organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-(E)-3-[1-(2-Chloro­phen­yl)eth­yl]-5-methyl-N-nitro-1,3,5-oxadiazinan-4-imine

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: qknhs@yahoo.com.cn

(Received 19 August 2010; accepted 25 August 2010; online 28 August 2010)

In the title compound, C12H15ClN4O3, which has potential insecticidal activity, the oxadiazine ring and the benzene ring make a dihedral angle of 84.63 (2)° to one another. The crystal packing involves weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the biological activity of oxadiazine derivatives, see: Maienfisch & Huerlimann (1994[Maienfisch, P. & Huerlimann, H. (1994). CN Patent 1084171.]); Gsell & Maienfisch (1998[Gsell, L. & Maienfisch, P. (1998). WO Patent 9806710.]). For the synthesis, see: Gottfied et al. (2001[Gottfied, S., Thomas, R. & Verena, G. (2001). WO Patent 0100623.]). For related structures, see: Chopra et al. (2004[Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2413-o2414.]); Kang et al. (2008[Kang, T.-N., Zhang, L., Ling, Y. & Yang, X.-L. (2008). Acta Cryst. E64, o1154.]); Zhong et al. (2010[Zhong, Y., Li, C. & Xu, L. (2010). Acta Cryst. E66, o1981.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15ClN4O3

  • Mr = 298.73

  • Monoclinic, P 21 /c

  • a = 17.259 (4) Å

  • b = 6.9157 (14) Å

  • c = 12.169 (2) Å

  • β = 109.63 (3)°

  • V = 1368.0 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.61 mm−1

  • T = 113 K

  • 0.26 × 0.22 × 0.18 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.550, Tmax = 0.651

  • 12087 measured reflections

  • 2590 independent reflections

  • 2562 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.104

  • S = 1.08

  • 2590 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2i 0.99 2.52 3.2817 (18) 134
C1—H1A⋯O3i 0.99 2.50 3.396 (2) 150
C1—H1B⋯O2ii 0.99 2.56 3.2555 (18) 127
C3—H3A⋯O3iii 0.99 2.49 3.2294 (19) 131
C4—H4B⋯O2i 0.98 2.57 3.3070 (19) 132
C4—H4C⋯O1ii 0.98 2.49 3.377 (2) 150
C6—H6C⋯O3iii 0.98 2.35 3.3020 (19) 164
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Currently, studies on oxadiazine derivatives have mainly concentrated on compounds with oxadiazine as the only active group (Gsell, et al., 1998) and a number of highly insecticidal compounds of this type have been synthesized (Maienfisch et al., 1994). We report here the synthesis and crystal structure of the title compound C12H15Cl1N4O3 (I).

In (I) (Fig. 1) the bond lengths and angles of the oxadiazine rings are in agreement with those in previous reported structures (Chopra et al., 2004). The 1,3,5-oxadiazinane ring is in a half-chair conformation and the ring-puckering parameters (Cremer & Pople, 1975;) were calculated as Q = 0.05126 (12) Å; θ = 121.33 (13)°; φ = 166.3676 (15)°. The N3O bondlength [1.3904 (17) Å] is close to the value reported in the literature (Zhong et al., 2010). The oxadiazine ring and the benzene ring make a dihedral angle of 84.63 (2)°. Weak intermolecular C—H···O hydrogen bonds give a three-dimensional network (Table 1).

Related literature top

For the biological activity of oxadiazine derivatives, see: Maienfisch & Huerlimann (1994); Gsell & Maienfisch (1998). For the synthesis, see: Gottfied et al. (2001). For related structures, see: Chopra et al. (2004); Kang et al. (2008); Zhong et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution of 1-(1-bromoethyl)-2-chlorobenzene (4.3 g, 20 mmol), N-nitro-1,3,5-oxadiazinan-4-imine (3.2 g, 20 mmol) and potassium carbonate (2.8 g, 20 mmol) in 20 g of acetonitrile was heated under reflux for 4 h. Upon cooling to room temperature the solution was filtered and then concentrated under reduced pressure to give the title compound (I) (7.89 g, 90% yield) (Gottfried, et al., 2001). Single crystals suitable for X-ray measurement were obtained by recrystallization from ethanol at room temperature.

Refinement top

All C-bound H atoms were placed in calculated positions, with C—H = 0.95-0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

Currently, studies on oxadiazine derivatives have mainly concentrated on compounds with oxadiazine as the only active group (Gsell, et al., 1998) and a number of highly insecticidal compounds of this type have been synthesized (Maienfisch et al., 1994). We report here the synthesis and crystal structure of the title compound C12H15Cl1N4O3 (I).

In (I) (Fig. 1) the bond lengths and angles of the oxadiazine rings are in agreement with those in previous reported structures (Chopra et al., 2004). The 1,3,5-oxadiazinane ring is in a half-chair conformation and the ring-puckering parameters (Cremer & Pople, 1975;) were calculated as Q = 0.05126 (12) Å; θ = 121.33 (13)°; φ = 166.3676 (15)°. The N3O bondlength [1.3904 (17) Å] is close to the value reported in the literature (Zhong et al., 2010). The oxadiazine ring and the benzene ring make a dihedral angle of 84.63 (2)°. Weak intermolecular C—H···O hydrogen bonds give a three-dimensional network (Table 1).

For the biological activity of oxadiazine derivatives, see: Maienfisch & Huerlimann (1994); Gsell & Maienfisch (1998). For the synthesis, see: Gottfied et al. (2001). For related structures, see: Chopra et al. (2004); Kang et al. (2008); Zhong et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme for the title compound (I), with displacement ellipsoids drawn at the 50% probability level.
rac-(E)-3-[1-(2-Chlorophenyl)ethyl]-5-methyl-N- nitro-1,3,5-oxadiazinan-4-imine top
Crystal data top
C12H15ClN4O3F(000) = 624
Mr = 298.73Dx = 1.450 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybcCell parameters from 1058 reflections
a = 17.259 (4) Åθ = 27.5–71.9°
b = 6.9157 (14) ŵ = 2.61 mm1
c = 12.169 (2) ÅT = 113 K
β = 109.63 (3)°Block, colorless
V = 1368.0 (5) Å30.26 × 0.22 × 0.18 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
2590 independent reflections
Radiation source: fine-focus sealed tube2562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 14.63 pixels mm-1θmax = 72.1°, θmin = 2.7°
ω scansh = 2021
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 88
Tmin = 0.550, Tmax = 0.651l = 1314
12087 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.058P)2 + 0.6637P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2590 reflectionsΔρmax = 0.26 e Å3
184 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0057 (11)
Crystal data top
C12H15ClN4O3V = 1368.0 (5) Å3
Mr = 298.73Z = 4
Monoclinic, P21/cCu Kα radiation
a = 17.259 (4) ŵ = 2.61 mm1
b = 6.9157 (14) ÅT = 113 K
c = 12.169 (2) Å0.26 × 0.22 × 0.18 mm
β = 109.63 (3)°
Data collection top
Rigaku Saturn
diffractometer
2590 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2562 reflections with I > 2σ(I)
Tmin = 0.550, Tmax = 0.651Rint = 0.054
12087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.08Δρmax = 0.26 e Å3
2590 reflectionsΔρmin = 0.37 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.36163 (2)0.37729 (6)0.00540 (3)0.02744 (17)
N10.09670 (7)0.33360 (16)0.04098 (10)0.0152 (3)
N20.21260 (7)0.48468 (16)0.08081 (10)0.0146 (3)
N30.19653 (7)0.15435 (16)0.10592 (10)0.0165 (3)
N40.15382 (7)0.09523 (17)0.17188 (10)0.0172 (3)
O10.09734 (6)0.67120 (14)0.01841 (9)0.0180 (2)
O20.09602 (7)0.19372 (16)0.18398 (9)0.0247 (3)
O30.17457 (7)0.06237 (15)0.22426 (9)0.0238 (3)
C10.06227 (8)0.5189 (2)0.09525 (12)0.0171 (3)
H1A0.07400.53630.16890.021*
H1B0.00180.51880.11390.021*
C20.16607 (8)0.32676 (19)0.04897 (12)0.0138 (3)
C30.18404 (8)0.66306 (19)0.01450 (13)0.0172 (3)
H3A0.20890.77670.06300.021*
H3B0.20070.66440.05580.021*
C40.04698 (9)0.1625 (2)0.08861 (13)0.0196 (3)
H4A0.08010.04590.06110.029*
H4B0.02850.16700.17400.029*
H4C0.00100.15990.06260.029*
C50.28920 (8)0.48416 (19)0.18389 (12)0.0171 (3)
H50.31410.35240.18940.020*
C60.26984 (10)0.5185 (2)0.29596 (12)0.0225 (3)
H6A0.32120.51980.36270.034*
H6B0.23420.41470.30610.034*
H6C0.24180.64300.29100.034*
C70.34952 (8)0.6269 (2)0.16156 (13)0.0184 (3)
C80.38573 (9)0.5900 (2)0.07689 (13)0.0209 (3)
C90.44068 (9)0.7161 (2)0.05401 (14)0.0257 (4)
H90.46400.68690.00450.031*
C100.46123 (10)0.8863 (2)0.11817 (16)0.0305 (4)
H100.49970.97330.10480.037*
C110.42544 (10)0.9287 (2)0.20160 (15)0.0308 (4)
H110.43891.04590.24450.037*
C120.37004 (9)0.8007 (2)0.22283 (13)0.0247 (3)
H120.34570.83200.28000.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0282 (2)0.0206 (2)0.0376 (3)0.00083 (13)0.01641 (18)0.00617 (14)
N10.0166 (6)0.0106 (5)0.0167 (6)0.0008 (4)0.0035 (4)0.0001 (4)
N20.0146 (5)0.0095 (5)0.0179 (6)0.0011 (4)0.0029 (4)0.0012 (4)
N30.0171 (6)0.0104 (5)0.0226 (6)0.0015 (4)0.0075 (5)0.0038 (4)
N40.0216 (6)0.0110 (5)0.0182 (6)0.0015 (5)0.0058 (5)0.0019 (4)
O10.0167 (5)0.0119 (5)0.0225 (5)0.0038 (4)0.0030 (4)0.0010 (4)
O20.0286 (6)0.0209 (6)0.0301 (6)0.0107 (4)0.0170 (5)0.0072 (4)
O30.0338 (6)0.0117 (5)0.0275 (6)0.0059 (4)0.0123 (4)0.0083 (4)
C10.0168 (6)0.0134 (6)0.0183 (7)0.0022 (5)0.0021 (5)0.0009 (5)
C20.0156 (6)0.0100 (6)0.0173 (6)0.0016 (5)0.0077 (5)0.0003 (5)
C30.0165 (7)0.0099 (6)0.0226 (7)0.0010 (5)0.0032 (5)0.0035 (5)
C40.0204 (7)0.0144 (6)0.0222 (7)0.0049 (5)0.0048 (6)0.0024 (5)
C50.0163 (6)0.0123 (6)0.0190 (7)0.0019 (5)0.0011 (5)0.0014 (5)
C60.0274 (7)0.0183 (7)0.0192 (7)0.0004 (6)0.0042 (6)0.0019 (5)
C70.0149 (6)0.0136 (7)0.0216 (7)0.0010 (5)0.0006 (5)0.0026 (5)
C80.0157 (6)0.0157 (7)0.0270 (8)0.0018 (5)0.0015 (6)0.0030 (6)
C90.0182 (7)0.0267 (8)0.0298 (8)0.0013 (6)0.0047 (6)0.0093 (6)
C100.0211 (8)0.0248 (8)0.0372 (9)0.0083 (6)0.0013 (7)0.0108 (7)
C110.0302 (8)0.0187 (7)0.0325 (9)0.0086 (7)0.0042 (7)0.0003 (6)
C120.0249 (7)0.0185 (7)0.0242 (7)0.0029 (6)0.0004 (6)0.0013 (6)
Geometric parameters (Å, º) top
Cl1—C81.7492 (16)C4—H4B0.9800
N1—C21.324 (2)C4—H4C0.9800
N1—C41.4621 (17)C5—C71.524 (2)
N1—C11.4721 (17)C5—C61.528 (2)
N2—C21.3336 (18)C5—H51.0000
N2—C31.4658 (16)C6—H6A0.9800
N2—C51.4856 (17)C6—H6B0.9800
N3—N41.3237 (17)C6—H6C0.9800
N3—C21.3904 (17)C7—C121.396 (2)
N4—O31.2526 (15)C7—C81.396 (2)
N4—O21.2567 (16)C8—C91.384 (2)
O1—C11.4037 (17)C9—C101.391 (2)
O1—C31.4143 (18)C9—H90.9500
C1—H1A0.9900C10—C111.386 (3)
C1—H1B0.9900C10—H100.9500
C3—H3A0.9900C11—C121.389 (2)
C3—H3B0.9900C11—H110.9500
C4—H4A0.9800C12—H120.9500
C2—N1—C4123.09 (11)H4B—C4—H4C109.5
C2—N1—C1121.23 (11)N2—C5—C7108.38 (11)
C4—N1—C1115.58 (11)N2—C5—C6110.73 (11)
C2—N2—C3118.10 (11)C7—C5—C6115.21 (12)
C2—N2—C5121.43 (11)N2—C5—H5107.4
C3—N2—C5120.40 (11)C7—C5—H5107.4
N4—N3—C2111.90 (11)C6—C5—H5107.4
O3—N4—O2120.96 (12)C5—C6—H6A109.5
O3—N4—N3117.07 (11)C5—C6—H6B109.5
O2—N4—N3121.95 (11)H6A—C6—H6B109.5
C1—O1—C3109.70 (10)C5—C6—H6C109.5
O1—C1—N1109.62 (11)H6A—C6—H6C109.5
O1—C1—H1A109.7H6B—C6—H6C109.5
N1—C1—H1A109.7C12—C7—C8117.08 (14)
O1—C1—H1B109.7C12—C7—C5121.90 (14)
N1—C1—H1B109.7C8—C7—C5121.02 (13)
H1A—C1—H1B108.2C9—C8—C7122.70 (14)
N1—C2—N2119.99 (12)C9—C8—Cl1117.52 (13)
N1—C2—N3121.87 (12)C7—C8—Cl1119.78 (11)
N2—C2—N3117.88 (12)C8—C9—C10118.89 (16)
O1—C3—N2108.51 (11)C8—C9—H9120.6
O1—C3—H3A110.0C10—C9—H9120.6
N2—C3—H3A110.0C11—C10—C9119.87 (15)
O1—C3—H3B110.0C11—C10—H10120.1
N2—C3—H3B110.0C9—C10—H10120.1
H3A—C3—H3B108.4C10—C11—C12120.38 (15)
N1—C4—H4A109.5C10—C11—H11119.8
N1—C4—H4B109.5C12—C11—H11119.8
H4A—C4—H4B109.5C11—C12—C7121.07 (16)
N1—C4—H4C109.5C11—C12—H12119.5
H4A—C4—H4C109.5C7—C12—H12119.5
C2—N3—N4—O3177.78 (11)C3—N2—C5—C733.89 (16)
C2—N3—N4—O23.68 (18)C2—N2—C5—C683.61 (15)
C3—O1—C1—N155.36 (14)C3—N2—C5—C693.38 (14)
C2—N1—C1—O118.08 (18)N2—C5—C7—C12110.06 (14)
C4—N1—C1—O1158.55 (12)C6—C5—C7—C1214.60 (19)
C4—N1—C2—N2173.37 (12)N2—C5—C7—C868.88 (16)
C1—N1—C2—N210.3 (2)C6—C5—C7—C8166.46 (13)
C4—N1—C2—N30.6 (2)C12—C7—C8—C90.9 (2)
C1—N1—C2—N3175.73 (12)C5—C7—C8—C9179.93 (13)
C3—N2—C2—N10.66 (19)C12—C7—C8—Cl1178.83 (10)
C5—N2—C2—N1177.72 (12)C5—C7—C8—Cl10.15 (18)
C3—N2—C2—N3174.91 (11)C7—C8—C9—C100.4 (2)
C5—N2—C2—N38.03 (19)Cl1—C8—C9—C10179.86 (11)
N4—N3—C2—N173.97 (16)C8—C9—C10—C111.3 (2)
N4—N3—C2—N2111.90 (14)C9—C10—C11—C121.0 (2)
C1—O1—C3—N264.67 (14)C10—C11—C12—C70.4 (2)
C2—N2—C3—O136.13 (16)C8—C7—C12—C111.3 (2)
C5—N2—C3—O1140.96 (12)C5—C7—C12—C11179.72 (13)
C2—N2—C5—C7149.11 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.992.523.2817 (18)134
C1—H1A···O3i0.992.503.396 (2)150
C1—H1B···O2ii0.992.563.2555 (18)127
C3—H3A···O3iii0.992.493.2294 (19)131
C4—H4B···O2i0.982.573.3070 (19)132
C4—H4C···O1ii0.982.493.377 (2)150
C6—H6C···O3iii0.982.353.3020 (19)164
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H15ClN4O3
Mr298.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)17.259 (4), 6.9157 (14), 12.169 (2)
β (°) 109.63 (3)
V3)1368.0 (5)
Z4
Radiation typeCu Kα
µ (mm1)2.61
Crystal size (mm)0.26 × 0.22 × 0.18
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.550, 0.651
No. of measured, independent and
observed [I > 2σ(I)] reflections
12087, 2590, 2562
Rint0.054
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 1.08
No. of reflections2590
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.37

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O2i0.992.523.2817 (18)133.8
C1—H1A···O3i0.992.503.396 (2)150.2
C1—H1B···O2ii0.992.563.2555 (18)127.0
C3—H3A···O3iii0.992.493.2294 (19)130.8
C4—H4B···O2i0.982.573.3070 (19)131.6
C4—H4C···O1ii0.982.493.377 (2)150.2
C6—H6C···O3iii0.982.353.3020 (19)163.6
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y+1, z.
 

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2413–o2414.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGottfied, S., Thomas, R. & Verena, G. (2001). WO Patent 0100623.  Google Scholar
First citationGsell, L. & Maienfisch, P. (1998). WO Patent 9806710.  Google Scholar
First citationKang, T.-N., Zhang, L., Ling, Y. & Yang, X.-L. (2008). Acta Cryst. E64, o1154.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaienfisch, P. & Huerlimann, H. (1994). CN Patent 1084171.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong, Y., Li, C. & Xu, L. (2010). Acta Cryst. E66, o1981.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds