metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(4-Bromo­phen­yl)(2-pyridyl­methyl­­idene)amine-κ2N,N′]bis­­(1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionato-κ2O,O′)cobalt(II)

aMolecular Technology Research Unit, Department of Chemistry, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand, bDepartment of Chemistry, Faculty of Science, Taksin University, Songkhla 90000, Thailand, and cDepartment of Chemistry, Faculty of Science, University of Sheffield, Brook Hill, Sheffield S3 7HF, England
*Correspondence e-mail: kphimpha@wu.ac.th

(Received 3 August 2010; accepted 14 August 2010; online 21 August 2010)

In the title complex, [Co(C5HF6O2)2(C12H9BrN2)], the CoII atom exhibits a pseudo-octa­hedral coordination geometry, comprising two N-donor atoms from a bidentate chelate (4-bromo­phen­yl)(2-pyridyl­methyl­idene)amine (ppaBr) ligand [Co—N = 2.098 (2) and 2.209 (2) Å] and four O-donor atoms from two bidentate chelate 1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionate (hfac) ligands [Co—O range = 2.0452 (19)–2.0796 (19) Å]. The packing of the structure involves weak ππ inter­actions between the pyridyl and benzene rings of neighbouring ppaBr ligands [centroid–centroid distance = 3.928 (2) Å] and inter­actions between the Br atom on the ppaBr ligand and the hfac ligand [Br⋯C = 3.531 (2) Å].

Related literature

For a review of halogen bonding, see: Corradi et al. (2000[Corradi, E., Meille, M. T., Messina, S. V., Metrangolo, P. & Resnati, R. (2000). Angew. Chem. Int. Ed. 39, 1782-1786.]); Walsh et al. (2001[Walsh, R. B., Padgett, C. W., Metrangolo, P., Resnati, G., Hanks, T. W. & Pennington, W. T. (2001). Cryst. Growth Des. 1, 165-175.]); Liantonio et al. (2003[Liantonio, R., Metrangolo, P., Pilati, T., Resnati, G. & Stevenazzi, A. (2003). Cryst. Growth Des. 3, 799-803.]). For an introduction to crystal engineering, see: Braga et al. (2002[Braga, D., Desiraju, G. R., Miller, J. S., Orpen, A. G. & Price, S. L. (2002). CrystEngComm, 4, 500-509.]). For related structures, see: Harding, Harding, Sophonrat & Adams (2010[Harding, P., Harding, D. J., Sophonrat, N. & Adams, H. (2010). Unpublished results.]); Harding, Harding, Tinpun et al. (2010[Harding, P., Harding, D. J., Tinpun, K., Samuadnuan, S., Sophonrat, N. & Adams, H. (2010). Aust. J. Chem. 63, 75-82.]); Aäkeroy et al. (2004[Aäkeroy, C. B., Desper, J. & V.-Martínez, J., (2004). CrystEngComm, 6, 413-418.], 2007[Aäkeroy, C. B., Schultheiss, N., Desper, J. & Moore, C. (2007). CrystEngComm, 9, 421-426.]). For a description of the Cambridge Structural database, see: Allen et al. (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C5HF6O2)2(C12H9BrN2)]

  • Mr = 734.17

  • Triclinic, [P \overline 1]

  • a = 8.3568 (2) Å

  • b = 10.9420 (2) Å

  • c = 14.8151 (3) Å

  • α = 74.042 (1)°

  • β = 86.510 (1)°

  • γ = 77.080 (1)°

  • V = 1269.51 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 150 K

  • 0.60 × 0.30 × 0.03 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.330, Tmax = 0.932

  • 21525 measured reflections

  • 5176 independent reflections

  • 4508 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.08

  • 5176 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.91 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of supramolecular networks with designed architectures still remains the goal of crystal engineering and represents a significant challenge (Braga et al., 2002). Although complementary hydrogen-bonding ligands have been successfully used (Aäkeroy et al., 2004) in the construction of a number of networks, halogen-bonding (Walsh et al., 2001; Liantonio et al., 2003) and halogen···halogen interactions remain less well represented despite the fact that these interactions can be as strong as hydrogen-bonding interactions (Corradi et al., 2000). In this paper we report the synthesis and structure of [Co(hfac)2(ppaBr)] [hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionato; ppaBr = (4-bromo-phenyl)pyridin-2-ylmethyleneamine].

The reaction of [Co(hfac)2(H2O)2] with ppaBr in CH2Cl2 yields [Co(hfac)2(ppaBr)] (I) (Fig. 1) which crystallizes from CH2Cl2/hexane. In (I) the cobalt metal centre is six-coordinate with a distorted octahedral geometry, the hfac ligands adopting a cis arrangement enforced by the chelating ppaBr ligand. The CF3 groups of the hfac ligand in some cases exhibit large thermal ellipsoids due to thermal motion of these groups. The Co—N and Co—O bond lengths are comparable with related cobalt hfac and diimine complexes reported in the CSD (Allen, 2002) (mean Co—O distance = 2.01 Å, Co—N distance = 2.11 Å). The β-diketonate ligands exhibit a bent coordination mode in which the angles between the planes defined by the Co and oxygen atoms and the carbon and oxygen atoms of the β-diketonate ligand are 18.9° and 24.7°. In contrast, in trans-[M(hfac)2(py-CH=CH—C6F4Br)2] (M = Co, Cu) the β-diketonate ligands exhibit a planar coordination mode (Aäkeroy et al., 2007). In addition, the phenyl ring is twisted with respect to the pyridylimine unit by 17.6° and is similar to the angle observed in [Ni(dbm)2(ppaX)] [X = Me, 22.9°; Cl, 24.0° (Harding, Harding, Tinpun et al., 2010)].

The packing in the structure of (I) involves a weak ππ interaction between the pyridyl and phenyl rings of neighbouring ppaBr ligands as shown in Fig. 2 (Cg1···Cg2 = 3.928 (2) Å where Cg1 and Cg2 are the centroids of the rings C1—C6 and C8—C12—N2). A further weak interaction occurs between the Br atom on the ppaBr ligand and the β-diketonate ligand creating discrete dimers within the structure [Br···C20, 3.531 (2) Å, see Fig. 3]. These dimers are then connected via the ππ interaction mentioned above resulting in one-dimensional chains. A similar interaction is also observed in the structure of trans-[M(hfac)2(py-CH=CH—C6F4Br)2] (Aäkeroy et al., 2007). Interestingly, the corresponding Ni analogue, [Ni(hfac)2(ppaBr)] has a completely different set of interactions with Br···CH interactions clearly evident (Harding, Harding, Sophonrat & Adams, 2010), once again highlighting the difficulties involved in attempting to use specific interactions in the design of supramolecular networks.

Related literature top

For a review of halogen bonding, see: Corradi et al. (2000); Walsh et al. (2001); Liantonio et al. (2003). For an introduction to crystal engineering, see: Braga et al. (2002). For related structures, see: Harding, Harding, Sophonrat & Adams (2010); Harding, Harding, Tinpun et al. (2010); Aäkeroy et al. (2004, 2007). For a description of the Cambridge Structural database, see: Allen et al. (2002).

Experimental top

To an orange red solution of [Co(hfac)2(H2O)2] (0.127 g, 0.25 mmol) in CH2Cl2 (5 cm3) was added a solution of ppaBr (0.065 g, 0.25 mmol) in CH2Cl2 (3 cm3). The deep orange solution was stirred for 1 h and then concentrated in vacuo. n-Hexane (15 cm3) was added to precipitate an orange solid which was washed with n-hexane (2 x 5 cm3) and dried in vacuo: yield 0.142 g (77%). IR in KBr disc νC=O 1647 cm-1. UV-Vis (in CH2Cl2, log ε mol.dm-3cm-1) 243 (4.24), 309 (4.42). C22H11O4N2F12BrCo; calc. C 36.0, H 1.5, N 3.8%; found C 36.5, H 1.5, N 3.8%.

Refinement top

Hydrogen atoms were placed geometrically and refined using a riding model with C–H = 0.95 Å and Uiso constrained to be 1.2 times Ueq of the carrier atom.

Structure description top

The construction of supramolecular networks with designed architectures still remains the goal of crystal engineering and represents a significant challenge (Braga et al., 2002). Although complementary hydrogen-bonding ligands have been successfully used (Aäkeroy et al., 2004) in the construction of a number of networks, halogen-bonding (Walsh et al., 2001; Liantonio et al., 2003) and halogen···halogen interactions remain less well represented despite the fact that these interactions can be as strong as hydrogen-bonding interactions (Corradi et al., 2000). In this paper we report the synthesis and structure of [Co(hfac)2(ppaBr)] [hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionato; ppaBr = (4-bromo-phenyl)pyridin-2-ylmethyleneamine].

The reaction of [Co(hfac)2(H2O)2] with ppaBr in CH2Cl2 yields [Co(hfac)2(ppaBr)] (I) (Fig. 1) which crystallizes from CH2Cl2/hexane. In (I) the cobalt metal centre is six-coordinate with a distorted octahedral geometry, the hfac ligands adopting a cis arrangement enforced by the chelating ppaBr ligand. The CF3 groups of the hfac ligand in some cases exhibit large thermal ellipsoids due to thermal motion of these groups. The Co—N and Co—O bond lengths are comparable with related cobalt hfac and diimine complexes reported in the CSD (Allen, 2002) (mean Co—O distance = 2.01 Å, Co—N distance = 2.11 Å). The β-diketonate ligands exhibit a bent coordination mode in which the angles between the planes defined by the Co and oxygen atoms and the carbon and oxygen atoms of the β-diketonate ligand are 18.9° and 24.7°. In contrast, in trans-[M(hfac)2(py-CH=CH—C6F4Br)2] (M = Co, Cu) the β-diketonate ligands exhibit a planar coordination mode (Aäkeroy et al., 2007). In addition, the phenyl ring is twisted with respect to the pyridylimine unit by 17.6° and is similar to the angle observed in [Ni(dbm)2(ppaX)] [X = Me, 22.9°; Cl, 24.0° (Harding, Harding, Tinpun et al., 2010)].

The packing in the structure of (I) involves a weak ππ interaction between the pyridyl and phenyl rings of neighbouring ppaBr ligands as shown in Fig. 2 (Cg1···Cg2 = 3.928 (2) Å where Cg1 and Cg2 are the centroids of the rings C1—C6 and C8—C12—N2). A further weak interaction occurs between the Br atom on the ppaBr ligand and the β-diketonate ligand creating discrete dimers within the structure [Br···C20, 3.531 (2) Å, see Fig. 3]. These dimers are then connected via the ππ interaction mentioned above resulting in one-dimensional chains. A similar interaction is also observed in the structure of trans-[M(hfac)2(py-CH=CH—C6F4Br)2] (Aäkeroy et al., 2007). Interestingly, the corresponding Ni analogue, [Ni(hfac)2(ppaBr)] has a completely different set of interactions with Br···CH interactions clearly evident (Harding, Harding, Sophonrat & Adams, 2010), once again highlighting the difficulties involved in attempting to use specific interactions in the design of supramolecular networks.

For a review of halogen bonding, see: Corradi et al. (2000); Walsh et al. (2001); Liantonio et al. (2003). For an introduction to crystal engineering, see: Braga et al. (2002). For related structures, see: Harding, Harding, Sophonrat & Adams (2010); Harding, Harding, Tinpun et al. (2010); Aäkeroy et al. (2004, 2007). For a description of the Cambridge Structural database, see: Allen et al. (2002).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing in (I) showing the ππ interactions between the phenyl and pyridyl rings of the ppaBr ligand. Only selected atoms are labelled for clarity. [Symmetry code: (i) -x + 2, -y, -z + 2].
[Figure 3] Fig. 3. The molecular packing in (I) showing the Br···β-diketonate interactions of the discrete dimers. Only selected atoms are labelled for clarity. [Symmetry code: (i) -x + 1, -y + 1, -z + 2].
[(4-Bromophenyl)(2-pyridylmethylidene)amine- κ2N,N']bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato- κ2O,O')cobalt(II) top
Crystal data top
[Co(C5HF6O2)2(C12H9BrN2)]Z = 2
Mr = 734.17F(000) = 718
Triclinic, P1Dx = 1.921 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3568 (2) ÅCell parameters from 9953 reflections
b = 10.9420 (2) Åθ = 2.9–32.8°
c = 14.8151 (3) ŵ = 2.37 mm1
α = 74.042 (1)°T = 150 K
β = 86.510 (1)°Plate, orange
γ = 77.080 (1)°0.60 × 0.30 × 0.03 mm
V = 1269.51 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5176 independent reflections
Radiation source: fine-focus sealed tube4508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1010
Tmin = 0.330, Tmax = 0.932k = 1313
21525 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0399P)2 + 2.417P]
where P = (Fo2 + 2Fc2)/3
5176 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 1.23 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
[Co(C5HF6O2)2(C12H9BrN2)]γ = 77.080 (1)°
Mr = 734.17V = 1269.51 (5) Å3
Triclinic, P1Z = 2
a = 8.3568 (2) ÅMo Kα radiation
b = 10.9420 (2) ŵ = 2.37 mm1
c = 14.8151 (3) ÅT = 150 K
α = 74.042 (1)°0.60 × 0.30 × 0.03 mm
β = 86.510 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5176 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
4508 reflections with I > 2σ(I)
Tmin = 0.330, Tmax = 0.932Rint = 0.021
21525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.08Δρmax = 1.23 e Å3
5176 reflectionsΔρmin = 0.91 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.24966 (4)0.40512 (3)1.12788 (2)0.02627 (10)
C10.4059 (3)0.3017 (3)1.0652 (2)0.0190 (6)
C20.4540 (4)0.1698 (3)1.1069 (2)0.0234 (6)
H20.40960.13181.16590.028*
C30.5671 (4)0.0937 (3)1.0621 (2)0.0220 (6)
H30.60020.00281.09030.026*
C40.6331 (3)0.1491 (3)0.97587 (19)0.0165 (5)
C50.5813 (3)0.2824 (3)0.93439 (19)0.0198 (6)
H50.62370.32080.87500.024*
C60.4680 (4)0.3591 (3)0.9796 (2)0.0218 (6)
H60.43370.45000.95190.026*
C70.8328 (3)0.0354 (3)0.96759 (19)0.0182 (5)
H70.81860.06941.03310.022*
C80.9486 (3)0.1115 (3)0.91526 (19)0.0172 (5)
C91.0341 (4)0.2363 (3)0.9576 (2)0.0221 (6)
H91.02010.27531.02250.027*
C101.1404 (4)0.3031 (3)0.9032 (2)0.0240 (6)
H101.19910.38960.93010.029*
C111.1601 (4)0.2431 (3)0.8099 (2)0.0242 (6)
H111.23360.28690.77180.029*
C121.0707 (4)0.1171 (3)0.7723 (2)0.0217 (6)
H121.08470.07570.70780.026*
C130.8228 (4)0.1729 (3)0.5708 (2)0.0215 (6)
C140.9068 (4)0.2216 (3)0.4767 (2)0.0322 (7)
C150.6657 (4)0.1503 (3)0.5689 (2)0.0258 (6)
H150.61250.16980.51020.031*
C160.5849 (4)0.0998 (3)0.6508 (2)0.0246 (6)
C170.4252 (4)0.0581 (4)0.6393 (2)0.0361 (8)
C180.7556 (4)0.4215 (3)0.6922 (2)0.0223 (6)
C190.6383 (5)0.5432 (3)0.6348 (3)0.0414 (9)
C200.9177 (4)0.4284 (3)0.7033 (2)0.0231 (6)
H200.95420.50510.67070.028*
C211.0267 (4)0.3261 (3)0.7608 (2)0.0203 (6)
C221.1961 (4)0.3521 (3)0.7732 (3)0.0330 (8)
Co10.82077 (4)0.13568 (3)0.77538 (2)0.01482 (10)
F10.3604 (3)0.1057 (3)0.55597 (18)0.0696 (8)
F20.4576 (3)0.0730 (2)0.65283 (19)0.0578 (7)
F30.3172 (3)0.0779 (3)0.70502 (19)0.0578 (7)
F40.9544 (4)0.3293 (3)0.47281 (18)0.0768 (10)
F50.8123 (3)0.2441 (3)0.40289 (14)0.0636 (8)
F61.0401 (3)0.1358 (2)0.46507 (15)0.0508 (6)
F70.5963 (6)0.5260 (3)0.5585 (3)0.130 (2)
F80.5029 (3)0.5703 (2)0.6848 (3)0.0862 (11)
F90.6978 (3)0.64976 (19)0.61453 (18)0.0505 (6)
F101.2729 (3)0.3815 (4)0.6912 (2)0.0974 (13)
F111.1845 (4)0.4500 (3)0.8083 (3)0.1054 (15)
F121.2953 (2)0.25146 (19)0.82617 (16)0.0406 (5)
N10.7503 (3)0.0775 (2)0.92465 (16)0.0159 (5)
N20.9660 (3)0.0524 (2)0.82359 (16)0.0171 (5)
O10.9099 (2)0.15687 (19)0.64017 (13)0.0195 (4)
O20.6285 (2)0.07571 (19)0.73472 (14)0.0207 (4)
O30.6895 (2)0.32603 (18)0.72450 (13)0.0194 (4)
O41.0045 (2)0.21558 (18)0.80721 (13)0.0192 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02487 (16)0.02549 (16)0.02822 (17)0.00312 (12)0.00920 (12)0.01065 (12)
C10.0152 (13)0.0234 (14)0.0211 (14)0.0036 (11)0.0022 (11)0.0116 (11)
C20.0295 (16)0.0212 (14)0.0213 (14)0.0111 (12)0.0086 (12)0.0061 (12)
C30.0280 (15)0.0158 (13)0.0219 (14)0.0066 (12)0.0031 (12)0.0036 (11)
C40.0159 (13)0.0189 (13)0.0166 (13)0.0056 (11)0.0007 (10)0.0061 (10)
C50.0201 (14)0.0212 (14)0.0152 (13)0.0026 (11)0.0008 (11)0.0021 (11)
C60.0222 (14)0.0179 (13)0.0214 (14)0.0010 (11)0.0018 (11)0.0026 (11)
C70.0207 (14)0.0194 (13)0.0140 (13)0.0048 (11)0.0011 (11)0.0032 (10)
C80.0172 (13)0.0169 (13)0.0179 (13)0.0040 (11)0.0035 (10)0.0044 (10)
C90.0240 (15)0.0202 (14)0.0192 (14)0.0010 (12)0.0058 (11)0.0026 (11)
C100.0232 (15)0.0190 (13)0.0269 (15)0.0036 (12)0.0074 (12)0.0063 (12)
C110.0207 (14)0.0244 (14)0.0270 (15)0.0004 (12)0.0010 (12)0.0102 (12)
C120.0224 (14)0.0227 (14)0.0195 (14)0.0036 (12)0.0001 (11)0.0057 (11)
C130.0279 (15)0.0176 (13)0.0181 (14)0.0028 (12)0.0005 (12)0.0050 (11)
C140.0380 (19)0.0381 (18)0.0193 (15)0.0089 (15)0.0039 (13)0.0058 (13)
C150.0278 (16)0.0287 (15)0.0206 (15)0.0050 (13)0.0044 (12)0.0060 (12)
C160.0245 (15)0.0239 (14)0.0269 (16)0.0075 (12)0.0044 (12)0.0065 (12)
C170.0330 (18)0.050 (2)0.0322 (18)0.0197 (16)0.0029 (15)0.0127 (16)
C180.0281 (16)0.0191 (14)0.0175 (14)0.0024 (12)0.0025 (12)0.0030 (11)
C190.041 (2)0.0228 (16)0.054 (2)0.0067 (15)0.0224 (18)0.0045 (16)
C200.0279 (15)0.0195 (14)0.0218 (14)0.0095 (12)0.0018 (12)0.0025 (11)
C210.0216 (14)0.0208 (14)0.0206 (14)0.0074 (11)0.0005 (11)0.0069 (11)
C220.0295 (17)0.0220 (15)0.048 (2)0.0120 (14)0.0081 (15)0.0028 (14)
Co10.01588 (19)0.01408 (18)0.01382 (18)0.00367 (14)0.00033 (14)0.00219 (14)
F10.0544 (16)0.104 (2)0.0513 (15)0.0445 (16)0.0281 (12)0.0049 (14)
F20.0614 (16)0.0504 (14)0.0774 (18)0.0309 (12)0.0001 (13)0.0281 (13)
F30.0297 (11)0.0890 (19)0.0739 (17)0.0283 (12)0.0120 (11)0.0436 (15)
F40.141 (3)0.0613 (16)0.0414 (14)0.0620 (18)0.0404 (16)0.0119 (12)
F50.0408 (13)0.118 (2)0.0176 (10)0.0071 (14)0.0015 (9)0.0019 (12)
F60.0361 (12)0.0704 (16)0.0345 (12)0.0019 (11)0.0130 (9)0.0088 (11)
F70.238 (5)0.0398 (15)0.102 (3)0.010 (2)0.137 (3)0.0037 (16)
F80.0272 (13)0.0385 (14)0.159 (3)0.0060 (11)0.0007 (16)0.0188 (17)
F90.0464 (13)0.0239 (10)0.0674 (16)0.0076 (9)0.0113 (11)0.0128 (10)
F100.0476 (16)0.158 (3)0.0688 (19)0.062 (2)0.0036 (14)0.031 (2)
F110.0547 (17)0.0586 (17)0.230 (4)0.0108 (14)0.065 (2)0.088 (2)
F120.0260 (10)0.0309 (10)0.0644 (14)0.0070 (8)0.0163 (10)0.0077 (10)
N10.0160 (11)0.0154 (11)0.0174 (11)0.0043 (9)0.0008 (9)0.0055 (9)
N20.0179 (11)0.0164 (11)0.0174 (11)0.0047 (9)0.0002 (9)0.0040 (9)
O10.0210 (10)0.0214 (10)0.0155 (9)0.0057 (8)0.0001 (8)0.0031 (8)
O20.0224 (10)0.0206 (10)0.0195 (10)0.0090 (8)0.0007 (8)0.0025 (8)
O30.0192 (10)0.0179 (9)0.0194 (10)0.0035 (8)0.0010 (8)0.0026 (8)
O40.0209 (10)0.0181 (9)0.0190 (10)0.0064 (8)0.0022 (8)0.0031 (8)
Geometric parameters (Å, º) top
Br1—C11.902 (3)C14—F61.322 (4)
C1—C61.378 (4)C14—F51.322 (4)
C1—C21.382 (4)C15—C161.391 (4)
C2—C31.379 (4)C15—H150.9500
C2—H20.9500C16—O21.256 (4)
C3—C41.394 (4)C16—C171.537 (4)
C3—H30.9500C17—F11.300 (4)
C4—C51.397 (4)C17—F31.316 (4)
C4—N11.429 (3)C17—F21.358 (4)
C5—C61.388 (4)C18—O31.255 (4)
C5—H50.9500C18—C201.396 (4)
C6—H60.9500C18—C191.534 (4)
C7—N11.284 (4)C19—F71.278 (5)
C7—C81.461 (4)C19—F91.321 (4)
C7—H70.9500C19—F81.336 (5)
C8—N21.349 (4)C20—C211.387 (4)
C8—C91.384 (4)C20—H200.9500
C9—C101.385 (4)C21—O41.264 (3)
C9—H90.9500C21—C221.537 (4)
C10—C111.375 (4)C22—F111.296 (4)
C10—H100.9500C22—F121.308 (4)
C11—C121.392 (4)C22—F101.332 (5)
C11—H110.9500Co1—O22.0452 (19)
C12—N21.335 (4)Co1—O42.0639 (19)
C12—H120.9500Co1—O12.0644 (19)
C13—O11.246 (3)Co1—O32.0796 (19)
C13—C151.392 (4)Co1—N22.098 (2)
C13—C141.537 (4)Co1—N12.209 (2)
C14—F41.312 (4)
C6—C1—C2121.5 (3)F1—C17—F2104.7 (3)
C6—C1—Br1119.8 (2)F3—C17—F2103.7 (3)
C2—C1—Br1118.7 (2)F1—C17—C16114.6 (3)
C3—C2—C1119.3 (3)F3—C17—C16112.2 (3)
C3—C2—H2120.4F2—C17—C16109.1 (3)
C1—C2—H2120.4O3—C18—C20128.0 (3)
C2—C3—C4120.5 (3)O3—C18—C19113.7 (3)
C2—C3—H3119.7C20—C18—C19118.3 (3)
C4—C3—H3119.7F7—C19—F9108.7 (4)
C3—C4—C5119.2 (3)F7—C19—F8108.4 (4)
C3—C4—N1124.2 (2)F9—C19—F8104.6 (3)
C5—C4—N1116.6 (2)F7—C19—C18111.1 (3)
C6—C5—C4120.3 (3)F9—C19—C18114.0 (3)
C6—C5—H5119.9F8—C19—C18109.6 (3)
C4—C5—H5119.9C21—C20—C18121.5 (3)
C1—C6—C5119.2 (3)C21—C20—H20119.3
C1—C6—H6120.4C18—C20—H20119.3
C5—C6—H6120.4O4—C21—C20129.1 (3)
N1—C7—C8119.7 (2)O4—C21—C22115.2 (3)
N1—C7—H7120.1C20—C21—C22115.7 (3)
C8—C7—H7120.1F11—C22—F12108.3 (3)
N2—C8—C9122.5 (3)F11—C22—F10106.4 (4)
N2—C8—C7115.7 (2)F12—C22—F10105.6 (3)
C9—C8—C7121.7 (3)F11—C22—C21111.6 (3)
C10—C9—C8118.5 (3)F12—C22—C21113.1 (3)
C10—C9—H9120.7F10—C22—C21111.3 (3)
C8—C9—H9120.7O2—Co1—O4173.89 (8)
C11—C10—C9119.3 (3)O2—Co1—O187.88 (8)
C11—C10—H10120.3O4—Co1—O189.87 (8)
C9—C10—H10120.3O2—Co1—O387.74 (8)
C10—C11—C12119.0 (3)O4—Co1—O386.41 (8)
C10—C11—H11120.5O1—Co1—O385.05 (8)
C12—C11—H11120.5O2—Co1—N294.96 (8)
N2—C12—C11122.3 (3)O4—Co1—N290.82 (8)
N2—C12—H12118.9O1—Co1—N292.91 (8)
C11—C12—H12118.9O3—Co1—N2176.56 (8)
O1—C13—C15128.6 (3)O2—Co1—N191.80 (8)
O1—C13—C14113.3 (3)O4—Co1—N191.41 (8)
C15—C13—C14118.1 (3)O1—Co1—N1169.94 (8)
F4—C14—F6106.5 (3)O3—Co1—N1104.98 (8)
F4—C14—F5107.8 (3)N2—Co1—N177.10 (9)
F6—C14—F5106.3 (3)C7—N1—C4119.2 (2)
F4—C14—C13111.0 (3)C7—N1—Co1111.94 (18)
F6—C14—C13111.4 (3)C4—N1—Co1128.79 (17)
F5—C14—C13113.5 (3)C12—N2—C8118.4 (2)
C16—C15—C13121.6 (3)C12—N2—Co1126.20 (19)
C16—C15—H15119.2C8—N2—Co1115.41 (18)
C13—C15—H15119.2C13—O1—Co1123.71 (19)
O2—C16—C15129.1 (3)C16—O2—Co1123.95 (19)
O2—C16—C17114.0 (3)C18—O3—Co1123.68 (19)
C15—C16—C17116.7 (3)C21—O4—Co1122.51 (18)
F1—C17—F3111.6 (3)
C6—C1—C2—C30.2 (4)C5—C4—N1—C7162.6 (3)
Br1—C1—C2—C3179.9 (2)C3—C4—N1—Co1163.1 (2)
C1—C2—C3—C40.4 (4)C5—C4—N1—Co115.6 (3)
C2—C3—C4—C51.1 (4)O2—Co1—N1—C797.18 (19)
C2—C3—C4—N1179.8 (3)O4—Co1—N1—C788.02 (19)
C3—C4—C5—C61.4 (4)O1—Co1—N1—C79.2 (6)
N1—C4—C5—C6179.8 (2)O3—Co1—N1—C7174.68 (18)
C2—C1—C6—C50.1 (4)N2—Co1—N1—C72.50 (18)
Br1—C1—C6—C5179.7 (2)O2—Co1—N1—C484.5 (2)
C4—C5—C6—C10.9 (4)O4—Co1—N1—C490.3 (2)
N1—C7—C8—N23.1 (4)O1—Co1—N1—C4172.5 (4)
N1—C7—C8—C9176.7 (3)O3—Co1—N1—C43.6 (2)
N2—C8—C9—C100.5 (4)N2—Co1—N1—C4179.2 (2)
C7—C8—C9—C10179.2 (3)C11—C12—N2—C80.8 (4)
C8—C9—C10—C111.2 (4)C11—C12—N2—Co1178.8 (2)
C9—C10—C11—C120.9 (4)C9—C8—N2—C120.5 (4)
C10—C11—C12—N20.2 (4)C7—C8—N2—C12179.8 (2)
O1—C13—C14—F455.7 (4)C9—C8—N2—Co1179.2 (2)
C15—C13—C14—F4125.5 (3)C7—C8—N2—Co10.6 (3)
O1—C13—C14—F662.7 (4)O2—Co1—N2—C1288.0 (2)
C15—C13—C14—F6116.0 (3)O4—Co1—N2—C1290.1 (2)
O1—C13—C14—F5177.3 (3)O1—Co1—N2—C120.2 (2)
C15—C13—C14—F53.9 (4)N1—Co1—N2—C12178.7 (2)
O1—C13—C15—C162.0 (5)O2—Co1—N2—C891.62 (19)
C14—C13—C15—C16176.6 (3)O4—Co1—N2—C890.35 (19)
C13—C15—C16—O25.1 (5)O1—Co1—N2—C8179.74 (19)
C13—C15—C16—C17170.3 (3)N1—Co1—N2—C80.91 (18)
O2—C16—C17—F1166.4 (3)C15—C13—O1—Co116.6 (4)
C15—C16—C17—F117.5 (5)C14—C13—O1—Co1164.79 (19)
O2—C16—C17—F337.7 (4)O2—Co1—O1—C1323.0 (2)
C15—C16—C17—F3146.2 (3)O4—Co1—O1—C13151.3 (2)
O2—C16—C17—F276.6 (4)O3—Co1—O1—C1364.9 (2)
C15—C16—C17—F299.4 (3)N2—Co1—O1—C13117.9 (2)
O3—C18—C19—F767.9 (5)N1—Co1—O1—C13111.4 (5)
C20—C18—C19—F7112.6 (4)C15—C16—O2—Co111.3 (4)
O3—C18—C19—F9168.8 (3)C17—C16—O2—Co1173.2 (2)
C20—C18—C19—F910.7 (5)O1—Co1—O2—C1620.5 (2)
O3—C18—C19—F851.9 (4)O3—Co1—O2—C1664.7 (2)
C20—C18—C19—F8127.5 (3)N2—Co1—O2—C16113.2 (2)
O3—C18—C20—C215.0 (5)N1—Co1—O2—C16169.6 (2)
C19—C18—C20—C21174.4 (3)C20—C18—O3—Co116.7 (4)
C18—C20—C21—O42.5 (5)C19—C18—O3—Co1163.9 (2)
C18—C20—C21—C22174.7 (3)O2—Co1—O3—C18150.4 (2)
O4—C21—C22—F11118.6 (4)O4—Co1—O3—C1827.8 (2)
C20—C21—C22—F1159.0 (4)O1—Co1—O3—C1862.3 (2)
O4—C21—C22—F123.9 (4)N1—Co1—O3—C18118.3 (2)
C20—C21—C22—F12178.4 (3)C20—C21—O4—Co121.0 (4)
O4—C21—C22—F10122.6 (3)C22—C21—O4—Co1161.8 (2)
C20—C21—C22—F1059.7 (4)O1—Co1—O4—C2155.7 (2)
C8—C7—N1—C4177.8 (2)O3—Co1—O4—C2129.4 (2)
C8—C7—N1—Co13.7 (3)N2—Co1—O4—C21148.6 (2)
C3—C4—N1—C718.7 (4)N1—Co1—O4—C21134.3 (2)

Experimental details

Crystal data
Chemical formula[Co(C5HF6O2)2(C12H9BrN2)]
Mr734.17
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.3568 (2), 10.9420 (2), 14.8151 (3)
α, β, γ (°)74.042 (1), 86.510 (1), 77.080 (1)
V3)1269.51 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.37
Crystal size (mm)0.60 × 0.30 × 0.03
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.330, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
21525, 5176, 4508
Rint0.021
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.08
No. of reflections5176
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.23, 0.91

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the Thailand Research Fund (grant No.: RSA5080007) for funding this research.

References

First citationAäkeroy, C. B., Desper, J. & V.-Martínez, J., (2004). CrystEngComm, 6, 413–418.  Google Scholar
First citationAäkeroy, C. B., Schultheiss, N., Desper, J. & Moore, C. (2007). CrystEngComm, 9, 421–426.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBraga, D., Desiraju, G. R., Miller, J. S., Orpen, A. G. & Price, S. L. (2002). CrystEngComm, 4, 500–509.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorradi, E., Meille, M. T., Messina, S. V., Metrangolo, P. & Resnati, R. (2000). Angew. Chem. Int. Ed. 39, 1782–1786.  CrossRef CAS Google Scholar
First citationHarding, P., Harding, D. J., Sophonrat, N. & Adams, H. (2010). Unpublished results.  Google Scholar
First citationHarding, P., Harding, D. J., Tinpun, K., Samuadnuan, S., Sophonrat, N. & Adams, H. (2010). Aust. J. Chem. 63, 75–82.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiantonio, R., Metrangolo, P., Pilati, T., Resnati, G. & Stevenazzi, A. (2003). Cryst. Growth Des. 3, 799–803.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalsh, R. B., Padgett, C. W., Metrangolo, P., Resnati, G., Hanks, T. W. & Pennington, W. T. (2001). Cryst. Growth Des. 1, 165–175.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds