metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1232-m1233

Bis[5-(2-pyrid­yl)pyrazine-2-carbo­nitrile]­silver(I) tetra­fluorido­borate

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: wanchqing@yahoo.com.cn

(Received 12 July 2010; accepted 31 August 2010; online 8 September 2010)

In the title mononuclear complex, [Ag(C10H6N4)2]BF4, the AgI atom adopts a square-planar N4 coordination geometry and is surrounded by two 5-(2-pyrid­yl)pyrazine-2-carbonitrile ligands. The tetra­fluorido­borate anions link the mononuclear cations through inter­molecular C—H⋯F hydrogen-bonding inter­actions, forming an infinite tape structure along [110]. Other weak inter­actions occur: ππ stacking with centroid–centroid distances of 3.820 (2) and 3.898 (1) Å between pyridyl rings and 3.610 (2) and 3.926 (2) Å between pyrazinyl rings as well as F⋯π contacts involving the tetra­fluorido­borate anions and pyrazine rings [F⋯centroid = 2.999 (3) Å]; these combine with the hydrogen-bonding inter­actions to link the mononuclear cations into a three-dimensional supra­molecular architecture.

Related literature

For coordination complexes with 2,2′-bipyridine, see: Casini et al. (2006[Casini, A., Cinellu, M. A., Minghetti, G., Gabbiani, C., Coronnello, M., Mini, E. & Messori, L. (2006). J. Med. Chem. 49, 5524-5531.]); Li et al. (2010[Li, H. H., Chen, Z. R., Sun, L. G., Lian, Z. X., Chen, X. B., Li, J. B. & Li, J. Q. (2010). Cryst. Growth Des. 10, 1068-1073.]); Wang et al. (2009[Wang, R. M., Wang, X. M., Sundberg, E. B., Nguyen, P., Grant, G. P. G., Sheth, C., Zhao, Q., Herron, S., Kantardjieff, A. K. & Li, L. J. (2009). Inorg. Chem. 49, 9779-9785.]). For other related structures involving 2,2′-bipyridine derivatives, see: Berghian et al. (2005[Berghian, C., Mircea, D., Turck, A. & Plé, N. (2005). Tetrahedron, 61, 9637-9644.]); Mathieu et al. (2001[Mathieu, J., Gros, P. & Fort, Y. (2001). Tetrahedron Lett. 42, 1879-1881.]). For the coordination chemistry of multidentate N-containing ligands, see: Peedikakkal & Vittal (2010[Peedikakkal, A. M. P. & Vittal, J. J. (2010). Inorg. Chem. 49, 10-12.]). For properties of pyridine-based ligands, see: Casini et al. (2006[Casini, A., Cinellu, M. A., Minghetti, G., Gabbiani, C., Coronnello, M., Mini, E. & Messori, L. (2006). J. Med. Chem. 49, 5524-5531.]). For comparison Ag—N(pyrazin­yl) distances, see: Biju & Rajasekharan (2008[Biju, A. R. & Rajasekharan, M. V. (2008). Polyhedron, 27, 2065-2068.]). For C—H⋯F inter­actions, see: Denis et al. (2004[Denis, G. G., Konstantin, A. L., Mikhail, Y. A., Yakov, S. V., Elena, I. L. & Alexander, S. S. (2004). CrystEngComm, 7, 53-56.]). For a comparable BF4 anion–pyrazinyl inter­action, see: Wan et al. (2008[Wan, C. Q., Li, G. S., Chen, X. D. & Mak, T. C. W. (2008). Cryst. Growth Des. 8, 3897-3901.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C10H6N4)2]BF4

  • Mr = 559.06

  • Triclinic, [P \overline 1]

  • a = 7.8144 (12) Å

  • b = 11.2492 (16) Å

  • c = 12.2697 (18) Å

  • α = 104.168 (3)°

  • β = 90.789 (2)°

  • γ = 101.429 (3)°

  • V = 1022.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 293 K

  • 0.45 × 0.40 × 0.30 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.615, Tmax = 0.783

  • 7178 measured reflections

  • 4986 independent reflections

  • 3929 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.04

  • 4986 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5a⋯F3i 0.93 2.49 3.398 (3) 167
C13—H13a⋯F2 0.93 2.43 3.015 (5) 121
C11—H11a⋯F4ii 0.93 2.39 3.132 (4) 137
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

During the past decades, coordination chemistry based on multidentate N-containing ligands has been widely developed and received intense interests (Peedikakkal et al., 2010). 2,2'-bipyridine is a popular member of the pyridine-based family and attracts a great of attentions because of the potential medicinal applications (Casini et al., 2006) and the fascinating framework structures (Li et al., 2010; Wang et al., 2009) of its divers metal complexes. Many 2,2'-bipyridine derivatives together with their various metal complexes have also been synthesized and well characterized (Berghian et al., 2005; Mathieu et al., 2001).

Herein, we present the structure of the new complex [Ag(C10H6N4)2]BF4 derived from 5-(2-pyridyl)-2-cyanopyrazine ligand, a similar ligand to the 2,2'-bipyridine featuring a 2-cyanopyrazinyl group at the 2-pyridyl carbon atom (Scheme 1). In the mononuclear title complex, the two ligands surrounding the center Ag(I) ion are in an anti-relationship and almost in the same plane, thus each of them chelates the Ag(I) ion through one 2-pyridyl N atom and one 4-pyrazinyl N atom, leading to a square planar N4- coordination geometry. As shown in Fig.1, the Ag1—N1(pyridyl) and Ag1—N3(pyridyl) bonds equal to 2.196 (2) and 2.203 (2) Å, respectively, which are considerably shorter than the other two Ag—N(pyrazinyl) bonds with the distances of 2.659 (2) Å (Ag1—N4) and 2.685 (2) Å (Ag1—N2), respectively. The longer Ag—N(pyrazinyl) distance is comparable to that in [Ag(dafone)2]NO3.H2O (dafone = 4,5-diazafluoren-9-one) (Biju et al., 2008). For the tetrafluoridoborate anions, each one links two neighbor [Ag(C10H6N4)2]+ cationic moieties arranged along the [110] direction through C—H···F (Denis et al., 2004) hydrogen bonding (C13···F2 3.015 (1) Å, C13—H13a···F2 120.8°; C11i···F4 3.132 (2) Å, C11i—H11ai···F4 137.2°, i x-1, y-1, z), forming an infinite tape structure (Fig. 2). The tape arrays are arranged along [110] direction in a shoulder to shoulder mode and stack along [-110] direction via π-π and F(BF4-)···π(pyrazinyl) interactions (Fig. 3). The close centroid(pyridyl)···centroid(pyridyl)distances are 3.820 (2) and 3.898 (1) Å, while that of centroid(pyrazinyl)···centroid(pyrazinyl) are 3.610 (2) and 3.926 (2) Å. For the anion-π interaction, F4(BF4-)···centroid(pyrazinyl) distance is 2.999 (3) Å, comparable to that 3.097 (1) Å found in Cu[(2-C4H3N2)2C(OH)2]2(BF4-)2 (Wan, et al., 2008).

Related literature top

For coordination complexes with 2,2'-bipyridine, see: Casini et al. (2006); Li et al. (2010); Wang et al. (2009). For other related structures involving 2,2'-bipyridine derivatives, see: Berghian et al. (2005); Mathieu et al. (2001). For the coordination chemistry of multidentate N-containing ligands, see: Peedikakkal et al. (2010). For properties of pyridine-based ligands, see: Casini et al. (2006). For comparison Ag—N(pyrazinyl) distances, see: Biju et al. (2008). For C—H···F interactions ,see: Denis et al. (2004). For a comparable BF4 anion–pyrazinyl interaction, see: Wan et al. (2008).

Experimental top

The ligand 5-(2-pyridyl)-2-cyanopyrazine was obtained commercially.The ligand (0.182 g, 0.1 mmol) was dissolved in a mixture of methanol, 2 ml, and acetonitrile, 2 ml was added to AgBF4 (0.194g, 0.1mmol), with constantly stirring. After four hours, the clear solution was filtered and kept in air for one week at room temperature to yield colorless rod-like crystals (274 mg, 72% yeild).

Refinement top

The hydrogen atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms, with C— H = 0.93 Å and Uĩso~(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme of the title [Ag(C10H6N4)2]BF4. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as sticks of arbitrary radii.
[Figure 2] Fig. 2. The tetrafluoridoborate linkages between the [Ag(C10H6N4)2]+moieties arranged along [110] direction. The red-dashed lines indicate the C—H···F hydrogen-bonding interactions. Symmetry code: i x-1, y-1, z.
[Figure 3] Fig. 3. Three-dimensional structure of the title complex. The red dashed lines represent ππ stacking interactions,while blue dashed lines indicate F(BF4-)···π(pyrazinyl) interactions. A, B, C and D red lettering indicate Cg2···Cg2i,Cg3···Cg3ii,Cg4···Cg4iii and Cg1···Cg1iv distances, respectively, while E represents F4···Cg1v distance. (See Table 2).
Bis[5-(2-pyridyl)pyrazine-2-carbonitrile]silver(I) tetrafluoridoborate top
Crystal data top
[Ag(C10H6N4)2]BF4Z = 2
Mr = 559.06F(000) = 552
Triclinic, P1Dx = 1.815 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8144 (12) ÅCell parameters from 255 reflections
b = 11.2492 (16) Åθ = 1.9–28.2°
c = 12.2697 (18) ŵ = 1.05 mm1
α = 104.168 (3)°T = 293 K
β = 90.789 (2)°Rod, colourless
γ = 101.429 (3)°0.45 × 0.40 × 0.30 mm
V = 1022.8 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4986 independent reflections
Radiation source: fine-focus sealed tube3929 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.615, Tmax = 0.783k = 1511
7178 measured reflectionsl = 1116
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.3679P]
where P = (Fo2 + 2Fc2)/3
4986 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Ag(C10H6N4)2]BF4γ = 101.429 (3)°
Mr = 559.06V = 1022.8 (3) Å3
Triclinic, P1Z = 2
a = 7.8144 (12) ÅMo Kα radiation
b = 11.2492 (16) ŵ = 1.05 mm1
c = 12.2697 (18) ÅT = 293 K
α = 104.168 (3)°0.45 × 0.40 × 0.30 mm
β = 90.789 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4986 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3929 reflections with I > 2σ(I)
Tmin = 0.615, Tmax = 0.783Rint = 0.017
7178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.04Δρmax = 0.95 e Å3
4986 reflectionsΔρmin = 0.73 e Å3
307 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.48906 (4)0.75499 (2)0.295313 (17)0.05808 (11)
N10.6368 (3)0.8859 (2)0.44508 (18)0.0413 (5)
C170.4863 (3)0.7511 (2)0.0256 (2)0.0354 (5)
C80.7174 (4)0.9522 (3)0.6418 (2)0.0488 (7)
H8A0.70960.93620.71260.059*
C90.8161 (4)1.0650 (3)0.6289 (3)0.0536 (7)
H9A0.87571.12510.69080.064*
N30.3487 (3)0.6200 (2)0.14425 (19)0.0440 (5)
N70.5870 (3)0.8837 (2)0.09560 (19)0.0448 (5)
C60.5258 (3)0.7428 (2)0.5588 (2)0.0349 (5)
C130.1720 (4)0.4170 (3)0.0664 (3)0.0552 (7)
H13A0.10520.34370.07840.066*
C70.6308 (3)0.8640 (2)0.5475 (2)0.0366 (5)
C100.8236 (4)1.0857 (3)0.5235 (3)0.0525 (7)
H10A0.88971.15960.51230.063*
C160.3722 (3)0.6342 (2)0.0397 (2)0.0366 (5)
C30.3250 (4)0.5376 (2)0.5951 (2)0.0396 (5)
C180.4773 (4)0.7863 (3)0.0758 (2)0.0437 (6)
H18A0.39120.73960.13140.052*
C110.7318 (4)0.9954 (3)0.4349 (3)0.0507 (7)
H11A0.73561.01080.36380.061*
C200.7024 (3)0.9492 (2)0.0119 (2)0.0403 (5)
C140.1954 (4)0.4306 (3)0.0405 (3)0.0511 (7)
H14A0.14370.36700.10250.061*
N50.9098 (4)1.1363 (3)0.0604 (3)0.0645 (7)
C220.8224 (4)1.0544 (3)0.0359 (2)0.0481 (6)
C210.7073 (4)0.9214 (3)0.0921 (2)0.0475 (6)
H21A0.78730.97250.14960.057*
C10.2107 (4)0.4315 (3)0.6209 (2)0.0509 (7)
C150.2969 (4)0.5401 (3)0.0547 (2)0.0458 (6)
H15A0.31500.55110.12660.055*
C120.2491 (4)0.5138 (3)0.1556 (3)0.0552 (7)
H12A0.23070.50460.22810.066*
N60.1246 (5)0.3511 (3)0.6475 (3)0.0784 (10)
F30.0390 (3)0.1799 (2)0.2096 (2)0.0787 (6)
B10.0554 (4)0.2501 (3)0.2781 (3)0.0411 (6)
F10.0294 (4)0.3082 (4)0.3781 (3)0.1278 (13)
F20.0835 (4)0.3504 (3)0.2347 (3)0.1227 (12)
F40.2181 (3)0.1894 (2)0.2873 (2)0.0778 (6)
N40.5982 (3)0.8218 (2)0.11044 (18)0.0445 (5)
N80.4633 (3)0.5922 (2)0.66795 (19)0.0418 (5)
C50.5636 (3)0.6942 (2)0.6495 (2)0.0387 (5)
H5A0.66170.73480.69800.046*
N20.3941 (3)0.6827 (2)0.48248 (18)0.0402 (5)
C20.2927 (4)0.5793 (2)0.5009 (2)0.0420 (6)
H2B0.19920.53500.44980.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0852 (2)0.05274 (16)0.02856 (13)0.00162 (12)0.00852 (11)0.00651 (9)
N10.0523 (13)0.0386 (11)0.0313 (11)0.0033 (10)0.0040 (9)0.0102 (9)
C170.0408 (13)0.0365 (12)0.0269 (11)0.0062 (10)0.0027 (9)0.0059 (9)
C80.0643 (18)0.0420 (14)0.0336 (13)0.0004 (13)0.0073 (12)0.0064 (11)
C90.0606 (18)0.0383 (14)0.0524 (17)0.0031 (13)0.0108 (14)0.0052 (12)
N30.0541 (13)0.0412 (11)0.0320 (11)0.0036 (10)0.0019 (10)0.0113 (9)
N70.0503 (13)0.0492 (13)0.0342 (11)0.0025 (10)0.0034 (10)0.0155 (10)
C60.0424 (13)0.0345 (11)0.0263 (11)0.0064 (10)0.0051 (9)0.0058 (9)
C130.0599 (18)0.0445 (15)0.0550 (18)0.0077 (13)0.0015 (14)0.0160 (13)
C70.0438 (13)0.0359 (12)0.0292 (11)0.0054 (10)0.0034 (10)0.0089 (9)
C100.0558 (17)0.0394 (14)0.0601 (19)0.0012 (12)0.0014 (14)0.0176 (13)
C160.0418 (13)0.0360 (12)0.0305 (12)0.0056 (10)0.0014 (10)0.0079 (9)
C30.0489 (14)0.0314 (11)0.0354 (13)0.0036 (10)0.0089 (11)0.0058 (10)
C180.0504 (15)0.0468 (14)0.0297 (12)0.0019 (12)0.0009 (11)0.0116 (11)
C110.0628 (18)0.0465 (15)0.0433 (15)0.0012 (13)0.0054 (13)0.0204 (12)
C200.0447 (14)0.0376 (12)0.0369 (13)0.0053 (11)0.0063 (11)0.0086 (10)
C140.0587 (17)0.0411 (14)0.0456 (16)0.0001 (12)0.0081 (13)0.0051 (12)
N50.0714 (18)0.0531 (15)0.0635 (18)0.0065 (14)0.0085 (15)0.0197 (14)
C220.0561 (17)0.0450 (15)0.0409 (15)0.0056 (13)0.0049 (13)0.0104 (12)
C210.0573 (17)0.0427 (14)0.0341 (13)0.0036 (12)0.0031 (12)0.0056 (11)
C10.0690 (19)0.0373 (13)0.0402 (15)0.0022 (13)0.0027 (13)0.0092 (11)
C150.0596 (17)0.0411 (13)0.0323 (13)0.0027 (12)0.0034 (12)0.0077 (11)
C120.0670 (19)0.0540 (17)0.0401 (15)0.0060 (14)0.0060 (14)0.0180 (13)
N60.102 (2)0.0543 (16)0.065 (2)0.0189 (16)0.0047 (18)0.0184 (15)
F30.0780 (14)0.0826 (14)0.0689 (14)0.0290 (12)0.0006 (11)0.0027 (11)
B10.0441 (16)0.0402 (15)0.0358 (14)0.0004 (12)0.0024 (12)0.0110 (12)
F10.0818 (17)0.168 (3)0.084 (2)0.0053 (18)0.0150 (15)0.0426 (19)
F20.143 (3)0.101 (2)0.159 (3)0.0464 (19)0.077 (2)0.079 (2)
F40.0647 (12)0.0723 (13)0.0895 (16)0.0018 (10)0.0035 (11)0.0202 (12)
N40.0574 (13)0.0404 (11)0.0293 (10)0.0027 (10)0.0018 (10)0.0074 (9)
N80.0501 (12)0.0392 (11)0.0364 (11)0.0061 (10)0.0037 (9)0.0129 (9)
C50.0427 (13)0.0403 (12)0.0323 (12)0.0051 (10)0.0012 (10)0.0103 (10)
N20.0486 (12)0.0394 (11)0.0293 (10)0.0030 (9)0.0003 (9)0.0078 (9)
C20.0491 (15)0.0391 (13)0.0321 (12)0.0005 (11)0.0017 (11)0.0066 (10)
Geometric parameters (Å, º) top
Ag1—N12.196 (2)C16—C151.394 (4)
Ag1—N32.203 (2)C3—N81.337 (4)
N1—C71.338 (3)C3—C21.387 (4)
N1—C111.341 (4)C3—C11.447 (4)
C17—N41.333 (3)C18—H18A0.9300
C17—C181.400 (3)C11—H11A0.9300
C17—C161.485 (3)C20—C211.388 (4)
C8—C71.390 (4)C20—C221.451 (4)
C8—C91.394 (4)C14—C151.378 (4)
C8—H8A0.9300C14—H14A0.9300
C9—C101.369 (5)N5—C221.139 (4)
C9—H9A0.9300C21—N41.335 (4)
N3—C121.329 (4)C21—H21A0.9300
N3—C161.341 (3)C1—N61.134 (4)
N7—C201.324 (4)C15—H15A0.9300
N7—C181.326 (4)C12—H12A0.9300
C6—N21.335 (3)F3—B11.340 (4)
C6—C51.406 (3)B1—F11.337 (4)
C6—C71.484 (3)B1—F41.340 (4)
C13—C141.368 (4)B1—F21.413 (4)
C13—C121.373 (4)N8—C51.326 (3)
C13—H13A0.9300C5—H5A0.9300
C10—C111.370 (4)N2—C21.341 (3)
C10—H10A0.9300C2—H2B0.9300
N1—Ag1—N3177.92 (8)C17—C18—H18A118.8
C7—N1—C11118.1 (2)N1—C11—C10123.6 (3)
C7—N1—Ag1123.04 (17)N1—C11—H11A118.2
C11—N1—Ag1118.76 (19)C10—C11—H11A118.2
N4—C17—C18120.3 (2)N7—C20—C21122.9 (2)
N4—C17—C16119.2 (2)N7—C20—C22115.0 (2)
C18—C17—C16120.5 (2)C21—C20—C22122.1 (3)
C7—C8—C9119.2 (3)C13—C14—C15118.9 (3)
C7—C8—H8A120.4C13—C14—H14A120.6
C9—C8—H8A120.4C15—C14—H14A120.6
C10—C9—C8118.8 (3)N5—C22—C20175.8 (3)
C10—C9—H9A120.6N4—C21—C20120.5 (2)
C8—C9—H9A120.6N4—C21—H21A119.7
C12—N3—C16118.1 (2)C20—C21—H21A119.7
C12—N3—Ag1118.73 (19)N6—C1—C3176.1 (3)
C16—N3—Ag1122.86 (17)C14—C15—C16119.4 (3)
C20—N7—C18116.0 (2)C14—C15—H15A120.3
N2—C6—C5121.1 (2)C16—C15—H15A120.3
N2—C6—C7118.7 (2)N3—C12—C13123.7 (3)
C5—C6—C7120.2 (2)N3—C12—H12A118.2
C14—C13—C12118.6 (3)C13—C12—H12A118.2
C14—C13—H13A120.7F1—B1—F4112.6 (3)
C12—C13—H13A120.7F1—B1—F3112.4 (3)
N1—C7—C8121.6 (2)F4—B1—F3114.0 (3)
N1—C7—C6118.2 (2)F1—B1—F2103.0 (3)
C8—C7—C6120.2 (2)F4—B1—F2103.0 (3)
C9—C10—C11118.7 (3)F3—B1—F2110.8 (3)
C9—C10—H10A120.7C17—N4—C21117.6 (2)
C11—C10—H10A120.7C5—N8—C3116.3 (2)
N3—C16—C15121.3 (2)N8—C5—C6121.8 (2)
N3—C16—C17118.7 (2)N8—C5—H5A119.1
C15—C16—C17120.0 (2)C6—C5—H5A119.1
N8—C3—C2122.5 (2)C6—N2—C2116.9 (2)
N8—C3—C1115.5 (2)N2—C2—C3121.0 (2)
C2—C3—C1122.1 (3)N2—C2—H2B119.5
N7—C18—C17122.4 (2)C3—C2—H2B119.5
N7—C18—H18A118.8
C7—C8—C9—C100.4 (5)C9—C10—C11—N11.3 (5)
C11—N1—C7—C81.1 (4)C18—N7—C20—C211.8 (4)
Ag1—N1—C7—C8176.0 (2)C18—N7—C20—C22179.3 (3)
C11—N1—C7—C6180.0 (2)C12—C13—C14—C150.7 (5)
Ag1—N1—C7—C63.0 (3)N7—C20—C21—N43.1 (4)
C9—C8—C7—N11.5 (4)C22—C20—C21—N4178.1 (3)
C9—C8—C7—C6179.6 (3)C13—C14—C15—C160.3 (5)
N2—C6—C7—N124.8 (3)N3—C16—C15—C140.4 (4)
C5—C6—C7—N1156.3 (2)C17—C16—C15—C14178.1 (3)
N2—C6—C7—C8154.2 (3)C16—N3—C12—C131.3 (5)
C5—C6—C7—C824.7 (4)Ag1—N3—C12—C13172.3 (3)
C8—C9—C10—C110.9 (5)C14—C13—C12—N31.3 (5)
C12—N3—C16—C150.9 (4)C18—C17—N4—C214.3 (4)
Ag1—N3—C16—C15172.5 (2)C16—C17—N4—C21175.4 (2)
C12—N3—C16—C17178.6 (3)C20—C21—N4—C170.2 (4)
Ag1—N3—C16—C175.3 (3)C2—C3—N8—C54.0 (4)
N4—C17—C16—N318.2 (4)C1—C3—N8—C5176.0 (2)
C18—C17—C16—N3162.2 (3)C3—N8—C5—C60.5 (4)
N4—C17—C16—C15159.6 (3)N2—C6—C5—N85.0 (4)
C18—C17—C16—C1520.0 (4)C7—C6—C5—N8173.9 (2)
C20—N7—C18—C172.4 (4)C5—C6—N2—C24.6 (4)
N4—C17—C18—N75.7 (4)C7—C6—N2—C2174.3 (2)
C16—C17—C18—N7174.0 (3)C6—N2—C2—C30.3 (4)
C7—N1—C11—C100.3 (5)N8—C3—C2—N24.3 (4)
Ag1—N1—C11—C10177.5 (2)C1—C3—C2—N2175.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5a···F3i0.932.493.398 (3)167
C13—H13a···F20.932.433.015 (5)121
C11—H11a···F4ii0.932.393.132 (4)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag(C10H6N4)2]BF4
Mr559.06
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8144 (12), 11.2492 (16), 12.2697 (18)
α, β, γ (°)104.168 (3), 90.789 (2), 101.429 (3)
V3)1022.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.45 × 0.40 × 0.30
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.615, 0.783
No. of measured, independent and
observed [I > 2σ(I)] reflections
7178, 4986, 3929
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.04
No. of reflections4986
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.73

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5a···F3i0.932.493.398 (3)167
C13—H13a···F20.932.433.015 (5)121
C11—H11a···F4ii0.932.393.132 (4)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
ππ interactions top
CgCgCg···Cg (Å)Slippage angle
Cg1Cg1i3.610 (2)20.71
Cg2Cg2ii3.926 (2)33.28
Cg3Cg3iii3.820 (2)24.69
Cg4Cg4iv3.898 (1)25.89
Slippage angle = Angle Cg(I)-->Cg(J) normal to plane I Cg1,Cg2,Cg3,Cg4 are the centroids of C2-C3-N8-C5-C6-N2 (pyrazinyl) and C17-C18-N7-C20-C21-N4 (pyrazinyl), C7-C8-C9-C10-C11-N1(pyridyl) and C12-C13-C14-C15-C16-N3(pyridyl) respectively. Symmetry Codes: (i):-x+1, -y+1, -z+1; (ii): -x+1, -y+2, -z; (iii):-x+1, -y+2, -z+1; (iv): -x+1, -y+1, -z
 

Acknowledgements

The authors are grateful for financial support from the Science and Technology program, Beijing Municipal Education Commission.

References

First citationBerghian, C., Mircea, D., Turck, A. & Plé, N. (2005). Tetrahedron, 61, 9637–9644.  Web of Science CrossRef CAS Google Scholar
First citationBiju, A. R. & Rajasekharan, M. V. (2008). Polyhedron, 27, 2065–2068.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasini, A., Cinellu, M. A., Minghetti, G., Gabbiani, C., Coronnello, M., Mini, E. & Messori, L. (2006). J. Med. Chem. 49, 5524–5531.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDenis, G. G., Konstantin, A. L., Mikhail, Y. A., Yakov, S. V., Elena, I. L. & Alexander, S. S. (2004). CrystEngComm, 7, 53–56.  Google Scholar
First citationLi, H. H., Chen, Z. R., Sun, L. G., Lian, Z. X., Chen, X. B., Li, J. B. & Li, J. Q. (2010). Cryst. Growth Des. 10, 1068–1073.  Web of Science CSD CrossRef CAS Google Scholar
First citationMathieu, J., Gros, P. & Fort, Y. (2001). Tetrahedron Lett. 42, 1879–1881.  Web of Science CrossRef CAS Google Scholar
First citationPeedikakkal, A. M. P. & Vittal, J. J. (2010). Inorg. Chem. 49, 10–12.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, C. Q., Li, G. S., Chen, X. D. & Mak, T. C. W. (2008). Cryst. Growth Des. 8, 3897–3901.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, R. M., Wang, X. M., Sundberg, E. B., Nguyen, P., Grant, G. P. G., Sheth, C., Zhao, Q., Herron, S., Kantardjieff, A. K. & Li, L. J. (2009). Inorg. Chem. 49, 9779–9785.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1232-m1233
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds