | 0.053 (7) | 0.082 (7) | 0.006 (5) | 0.003 (5) | 0.013 (5) |
C18 | 0.057 (6) | 0.058 (7) | 0.081 (7) | 0.005 (5) | −0.010 (5) | 0.004 (6) |
C19 | 0.061 (6) | 0.047 (7) | 0.085 (7) | −0.001 (5) | −0.003 (5) | 0.003 (5) |
C20 | 0.070 (7) | 0.050 (7) | 0.090 (8) | −0.005 (5) | 0.002 (6) | 0.016 (6) |
C21 | 0.074 (8) | 0.054 (8) | 0.171 (12) | 0.015 (6) | −0.017 (8) | 0.031 (8) |
N1 | 0.060 (5) | 0.037 (5) | 0.079 (6) | −0.016 (4) | −0.010 (4) | 0.003 (4) |
O1 | 0.050 (4) | 0.058 (5) | 0.069 (4) | −0.012 (3) | −0.010 (3) | 0.009 (3) |
S1 | 0.0479 (13) | 0.0455 (15) | 0.0700 (16) | −0.0069 (12) | −0.0138 (12) | 0.0077 (12) |
Br1 | 0.1110 (11) | 0.0733 (9) | 0.1017 (10) | 0.0372 (7) | 0.0199 (7) | 0.0262 (7) |
C1—C2 | 1.376 (11) | C12—H12B | 0.9700 |
C1—C6 | 1.407 (12) | C13—C14 | 1.481 (12) |
C1—C7 | 1.428 (12) | C13—H13A | 0.9700 |
C2—C3 | 1.381 (12) | C13—H13B | 0.9700 |
C2—H2 | 0.9300 | C14—C15 | 1.535 (11) |
C3—C4 | 1.343 (13) | C14—H14A | 0.9700 |
C3—H3 | 0.9300 | C14—H14B | 0.9700 |
C4—C5 | 1.381 (13) | C15—C16 | 1.497 (12) |
C4—Br1 | 1.895 (9) | C15—H15A | 0.9700 |
C5—C6 | 1.383 (12) | C15—H15B | 0.9700 |
C5—H5 | 0.9300 | C16—C17 | 1.510 (11) |
C6—H6 | 0.9300 | C16—H16A | 0.9700 |
C7—N1 | 1.317 (11) | C16—H16B | 0.9700 |
C7—S1 | 1.746 (8) | C17—C18 | 1.490 (12) |
C8—C9 | 1.332 (11) | C17—H17A | 0.9700 |
C8—O1 | 1.339 (9) | C17—H17B | 0.9700 |
C8—S1 | 1.725 (9) | C18—C19 | 1.503 (11) |
C9—N1 | 1.367 (10) | C18—H18A | 0.9700 |
C9—H9 | 0.9300 | C18—H18B | 0.9700 |
C10—O1 | 1.423 (10) | C19—C20 | 1.525 (12) |
C10—C11 | 1.517 (11) | C19—H19A | 0.9700 |
C10—H10A | 0.9700 | C19—H19B | 0.9700 |
C10—H10B | 0.9700 | C20—C21 | 1.492 (12) |
C11—C12 | 1.494 (12) | C20—H20A | 0.9700 |
C11—H11A | 0.9700 | C20—H20B | 0.9700 |
C11—H11B | 0.9700 | C21—H21A | 0.9600 |
C12—C13 | 1.544 (11) | C21—H21B | 0.9600 |
C12—H12A | 0.9700 | C21—H21C | 0.9600 |
C2—C1—C6 | 117.2 (8) | C13—C14—C15 | 114.3 (7) |
C2—C1—C7 | 121.1 (8) | C13—C14—H14A | 108.7 |
C6—C1—C7 | 121.6 (8) | C15—C14—H14A | 108.7 |
C1—C2—C3 | 121.2 (9) | C13—C14—H14B | 108.7 |
C1—C2—H2 | 119.4 | C15—C14—H14B | 108.7 |
C3—C2—H2 | 119.4 | H14A—C14—H14B | 107.6 |
C4—C3—C2 | 121.1 (9) | C16—C15—C14 | 117.0 (8) |
C4—C3—H3 | 119.4 | C16—C15—H15A | 108.1 |
C2—C3—H3 | 119.4 | C14—C15—H15A | 108.1 |
C3—C4—C5 | 119.8 (9) | C16—C15—H15B | 108.1 |
C3—C4—Br1 | 121.6 (8) | C14—C15—H15B | 108.1 |
C5—C4—Br1 | 118.6 (8) | H15A—C15—H15B | 107.3 |
C4—C5—C6 | 119.8 (9) | C15—C16—C17 | 114.1 (8) |
C4—C5—H5 | 120.1 | C15—C16—H16A | 108.7 |
C6—C5—H5 | 120.1 | C17—C16—H16A | 108.7 |
C5—C6—C1 | 120.7 (8) | C15—C16—H16B | 108.7 |
C5—C6—H6 | 119.6 | C17—C16—H16B | 108.7 |
C1—C6—H6 | 119.6 | H16A—C16—H16B | 107.6 |
N1—C7—C1 | 124.7 (7) | C18—C17—C16 | 115.7 (8) |
N1—C7—S1 | 111.8 (7) | C18—C17—H17A | 108.4 |
C1—C7—S1 | 123.6 (7) | C16—C17—H17A | 108.4 |
C9—C8—O1 | 131.4 (9) | C18—C17—H17B | 108.4 |
C9—C8—S1 | 110.7 (7) | C16—C17—H17B | 108.4 |
O1—C8—S1 | 117.9 (6) | H17A—C17—H17B | 107.4 |
C8—C9—N1 | 115.0 (8) | C17—C18—C19 | 113.5 (8) |
C8—C9—H9 | 122.5 | C17—C18—H18A | 108.9 |
N1—C9—H9 | 122.5 | C19—C18—H18A | 108.9 |
O1—C10—C11 | 110.1 (7) | C17—C18—H18B | 108.9 |
O1—C10—H10A | 109.7 | C19—C18—H18B | 108.9 |
C11—C10—H10A | 109.7 | H18A—C18—H18B | 107.7 |
O1—C10—H10B | 109.6 | C18—C19—C20 | 114.9 (8) |
C11—C10—H10B | 109.7 | C18—C19—H19A | 108.5 |
H10A—C10—H10B | 108.2 | C20—C19—H19A | 108.5 |
C12—C11—C10 | 110.8 (7) | C18—C19—H19B | 108.5 |
C12—C11—H11A | 109.5 | C20—C19—H19B | 108.5 |
C10—C11—H11A | 109.5 | H19A—C19—H19B | 107.5 |
C12—C11—H11B | 109.5 | C21—C20—C19 | 114.7 (8) |
C10—C11—H11B | 109.5 | C21—C20—H20A | 108.6 |
H11A—C11—H11B | 108.1 | C19—C20—H20A | 108.6 |
C11—C12—C13 | 113.6 (7) | C21—C20—H20B | 108.6 |
C11—C12—H12A | 108.9 | C19—C20—H20B | 108.6 |
C13—C12—H12A | 108.9 | H20A—C20—H20B | 107.6 |
C11—C12—H12B | 108.9 | C20—C21—H21A | 109.5 |
C13—C12—H12B | 108.9 | C20—C21—H21B | 109.5 |
H12A—C12—H12B | 107.7 | H21A—C21—H21B | 109.5 |
C14—C13—C12 | 114.9 (7) | C20—C21—H21C | 109.5 |
C14—C13—H13A | 108.5 | H21A—C21—H21C | 109.5 |
C12—C13—H13A | 108.5 | H21B—C21—H21C | 109.5 |
C14—C13—H13B | 108.5 | C7—N1—C9 | 113.0 (7) |
C12—C13—H13B | 108.5 | C8—O1—C10 | 114.0 (6) |
H13A—C13—H13B | 107.5 | C8—S1—C7 | 89.5 (4) |
C6—C1—C2—C3 | 0.6 (13) | C11—C12—C13—C14 | −179.7 (8) |
C7—C1—C2—C3 | 177.3 (8) | C12—C13—C14—C15 | 177.0 (7) |
C1—C2—C3—C4 | −0.6 (14) | C13—C14—C15—C16 | −177.5 (8) |
C2—C3—C4—C5 | 0.9 (14) | C14—C15—C16—C17 | 174.3 (8) |
C2—C3—C4—Br1 | −177.2 (7) | C15—C16—C17—C18 | −178.7 (9) |
C3—C4—C5—C6 | −1.3 (14) | C16—C17—C18—C19 | 178.0 (8) |
Br1—C4—C5—C6 | 176.9 (7) | C17—C18—C19—C20 | −177.2 (9) |
C4—C5—C6—C1 | 1.3 (14) | C18—C19—C20—C21 | 176.3 (9) |
C2—C1—C6—C5 | −0.9 (13) | C1—C7—N1—C9 | −178.2 (8) |
C7—C1—C6—C5 | −177.6 (8) | S1—C7—N1—C9 | 1.8 (10) |
C2—C1—C7—N1 | −1.1 (13) | C8—C9—N1—C7 | −2.0 (12) |
C6—C1—C7—N1 | 175.5 (8) | C9—C8—O1—C10 | 1.0 (13) |
C2—C1—C7—S1 | 178.9 (6) | S1—C8—O1—C10 | 179.1 (6) |
C6—C1—C7—S1 | −4.5 (12) | C11—C10—O1—C8 | 177.7 (7) |
O1—C8—C9—N1 | 179.5 (9) | C9—C8—S1—C7 | −0.2 (7) |
S1—C8—C9—N1 | 1.2 (11) | O1—C8—S1—C7 | −178.7 (7) |
O1—C10—C11—C12 | −179.2 (7) | N1—C7—S1—C8 | −0.9 (7) |
C10—C11—C12—C13 | −178.7 (7) | C1—C7—S1—C8 | 179.0 (7) |
Experimental details
Crystal data | |
Chemical formula | C21H30BrNOS |
Mr | 424.43 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 5.507 (1), 46.999 (6), 8.326 (1) |
β (°) | 99.68 (1) |
V (Å3) | 2124.3 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.04 |
Crystal size (mm) | 0.47 × 0.47 × 0.36 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | ψ scan [North et al. (1968) and PLATON (Spek, 2009)] |
Tmin, Tmax | 0.447, 0.527 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4001, 3740, 1486 |
Rint | 0.101 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.081, 0.248, 1.05 |
No. of reflections | 3740 |
No. of parameters | 227 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.61, −0.47 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SET4 in CAD-4 Software (Enraf–Nonius, 1989), HELENA (Spek, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
Acknowledgements
The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Instituto Nacional de Ciência e Tecnologia (INCT) - Catálize for financial assistance.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cohen, F., Koehler, M. F. T., Bergeron, P., Elliott, L. O., Flygare, J. A., Franklin, M. C., Gazzard, L., Keteltas, S. F., Lau, K., Ly, C., Tsui, V. & Fairbrother, W. J. (2010). Bioorg. Med. Chem. Lett. 7, 2229–2233. Web of Science CrossRef Google Scholar
Cristiano, R., Santos, D. M. P. O., Conte, G. & Gallardo, H. (2006). Liq. Cryst. 33, 997–1003. Web of Science CrossRef CAS Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Gallardo, H., Bortoluzzi, A. J. & Santos, D. M. P. O. (2008). Liq. Cryst. 35, 719–725. Web of Science CSD CrossRef CAS Google Scholar
Kauhanka, M. U. & Kauhanka, M. M. (2006). Liq. Cryst. 33, 121–127. Web of Science CrossRef CAS Google Scholar
Kiryanov, A. A., Sampson, P. & Seed, A. J. (2001). J. Org. Chem. 23, 7925–7929. Web of Science CrossRef Google Scholar
Krapivin, G. D., Usova, E. B., Zavodnik, V. E. & Kul'nevich, V. G. (1992). Chem. Heterocycl. Compd, 28, 890–894. CrossRef Google Scholar
Metzger, J. V. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. R. Katritzky & C. N. Rees, p. 238. Oxford: Pergamon Press. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Parra, M., Alderete, J., Zuniga, C., Gallardo, H., Hidalgo, P., Vergara, J. & Hernandez, S. (2001). Liq. Cryst. 28, 1659–1666. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sonar, P., Singh, S. P., Sudhakar, S., Dodabalapur, A. & Sellinger, A. (2008). Chem. Mater. 20, 3184–3190. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srivastava, R. M., Neves, R. A. W., Schneider, R., Vieira, A. A. & Gallardo, H. (2008). Liq. Cryst. 35, 737–742. Web of Science CrossRef CAS Google Scholar
Vieira, A. A., Cristiano, R., Bortoluzzi, A. J. & Gallardo, H. (2008). J. Mol. Struct. 875, 364–371. Web of Science CSD CrossRef CAS Google Scholar
Yamashita, Y. (2010). ACS Appl. Mater. Interfaces, 5, 1303–1307. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Liquid crystals are fascinating materials with a broad range of applications. The most famous application of these materials is in liquid crystal displays (LCDs), but over the past year new applications have appeared, such as organic light emitting diodes (OLEDs) (Sonar et al., 2008; Srivastava et al., 2008). The molecular shape has a dominant influence on the existence of the liquid crystalline state. Over several years a large number of liquid-crystalline compounds containing heterocyclic units have been synthesized (Cristiano et al., 2006). Heterocycles are of great importance as core units in thermotropic liquid crystals due to their ability to impart lateral and/or longitudinal dipoles combined with changes in the molecular shape. The incorporation of heteroatoms can also result in large changes in the corresponding liquid crystalline phases and/or in the physical properties of the observed phases, because most of the heteroatoms (S, O, and N) commonly introduced are chemically classified as more polarizable than carbon (Kauhanka & Kauhanka, 2006; Vieira et al., 2008). As part of our studies of liquid crystal derivatives of thiazoles, we now report the synthesis and structure of the title compound C21H30BrNOS (I). In (I) (Fig. 1), the saturated C12 chain shows a linear conformation while the benzene and thiazole rings are essentially coplanar [dihedral angle, 4.5 (4)°]. The crystal packing shows no significant intermolecular interactions.