metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{1-[(o-tol­yl)imino­meth­yl]-2-naphthol­ato}copper(II)

aSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China;
*Correspondence e-mail: chm_zhuph@ujn.edu.cn

(Received 6 August 2010; accepted 20 August 2010; online 28 August 2010)

In the title complex, [Cu(C18H14NO)2], the CuII ion lies on a crystallographic inversion centre and is bonded to the O- and N-donor atoms of the two bidentate chelate 1-[(o-tol­yl)imino­meth­yl]-2-naphtho­late ligands in a trans arrangement. The distorted square-planar geometry about CuII has normal dimensions, with Cu—O = 1.8881 (15) Å and Cu—N = 1.9804 (17) Å.

Related literature

For general background to Schiff base complexes of copper(II), see: Adsule et al. (2006[Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242-7246.]); Barton & Ollis (1979[Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol. 2. Oxford: Pergamon Press.]); Layer (1963[Layer, R. W. (1963). Chem. Rev. 63, 489-510.]); Ingold (1969[Ingold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca: Cornell University Press.]); Erxleben & Schumacher (2001[Erxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. 12, 3039-3046.]). For related structures, see: Kaitner et al. (1998[Kaitner, B., Mestrovic, E. & Pavlovi, G. (1998). J. Chem. Crystallogr. 28, 77-82.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C18H14NO)2]

  • Mr = 584.14

  • Monoclinic, P 21 /c

  • a = 7.39342 (16) Å

  • b = 22.0666 (5) Å

  • c = 8.74653 (19) Å

  • β = 95.775 (2)°

  • V = 1419.73 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.19 × 0.15 × 0.14 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.862, Tmax = 0.896

  • 7361 measured reflections

  • 2882 independent reflections

  • 2058 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.05

  • 2882 reflections

  • 158 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −1.04 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are used as starting materials in the synthesis of important drugs (Barton et al., 1979; Layer, 1963; Ingold, 1969). For easy preparation and structural variation, a large number of complexes with schiff bases have been reported. The copper(II) complexes with schiff bases have been studied for their applications in the design and construction of new magnetic materials (Erxleben et al., 2001) and for their cellular proteasome activity (Adsule et al., 2006). We report here the crystal structure of the new copper(II) complex with the Schiff base ligand N-(o-tolyl)-2-hydroxy-1-naphthaldimine, the title compound [Cu(C18H14N O)2] (I).

The molecular structure of (I) is shown in Fig. 1. The CuII ion is four-coordinated with two O and two N donor atoms from two bidentate chelate Schiff base ligands, resulting in a square planar geometry. The discrete complex units have distorted square planar geometry with the Cu lying on a crystallographic inversion centre, the Cu1—O1 and Cu1—N1 bond lengths [1.8881 (15) and 1.9804 (17) Å respectively] being normal for this configuration. It is worth noting that the C1—N1—C12—C17 torsion angle is 55.5 (2)° in the title complex, while in the free ligand the angle is 34.1 (3)°, and this is ascribed to steric hindrance caused by the close approach in the title complex of the two ligands (Kaitner et al., 1998). The adjacent complex molecules are stacked with no significant intermolecular interactions.

Related literature top

For general background to Schiff base complexes of copper(II), see: Adsule et al. (2006); Barton & Ollis (1979); Layer (1963); Ingold (1969); Erxleben & Schumacher (2001). For related structures, see: Kaitner et al. (1998).

Experimental top

Copper(II) acetate hydrate (0.199 g, 0.001 mol) in methanol (50 ml) and N-(o-tolyl)-2-hydroxy-1-naphthaldimine (0.586 g, 0.002 mol) in acetonitrile (75 ml) were mixed and heated at 333 K for 1 h. The solution was filtered and the filtrate kept in a beaker at room temperature for crystallization. Black crystals of (I) started appearing after 3 days: yield, 0.667 g (85%).

Refinement top

Hydrogen atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic H atoms and C—H = 0.96 Å, Uiso = 1.5Ueq (C) for methyl H atoms.

Structure description top

Schiff bases are used as starting materials in the synthesis of important drugs (Barton et al., 1979; Layer, 1963; Ingold, 1969). For easy preparation and structural variation, a large number of complexes with schiff bases have been reported. The copper(II) complexes with schiff bases have been studied for their applications in the design and construction of new magnetic materials (Erxleben et al., 2001) and for their cellular proteasome activity (Adsule et al., 2006). We report here the crystal structure of the new copper(II) complex with the Schiff base ligand N-(o-tolyl)-2-hydroxy-1-naphthaldimine, the title compound [Cu(C18H14N O)2] (I).

The molecular structure of (I) is shown in Fig. 1. The CuII ion is four-coordinated with two O and two N donor atoms from two bidentate chelate Schiff base ligands, resulting in a square planar geometry. The discrete complex units have distorted square planar geometry with the Cu lying on a crystallographic inversion centre, the Cu1—O1 and Cu1—N1 bond lengths [1.8881 (15) and 1.9804 (17) Å respectively] being normal for this configuration. It is worth noting that the C1—N1—C12—C17 torsion angle is 55.5 (2)° in the title complex, while in the free ligand the angle is 34.1 (3)°, and this is ascribed to steric hindrance caused by the close approach in the title complex of the two ligands (Kaitner et al., 1998). The adjacent complex molecules are stacked with no significant intermolecular interactions.

For general background to Schiff base complexes of copper(II), see: Adsule et al. (2006); Barton & Ollis (1979); Layer (1963); Ingold (1969); Erxleben & Schumacher (2001). For related structures, see: Kaitner et al. (1998).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom numbering scheme for (I), with 25% probability displacement ellipsoids for non-H atoms. The A atoms are related by crystallographic inversion symmetry (code: -x + 1, -y + 1, -z + 1).
Bis{1-[(o-tolyl)iminomethyl]-2-naphtholato}copper(II) top
Crystal data top
[Cu(C18H14NO)2]F(000) = 606
Mr = 584.14Dx = 1.366 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3786 reflections
a = 7.39342 (16) Åθ = 2.9–28.9°
b = 22.0666 (5) ŵ = 0.81 mm1
c = 8.74653 (19) ÅT = 293 K
β = 95.775 (2)°Block, red
V = 1419.73 (5) Å30.19 × 0.15 × 0.14 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2882 independent reflections
Radiation source: fine-focus sealed tube2058 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.862, Tmax = 0.896k = 2726
7361 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.055P)2 + ]
where P = (Fo2 + 2Fc2)/3
2882 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 1.04 e Å3
Crystal data top
[Cu(C18H14NO)2]V = 1419.73 (5) Å3
Mr = 584.14Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.39342 (16) ŵ = 0.81 mm1
b = 22.0666 (5) ÅT = 293 K
c = 8.74653 (19) Å0.19 × 0.15 × 0.14 mm
β = 95.775 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2882 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2058 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.896Rint = 0.023
7361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.05Δρmax = 0.57 e Å3
2882 reflectionsΔρmin = 1.04 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2037 (3)0.50730 (10)0.2657 (3)0.02945 (14)
H10.25430.53010.34010.035*
C20.1929 (3)0.44372 (10)0.2912 (3)0.02945 (14)
C30.1469 (3)0.40463 (10)0.1721 (2)0.02945 (14)
C40.1653 (4)0.34085 (11)0.1907 (3)0.0421 (6)
H40.13470.31510.11320.051*
C50.2260 (4)0.31703 (11)0.3183 (3)0.0435 (6)
H50.23720.27520.32590.052*
C60.2735 (3)0.35406 (11)0.4415 (3)0.0356 (5)
C70.3357 (4)0.32855 (12)0.5738 (3)0.0445 (6)
H70.35070.28680.57920.053*
C80.3746 (4)0.36357 (13)0.6944 (3)0.0505 (7)
H80.41660.34610.78090.061*
C90.3505 (4)0.42579 (13)0.6864 (3)0.0461 (7)
H90.37440.44980.76930.055*
C100.2922 (3)0.45262 (12)0.5584 (3)0.0388 (6)
H100.27830.49450.55600.047*
C110.2529 (3)0.41766 (10)0.4298 (2)0.0302 (5)
C120.1859 (3)0.60096 (10)0.1439 (3)0.0303 (5)
C130.1197 (3)0.63778 (11)0.2651 (3)0.0378 (6)
H130.05410.62090.35100.045*
C140.1508 (4)0.69953 (12)0.2586 (3)0.0508 (7)
H140.10670.72410.34030.061*
C150.2467 (4)0.72443 (12)0.1319 (4)0.0545 (8)
H150.26720.76600.12720.065*
C160.3128 (4)0.68777 (12)0.0114 (3)0.0476 (7)
H160.37900.70510.07360.057*
C170.2832 (3)0.62580 (10)0.0135 (3)0.0351 (6)
C180.3561 (4)0.58665 (14)0.1189 (3)0.0566 (8)
H18B0.25680.57020.16830.085*
H18C0.43190.61060.19130.085*
H18A0.42630.55420.08190.085*
Cu10.00000.50000.00000.02945 (14)
N10.1508 (2)0.53716 (8)0.1497 (2)0.02945 (14)
O10.0924 (2)0.42288 (7)0.04412 (16)0.02945 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0365 (2)0.0225 (2)0.0305 (2)0.00170 (16)0.00937 (14)0.00038 (15)
C20.0365 (2)0.0225 (2)0.0305 (2)0.00170 (16)0.00937 (14)0.00038 (15)
C30.0365 (2)0.0225 (2)0.0305 (2)0.00170 (16)0.00937 (14)0.00038 (15)
C40.0585 (17)0.0235 (14)0.0460 (15)0.0007 (11)0.0133 (13)0.0053 (11)
C50.0587 (17)0.0217 (13)0.0508 (15)0.0025 (11)0.0088 (13)0.0033 (11)
C60.0369 (13)0.0305 (13)0.0391 (13)0.0013 (10)0.0024 (10)0.0061 (11)
C70.0505 (16)0.0339 (15)0.0503 (16)0.0067 (12)0.0107 (13)0.0111 (12)
C80.0533 (17)0.0545 (19)0.0459 (15)0.0017 (14)0.0149 (13)0.0147 (14)
C90.0548 (16)0.0491 (18)0.0363 (14)0.0036 (13)0.0139 (12)0.0027 (12)
C100.0470 (14)0.0310 (14)0.0386 (14)0.0029 (11)0.0063 (11)0.0023 (11)
C110.0308 (12)0.0274 (12)0.0322 (12)0.0015 (10)0.0020 (9)0.0029 (10)
C120.0325 (12)0.0227 (12)0.0372 (13)0.0031 (9)0.0112 (10)0.0017 (10)
C130.0453 (14)0.0309 (13)0.0379 (13)0.0020 (11)0.0071 (11)0.0032 (11)
C140.0634 (19)0.0299 (15)0.0612 (19)0.0050 (13)0.0162 (15)0.0140 (14)
C150.069 (2)0.0215 (14)0.076 (2)0.0047 (13)0.0246 (17)0.0030 (14)
C160.0535 (17)0.0347 (15)0.0563 (17)0.0109 (12)0.0137 (13)0.0147 (13)
C170.0352 (13)0.0311 (14)0.0399 (13)0.0042 (10)0.0086 (11)0.0050 (11)
C180.0590 (18)0.0554 (19)0.0512 (17)0.0095 (15)0.0150 (14)0.0007 (15)
Cu10.0365 (2)0.0225 (2)0.0305 (2)0.00170 (16)0.00937 (14)0.00038 (15)
N10.0365 (2)0.0225 (2)0.0305 (2)0.00170 (16)0.00937 (14)0.00038 (15)
O10.0365 (2)0.0225 (2)0.0305 (2)0.00170 (16)0.00937 (14)0.00038 (15)
Geometric parameters (Å, º) top
C1—N11.303 (3)C10—H100.9300
C1—C21.422 (3)C12—C131.385 (3)
C1—H10.9300C12—C171.398 (3)
C2—C31.420 (3)C12—N11.432 (3)
C2—C111.452 (3)C13—C141.382 (3)
C3—O11.292 (2)C13—H130.9300
C3—C41.425 (3)C14—C151.369 (4)
C4—C51.351 (3)C14—H140.9300
C4—H40.9300C15—C161.379 (4)
C5—C61.424 (3)C15—H150.9300
C5—H50.9300C16—C171.385 (3)
C6—C71.406 (3)C16—H160.9300
C6—C111.417 (3)C17—C181.501 (4)
C7—C81.361 (4)C18—H18B0.9600
C7—H70.9300C18—H18C0.9600
C8—C91.387 (4)C18—H18A0.9600
C8—H80.9300Cu1—O1i1.8881 (15)
C9—C101.374 (3)Cu1—O11.8881 (15)
C9—H90.9300Cu1—N11.9804 (17)
C10—C111.417 (3)Cu1—N1i1.9804 (17)
N1—C1—C2127.2 (2)C13—C12—N1120.1 (2)
N1—C1—H1116.4C17—C12—N1119.4 (2)
C2—C1—H1116.4C14—C13—C12120.2 (2)
C3—C2—C1119.9 (2)C14—C13—H13119.9
C3—C2—C11119.2 (2)C12—C13—H13119.9
C1—C2—C11120.33 (19)C15—C14—C13120.0 (3)
O1—C3—C2124.4 (2)C15—C14—H14120.0
O1—C3—C4116.62 (19)C13—C14—H14120.0
C2—C3—C4119.0 (2)C14—C15—C16119.9 (3)
C5—C4—C3121.4 (2)C14—C15—H15120.1
C5—C4—H4119.3C16—C15—H15120.1
C3—C4—H4119.3C15—C16—C17121.7 (3)
C4—C5—C6122.0 (2)C15—C16—H16119.2
C4—C5—H5119.0C17—C16—H16119.1
C6—C5—H5119.0C16—C17—C12117.8 (2)
C7—C6—C11120.2 (2)C16—C17—C18120.9 (2)
C7—C6—C5121.3 (2)C12—C17—C18121.3 (2)
C11—C6—C5118.5 (2)C17—C18—H18B109.5
C8—C7—C6121.5 (2)C17—C18—H18C109.5
C8—C7—H7119.2H18B—C18—H18C109.5
C6—C7—H7119.2C17—C18—H18A109.5
C7—C8—C9119.0 (2)H18B—C18—H18A109.5
C7—C8—H8120.5H18C—C18—H18A109.5
C9—C8—H8120.5O1i—Cu1—O1180.0
C10—C9—C8121.4 (2)O1i—Cu1—N190.07 (7)
C10—C9—H9119.3O1—Cu1—N189.93 (7)
C8—C9—H9119.3O1i—Cu1—N1i89.93 (7)
C9—C10—C11121.2 (2)O1—Cu1—N1i90.07 (7)
C9—C10—H10119.4N1—Cu1—N1i180.00 (9)
C11—C10—H10119.4C1—N1—C12117.21 (18)
C6—C11—C10116.8 (2)C1—N1—Cu1122.60 (15)
C6—C11—C2119.8 (2)C12—N1—Cu1119.73 (13)
C10—C11—C2123.5 (2)C3—O1—Cu1127.52 (14)
C13—C12—C17120.5 (2)
N1—C1—C2—C310.7 (4)C17—C12—C13—C140.6 (4)
N1—C1—C2—C11178.0 (2)N1—C12—C13—C14178.9 (2)
C1—C2—C3—O18.4 (3)C12—C13—C14—C150.3 (4)
C11—C2—C3—O1179.9 (2)C13—C14—C15—C160.4 (4)
C1—C2—C3—C4170.0 (2)C14—C15—C16—C170.8 (4)
C11—C2—C3—C41.5 (3)C15—C16—C17—C121.0 (4)
O1—C3—C4—C5178.2 (2)C15—C16—C17—C18179.9 (2)
C2—C3—C4—C50.3 (4)C13—C12—C17—C160.9 (3)
C3—C4—C5—C60.5 (4)N1—C12—C17—C16179.3 (2)
C4—C5—C6—C7179.7 (2)C13—C12—C17—C18180.0 (2)
C4—C5—C6—C111.1 (4)N1—C12—C17—C181.7 (3)
C11—C6—C7—C81.1 (4)C2—C1—N1—C12176.2 (2)
C5—C6—C7—C8177.4 (3)C2—C1—N1—Cu111.6 (3)
C6—C7—C8—C90.5 (4)C13—C12—N1—C157.1 (3)
C7—C8—C9—C101.4 (4)C17—C12—N1—C1124.5 (2)
C8—C9—C10—C110.5 (4)C13—C12—N1—Cu1115.3 (2)
C7—C6—C11—C101.9 (3)C17—C12—N1—Cu163.1 (2)
C5—C6—C11—C10176.7 (2)O1i—Cu1—N1—C1154.08 (18)
C7—C6—C11—C2178.5 (2)O1—Cu1—N1—C125.92 (18)
C5—C6—C11—C22.9 (3)O1i—Cu1—N1—C1217.91 (16)
C9—C10—C11—C61.1 (3)O1—Cu1—N1—C12162.09 (16)
C9—C10—C11—C2179.3 (2)C2—C3—O1—Cu117.7 (3)
C3—C2—C11—C63.1 (3)C4—C3—O1—Cu1163.90 (16)
C1—C2—C11—C6168.3 (2)N1—Cu1—O1—C329.77 (18)
C3—C2—C11—C10176.4 (2)N1i—Cu1—O1—C3150.23 (18)
C1—C2—C11—C1012.2 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C18H14NO)2]
Mr584.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.39342 (16), 22.0666 (5), 8.74653 (19)
β (°) 95.775 (2)
V3)1419.73 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.19 × 0.15 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.862, 0.896
No. of measured, independent and
observed [I > 2σ(I)] reflections
7361, 2882, 2058
Rint0.023
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.05
No. of reflections2882
No. of parameters158
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 1.04

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by Shandong Province (2007BS02016).

References

First citationAdsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242–7246.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBarton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol. 2. Oxford: Pergamon Press.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. 12, 3039–3046.  CrossRef Google Scholar
First citationIngold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd ed. Ithaca: Cornell University Press.  Google Scholar
First citationKaitner, B., Mestrovic, E. & Pavlovi, G. (1998). J. Chem. Crystallogr. 28, 77–82.  Web of Science CSD CrossRef CAS Google Scholar
First citationLayer, R. W. (1963). Chem. Rev. 63, 489–510.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds