metal-organic compounds
catena-Poly[[[diaquacadmium(II)]-bis[μ-3,5-bis(isonicotinamido)benzoato]] tetrahydrate]
aKey Laboratory of Functional Organometallic Materials, Department of Chemistry and Materials Science, Hengyang Normal University, Hengyang, Hunan 421008, People's Republic of China
*Correspondence e-mail: cmsniu@163.com
The title compound, {[Cd(C19H13N4O4)2(H2O)2]·4H2O}n or {[Cd(BBA)2(H2O)2]·4H2O}n, where BBA is 3,5-bis(isonicotinamido)benzoate, is isotypic with its Mn isologue [Chen et al. (2009). J. Coord. Chem. 62, 2421–2428]. The cation sits on a twofold axis and is six-coordinated in a slightly distorted octahedral geometry; the polyhedra are linked into zigzag chains, which are further connected by N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds as well as π–π interactions [centroid-centroid distance of 3.639 (2) Å], giving a three-dimensional supramolecular framework.
Related literature
For the isotypic Mn structure, see: Chen et al. (2009). For the properties of coordination polymers, see: Evans & Lin (2002); Yaghi et al. (2003); Kitagawa et al. (2004); Biradha et al. (2006); Wu et al. (2009). For the rational design and synthesis of new supramolecular frameworks by covalent and weak intra/intermolecular interactions, see: Eddaoudi et al. (2001); Moulton & Zaworotko (2001); Cheng et al. (2002); Zhang et al. (2003); Go et al. (2004). For the coordination capacities of carboxylate, pyridine and amide groups, see: Bent (1968); Huyskens (1977); Lee & Kumler (1962); Wang et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810036147/bg2362sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810036147/bg2362Isup2.hkl
All reagents and solvents were used as obtained commercially without further purification. A mixture containing Cd(NO3)2.6H2O (31.1 mg, 0.1 mmol), HL (36.5 mg, 0.12 mmol), N(CH2CH3)3 (0.5 mL, 0.1 mmol), 10 ml H2O was sealed in a 16 ml Teflon-lined stainless steel container and heated at 393 K for 3 days. After cooling to room temperature within 12 h, block colorless crystals of (I) suitable for X-ray
were obtained in 39% Yield. Anal. Calcd for C38H38CdN8O14: C, 48.39; H, 4.06; N, 11.88%; Found: C, 48.43; H, 4.11; N, 11.76%.H atoms bonded to C atoms were placed geometrically and treated as riding, with C—H distances 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of water molecules were determined from a difference Fourier synthesis and refined with restrained O—H distances 0.85 (2) Å. The amide H atoms were located from difference maps and refined with the N—H distances restrained to 0.8600 Å.
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The ORTEP drawing of the title compound (I). Displacement ellipsoids are drawn at 30% probability level [symmetry code: (i) -x, y,-z - 1/2 (ii) x, 2 - y, -1/2 + z (iii) -x, 2 - y,-z]. | |
Fig. 2. Projection showing the one-dimensional structure of the compound (I). |
[Cd(C19H13N4O4)2(H2O)2]·4H2O | F(000) = 1928 |
Mr = 943.16 | Dx = 1.544 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3272 reflections |
a = 17.584 (3) Å | θ = 2.3–25.3° |
b = 10.8568 (19) Å | µ = 0.62 mm−1 |
c = 21.891 (4) Å | T = 293 K |
β = 103.801 (2)° | Block, colorless |
V = 4058.5 (12) Å3 | 0.20 × 0.16 × 0.10 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 3867 independent reflections |
Radiation source: fine-focus sealed tube | 3391 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.055 |
phi and ω scans | θmax = 25.8°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −21→21 |
Tmin = 0.887, Tmax = 0.941 | k = −13→6 |
10338 measured reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.110 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0527P)2] where P = (Fo2 + 2Fc2)/3 |
3867 reflections | (Δ/σ)max = 0.022 |
300 parameters | Δρmax = 0.80 e Å−3 |
13 restraints | Δρmin = −0.48 e Å−3 |
[Cd(C19H13N4O4)2(H2O)2]·4H2O | V = 4058.5 (12) Å3 |
Mr = 943.16 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 17.584 (3) Å | µ = 0.62 mm−1 |
b = 10.8568 (19) Å | T = 293 K |
c = 21.891 (4) Å | 0.20 × 0.16 × 0.10 mm |
β = 103.801 (2)° |
Bruker SMART APEX CCD diffractometer | 3867 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 3391 reflections with I > 2σ(I) |
Tmin = 0.887, Tmax = 0.941 | Rint = 0.055 |
10338 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 13 restraints |
wR(F2) = 0.110 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.80 e Å−3 |
3867 reflections | Δρmin = −0.48 e Å−3 |
300 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.0000 | 0.74023 (3) | −0.2500 | 0.03203 (14) | |
C1 | 0.1391 (2) | 0.6471 (3) | −0.14433 (15) | 0.0341 (8) | |
C2 | 0.16577 (18) | 0.6286 (3) | −0.07425 (14) | 0.0304 (7) | |
C3 | 0.21138 (19) | 0.5274 (3) | −0.04962 (15) | 0.0340 (8) | |
H3A | 0.2266 | 0.4705 | −0.0762 | 0.041* | |
C4 | 0.23363 (19) | 0.5125 (3) | 0.01481 (16) | 0.0334 (8) | |
C5 | 0.2124 (2) | 0.5954 (3) | 0.05570 (15) | 0.0360 (8) | |
H5 | 0.2276 | 0.5832 | 0.0990 | 0.043* | |
C6 | 0.16780 (19) | 0.6977 (3) | 0.03069 (15) | 0.0312 (7) | |
C7 | 0.14483 (19) | 0.7127 (3) | −0.03395 (15) | 0.0316 (7) | |
H7 | 0.1147 | 0.7807 | −0.0505 | 0.038* | |
C8 | 0.3530 (2) | 0.3931 (3) | 0.03346 (16) | 0.0390 (8) | |
C9 | 0.3967 (2) | 0.2847 (3) | 0.06802 (18) | 0.0406 (9) | |
C10 | 0.4431 (2) | 0.2140 (4) | 0.0395 (2) | 0.0550 (11) | |
H10 | 0.4453 | 0.2292 | −0.0018 | 0.066* | |
C11 | 0.4868 (3) | 0.1191 (4) | 0.0739 (2) | 0.0638 (13) | |
H11 | 0.5172 | 0.0701 | 0.0541 | 0.077* | |
C12 | 0.4417 (3) | 0.1640 (4) | 0.1594 (2) | 0.0609 (12) | |
H12 | 0.4406 | 0.1472 | 0.2008 | 0.073* | |
C13 | 0.3957 (3) | 0.2595 (3) | 0.1292 (2) | 0.0532 (11) | |
H13 | 0.3648 | 0.3054 | 0.1499 | 0.064* | |
C14 | 0.1521 (2) | 0.7883 (3) | 0.13085 (16) | 0.0372 (8) | |
C15 | 0.1209 (2) | 0.9006 (3) | 0.15632 (15) | 0.0352 (8) | |
C16 | 0.1481 (3) | 0.9300 (4) | 0.21868 (17) | 0.0524 (11) | |
H16 | 0.1864 | 0.8819 | 0.2446 | 0.063* | |
C17 | 0.1180 (3) | 1.0315 (4) | 0.24232 (18) | 0.0534 (11) | |
H17 | 0.1380 | 1.0517 | 0.2844 | 0.064* | |
C18 | 0.0367 (2) | 1.0727 (4) | 0.14846 (17) | 0.0487 (10) | |
H18 | −0.0018 | 1.1220 | 0.1236 | 0.058* | |
C19 | 0.0636 (2) | 0.9741 (3) | 0.12058 (17) | 0.0460 (9) | |
H19 | 0.0433 | 0.9572 | 0.0782 | 0.055* | |
N1 | 0.4871 (2) | 0.0953 (3) | 0.13331 (19) | 0.0625 (10) | |
N2 | 0.06210 (18) | 1.1019 (3) | 0.20837 (13) | 0.0398 (7) | |
N3 | 0.28104 (17) | 0.4100 (3) | 0.04134 (13) | 0.0402 (7) | |
H3 | 0.2624 | 0.3573 | 0.0632 | 0.048* | |
N4 | 0.14702 (16) | 0.7905 (3) | 0.06830 (12) | 0.0353 (7) | |
H4 | 0.1288 | 0.8572 | 0.0491 | 0.042* | |
O1 | 0.09323 (16) | 0.7351 (2) | −0.16214 (11) | 0.0429 (6) | |
O2 | 0.16316 (16) | 0.5753 (2) | −0.17948 (11) | 0.0505 (7) | |
O3 | 0.38414 (17) | 0.4597 (2) | 0.00154 (13) | 0.0585 (8) | |
O4 | 0.17829 (19) | 0.7016 (2) | 0.16454 (12) | 0.0571 (8) | |
O5 | 0.07154 (19) | 0.6011 (3) | −0.29733 (14) | 0.0501 (7) | |
O6 | 0.1941 (3) | 0.3124 (5) | 0.1269 (2) | 0.1053 (14) | |
O7 | 0.2760 (3) | 0.1472 (3) | 0.20727 (17) | 0.0782 (11) | |
H5A | 0.050 (2) | 0.539 (3) | −0.3152 (17) | 0.055 (13)* | |
H7B | 0.299 (3) | 0.154 (6) | 0.2454 (12) | 0.12 (2)* | |
H7A | 0.283 (3) | 0.073 (2) | 0.198 (2) | 0.11 (2)* | |
H5B | 0.109 (2) | 0.575 (4) | −0.2698 (18) | 0.088 (19)* | |
H6B | 0.150 (2) | 0.325 (7) | 0.135 (3) | 0.16 (3)* | |
H6A | 0.207 (4) | 0.243 (3) | 0.143 (3) | 0.112 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0418 (2) | 0.0269 (2) | 0.0257 (2) | 0.000 | 0.00478 (15) | 0.000 |
C1 | 0.0364 (19) | 0.0347 (19) | 0.0303 (18) | −0.0015 (16) | 0.0064 (15) | −0.0028 (15) |
C2 | 0.0296 (17) | 0.0320 (17) | 0.0274 (17) | 0.0024 (14) | 0.0027 (14) | 0.0007 (13) |
C3 | 0.038 (2) | 0.0279 (18) | 0.0353 (19) | 0.0029 (15) | 0.0069 (16) | −0.0035 (14) |
C4 | 0.0333 (19) | 0.0292 (18) | 0.0377 (19) | 0.0076 (14) | 0.0082 (15) | 0.0049 (14) |
C5 | 0.043 (2) | 0.0360 (19) | 0.0276 (18) | 0.0080 (16) | 0.0061 (15) | 0.0047 (14) |
C6 | 0.0327 (18) | 0.0293 (17) | 0.0324 (18) | 0.0043 (14) | 0.0095 (15) | 0.0024 (14) |
C7 | 0.0304 (18) | 0.0292 (17) | 0.0348 (18) | 0.0057 (14) | 0.0069 (15) | 0.0022 (14) |
C8 | 0.045 (2) | 0.0354 (19) | 0.035 (2) | 0.0108 (17) | 0.0064 (17) | 0.0046 (15) |
C9 | 0.040 (2) | 0.0330 (19) | 0.047 (2) | 0.0070 (16) | 0.0064 (17) | 0.0066 (16) |
C10 | 0.055 (3) | 0.049 (2) | 0.062 (3) | 0.016 (2) | 0.015 (2) | 0.010 (2) |
C11 | 0.053 (3) | 0.045 (2) | 0.095 (4) | 0.016 (2) | 0.020 (3) | 0.013 (2) |
C12 | 0.054 (3) | 0.063 (3) | 0.060 (3) | 0.001 (2) | 0.003 (2) | 0.024 (2) |
C13 | 0.053 (2) | 0.052 (3) | 0.053 (3) | 0.013 (2) | 0.010 (2) | 0.0152 (19) |
C14 | 0.041 (2) | 0.0374 (19) | 0.0326 (19) | 0.0035 (16) | 0.0077 (16) | −0.0008 (15) |
C15 | 0.043 (2) | 0.0338 (18) | 0.0314 (18) | 0.0054 (16) | 0.0139 (16) | 0.0018 (14) |
C16 | 0.066 (3) | 0.049 (2) | 0.038 (2) | 0.023 (2) | 0.0029 (19) | −0.0039 (18) |
C17 | 0.071 (3) | 0.054 (3) | 0.030 (2) | 0.014 (2) | 0.0031 (19) | −0.0071 (18) |
C18 | 0.056 (2) | 0.053 (2) | 0.037 (2) | 0.023 (2) | 0.0090 (18) | 0.0032 (18) |
C19 | 0.054 (2) | 0.053 (2) | 0.0300 (19) | 0.014 (2) | 0.0076 (17) | −0.0028 (17) |
N1 | 0.044 (2) | 0.050 (2) | 0.090 (3) | 0.0065 (17) | 0.006 (2) | 0.027 (2) |
N2 | 0.0495 (19) | 0.0383 (17) | 0.0319 (16) | 0.0079 (14) | 0.0104 (14) | 0.0013 (13) |
N3 | 0.0494 (19) | 0.0319 (16) | 0.0403 (18) | 0.0120 (14) | 0.0127 (15) | 0.0111 (12) |
N4 | 0.0453 (18) | 0.0305 (15) | 0.0307 (16) | 0.0105 (13) | 0.0104 (14) | 0.0038 (12) |
O1 | 0.0536 (16) | 0.0396 (14) | 0.0300 (13) | 0.0159 (12) | −0.0009 (11) | −0.0014 (10) |
O2 | 0.0682 (19) | 0.0500 (16) | 0.0320 (14) | 0.0208 (14) | 0.0094 (13) | −0.0039 (12) |
O3 | 0.0618 (18) | 0.0565 (18) | 0.0640 (18) | 0.0204 (15) | 0.0286 (15) | 0.0286 (15) |
O4 | 0.094 (2) | 0.0429 (15) | 0.0350 (15) | 0.0257 (16) | 0.0179 (15) | 0.0076 (12) |
O5 | 0.0571 (19) | 0.0382 (16) | 0.0509 (18) | 0.0037 (13) | 0.0048 (14) | −0.0158 (13) |
O6 | 0.105 (3) | 0.114 (3) | 0.112 (3) | 0.032 (3) | 0.057 (3) | 0.061 (3) |
O7 | 0.124 (3) | 0.058 (2) | 0.053 (2) | 0.027 (2) | 0.021 (2) | −0.0028 (17) |
Cd1—O1 | 2.210 (2) | C11—H11 | 0.9300 |
Cd1—O1i | 2.210 (2) | C12—N1 | 1.318 (5) |
Cd1—N2ii | 2.331 (3) | C12—C13 | 1.382 (5) |
Cd1—N2iii | 2.331 (3) | C12—H12 | 0.9300 |
Cd1—O5i | 2.358 (3) | C13—H13 | 0.9300 |
Cd1—O5 | 2.358 (3) | C14—O4 | 1.217 (4) |
C1—O2 | 1.239 (4) | C14—N4 | 1.351 (4) |
C1—O1 | 1.252 (4) | C14—C15 | 1.498 (5) |
C1—C2 | 1.507 (4) | C15—C16 | 1.372 (5) |
C2—C7 | 1.379 (4) | C15—C19 | 1.374 (5) |
C2—C3 | 1.391 (4) | C16—C17 | 1.376 (5) |
C3—C4 | 1.380 (4) | C16—H16 | 0.9300 |
C3—H3A | 0.9300 | C17—N2 | 1.325 (5) |
C4—C5 | 1.382 (4) | C17—H17 | 0.9300 |
C4—N3 | 1.428 (4) | C18—N2 | 1.319 (4) |
C5—C6 | 1.394 (4) | C18—C19 | 1.371 (5) |
C5—H5 | 0.9300 | C18—H18 | 0.9300 |
C6—C7 | 1.386 (4) | C19—H19 | 0.9300 |
C6—N4 | 1.404 (4) | N2—Cd1ii | 2.331 (3) |
C7—H7 | 0.9300 | N3—H3 | 0.8600 |
C8—O3 | 1.222 (4) | N4—H4 | 0.8600 |
C8—N3 | 1.330 (4) | O5—H5A | 0.829 (19) |
C8—C9 | 1.507 (5) | O5—H5B | 0.83 (3) |
C9—C13 | 1.372 (6) | O6—H6B | 0.84 (2) |
C9—C10 | 1.373 (6) | O6—H6A | 0.83 (2) |
C10—C11 | 1.394 (5) | O7—H7B | 0.84 (2) |
C10—H10 | 0.9300 | O7—H7A | 0.85 (2) |
C11—N1 | 1.325 (5) | ||
O1—Cd1—O1i | 177.13 (12) | C11—C10—H10 | 120.7 |
O1—Cd1—N2ii | 89.86 (9) | N1—C11—C10 | 123.1 (4) |
O1i—Cd1—N2ii | 92.25 (10) | N1—C11—H11 | 118.5 |
O1—Cd1—N2iii | 92.25 (10) | C10—C11—H11 | 118.5 |
O1i—Cd1—N2iii | 89.86 (9) | N1—C12—C13 | 124.4 (4) |
N2ii—Cd1—N2iii | 85.36 (15) | N1—C12—H12 | 117.8 |
O1—Cd1—O5i | 87.95 (10) | C13—C12—H12 | 117.8 |
O1i—Cd1—O5i | 90.21 (10) | C9—C13—C12 | 118.2 (4) |
N2ii—Cd1—O5i | 87.17 (11) | C9—C13—H13 | 120.9 |
N2iii—Cd1—O5i | 172.53 (10) | C12—C13—H13 | 120.9 |
O1—Cd1—O5 | 90.21 (10) | O4—C14—N4 | 123.5 (3) |
O1i—Cd1—O5 | 87.95 (10) | O4—C14—C15 | 121.6 (3) |
N2ii—Cd1—O5 | 172.53 (10) | N4—C14—C15 | 114.9 (3) |
N2iii—Cd1—O5 | 87.17 (11) | C16—C15—C19 | 117.8 (3) |
O5i—Cd1—O5 | 100.30 (15) | C16—C15—C14 | 119.2 (3) |
O2—C1—O1 | 125.3 (3) | C19—C15—C14 | 123.0 (3) |
O2—C1—C2 | 118.7 (3) | C15—C16—C17 | 119.1 (4) |
O1—C1—C2 | 116.1 (3) | C15—C16—H16 | 120.5 |
C7—C2—C3 | 119.5 (3) | C17—C16—H16 | 120.5 |
C7—C2—C1 | 119.8 (3) | N2—C17—C16 | 123.5 (4) |
C3—C2—C1 | 120.7 (3) | N2—C17—H17 | 118.2 |
C4—C3—C2 | 119.0 (3) | C16—C17—H17 | 118.2 |
C4—C3—H3A | 120.5 | N2—C18—C19 | 124.0 (3) |
C2—C3—H3A | 120.5 | N2—C18—H18 | 118.0 |
C3—C4—C5 | 122.1 (3) | C19—C18—H18 | 118.0 |
C3—C4—N3 | 120.2 (3) | C15—C19—C18 | 118.9 (3) |
C5—C4—N3 | 117.7 (3) | C15—C19—H19 | 120.5 |
C4—C5—C6 | 118.5 (3) | C18—C19—H19 | 120.5 |
C4—C5—H5 | 120.7 | C12—N1—C11 | 117.0 (4) |
C6—C5—H5 | 120.7 | C18—N2—C17 | 116.7 (3) |
C7—C6—C5 | 119.6 (3) | C18—N2—Cd1ii | 119.1 (2) |
C7—C6—N4 | 117.5 (3) | C17—N2—Cd1ii | 124.0 (2) |
C5—C6—N4 | 122.9 (3) | C8—N3—C4 | 122.4 (3) |
C2—C7—C6 | 121.2 (3) | C8—N3—H3 | 118.8 |
C2—C7—H7 | 119.4 | C4—N3—H3 | 118.8 |
C6—C7—H7 | 119.4 | C14—N4—C6 | 128.2 (3) |
O3—C8—N3 | 124.2 (3) | C14—N4—H4 | 115.9 |
O3—C8—C9 | 120.3 (3) | C6—N4—H4 | 115.9 |
N3—C8—C9 | 115.5 (3) | C1—O1—Cd1 | 125.4 (2) |
C13—C9—C10 | 118.7 (3) | Cd1—O5—H5A | 120 (3) |
C13—C9—C8 | 121.5 (3) | Cd1—O5—H5B | 109 (3) |
C10—C9—C8 | 119.7 (4) | H5A—O5—H5B | 105 (4) |
C9—C10—C11 | 118.6 (4) | H6B—O6—H6A | 104 (6) |
C9—C10—H10 | 120.7 | H7B—O7—H7A | 104 (5) |
O2—C1—C2—C7 | 175.0 (3) | O4—C14—C15—C19 | −151.8 (4) |
O1—C1—C2—C7 | −5.5 (5) | N4—C14—C15—C19 | 26.8 (5) |
O2—C1—C2—C3 | −5.1 (5) | C19—C15—C16—C17 | −0.9 (6) |
O1—C1—C2—C3 | 174.5 (3) | C14—C15—C16—C17 | −178.5 (4) |
C7—C2—C3—C4 | 1.0 (5) | C15—C16—C17—N2 | 1.8 (7) |
C1—C2—C3—C4 | −179.0 (3) | C16—C15—C19—C18 | 0.3 (6) |
C2—C3—C4—C5 | −0.4 (5) | C14—C15—C19—C18 | 177.8 (4) |
C2—C3—C4—N3 | −179.4 (3) | N2—C18—C19—C15 | −0.5 (6) |
C3—C4—C5—C6 | −0.7 (5) | C13—C12—N1—C11 | −1.2 (7) |
N3—C4—C5—C6 | 178.4 (3) | C10—C11—N1—C12 | 1.9 (7) |
C4—C5—C6—C7 | 1.1 (5) | C19—C18—N2—C17 | 1.3 (6) |
C4—C5—C6—N4 | −176.4 (3) | C19—C18—N2—Cd1ii | −173.3 (3) |
C3—C2—C7—C6 | −0.6 (5) | C16—C17—N2—C18 | −1.9 (6) |
C1—C2—C7—C6 | 179.4 (3) | C16—C17—N2—Cd1ii | 172.4 (3) |
C5—C6—C7—C2 | −0.5 (5) | O3—C8—N3—C4 | −2.7 (6) |
N4—C6—C7—C2 | 177.1 (3) | C9—C8—N3—C4 | 176.3 (3) |
O3—C8—C9—C13 | 135.5 (4) | C3—C4—N3—C8 | 62.3 (5) |
N3—C8—C9—C13 | −43.5 (5) | C5—C4—N3—C8 | −116.8 (4) |
O3—C8—C9—C10 | −40.0 (5) | O4—C14—N4—C6 | 1.7 (6) |
N3—C8—C9—C10 | 141.0 (4) | C15—C14—N4—C6 | −176.9 (3) |
C13—C9—C10—C11 | 0.4 (6) | C7—C6—N4—C14 | 169.1 (3) |
C8—C9—C10—C11 | 176.0 (4) | C5—C6—N4—C14 | −13.4 (6) |
C9—C10—C11—N1 | −1.5 (7) | O2—C1—O1—Cd1 | 31.5 (5) |
C10—C9—C13—C12 | 0.2 (6) | C2—C1—O1—Cd1 | −148.0 (2) |
C8—C9—C13—C12 | −175.3 (4) | N2ii—Cd1—O1—C1 | 160.5 (3) |
N1—C12—C13—C9 | 0.2 (7) | N2iii—Cd1—O1—C1 | −114.2 (3) |
O4—C14—C15—C16 | 25.7 (6) | O5i—Cd1—O1—C1 | 73.3 (3) |
N4—C14—C15—C16 | −155.7 (3) | O5—Cd1—O1—C1 | −27.0 (3) |
Symmetry codes: (i) −x, y, −z−1/2; (ii) −x, −y+2, −z; (iii) x, −y+2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O6 | 0.86 | 2.10 | 2.885 (5) | 151 |
N4—H4···O3iv | 0.86 | 2.26 | 3.096 (4) | 164 |
O5—H5B···O2 | 0.83 (3) | 1.98 (3) | 2.710 (4) | 145 (4) |
O5—H5A···N1v | 0.83 (2) | 2.00 (2) | 2.825 (4) | 172 (4) |
O6—H6B···O5vi | 0.84 (2) | 2.40 (4) | 3.163 (6) | 151 (6) |
O6—H6A···O7 | 0.82 (3) | 1.92 (4) | 2.681 (6) | 148 (5) |
O7—H7A···O2vii | 0.85 (2) | 1.96 (3) | 2.767 (4) | 162 (5) |
O7—H7B···O4viii | 0.84 (2) | 1.99 (3) | 2.791 (4) | 159 (6) |
Symmetry codes: (iv) −x+1/2, −y+3/2, −z; (v) x−1/2, −y+1/2, z−1/2; (vi) x, −y+1, z+1/2; (vii) −x+1/2, −y+1/2, −z; (viii) −x+1/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C19H13N4O4)2(H2O)2]·4H2O |
Mr | 943.16 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 17.584 (3), 10.8568 (19), 21.891 (4) |
β (°) | 103.801 (2) |
V (Å3) | 4058.5 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.62 |
Crystal size (mm) | 0.20 × 0.16 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.887, 0.941 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10338, 3867, 3391 |
Rint | 0.055 |
(sin θ/λ)max (Å−1) | 0.611 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.110, 1.08 |
No. of reflections | 3867 |
No. of parameters | 300 |
No. of restraints | 13 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.80, −0.48 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O6 | 0.86 | 2.10 | 2.885 (5) | 151.4 |
N4—H4···O3i | 0.86 | 2.26 | 3.096 (4) | 164.2 |
O5—H5B···O2 | 0.83 (3) | 1.98 (3) | 2.710 (4) | 145 (4) |
O5—H5A···N1ii | 0.83 (2) | 2.00 (2) | 2.825 (4) | 172 (4) |
O6—H6B···O5iii | 0.84 (2) | 2.40 (4) | 3.163 (6) | 151 (6) |
O6—H6A···O7 | 0.82 (3) | 1.92 (4) | 2.681 (6) | 148 (5) |
O7—H7A···O2iv | 0.85 (2) | 1.96 (3) | 2.767 (4) | 162 (5) |
O7—H7B···O4v | 0.84 (2) | 1.99 (3) | 2.791 (4) | 159 (6) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z; (ii) x−1/2, −y+1/2, z−1/2; (iii) x, −y+1, z+1/2; (iv) −x+1/2, −y+1/2, −z; (v) −x+1/2, y−1/2, −z+1/2. |
Acknowledgements
This work was supported by the Construct Program of Key Disciplines in Hunan Province, Distinguished Young Cadreman of Hunan Province (2008) and Distinguished Young Cadreman of Hengyang Normal University (2007). We also acknowledge support from the Foundation of Education Department of Hunan Province (10C0473)
References
Bent, H. A. (1968). Chem. Rev. 68, 587–648. CrossRef CAS Web of Science Google Scholar
Biradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169–4179. Web of Science CrossRef Google Scholar
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, M. S., Chen, S. S., Okamuraz, T.-A., Su, Z., Sun, W. Y. & Ueyama, N. (2009). J. Coord. Chem. 62, 2421–2428. Web of Science CSD CrossRef CAS Google Scholar
Cheng, D. P., Khan, M. A. & Houser, R. P. (2002). J. Chem. Soc. Dalton Trans. pp. 4555–4560. Web of Science CSD CrossRef Google Scholar
Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330. Web of Science CrossRef PubMed CAS Google Scholar
Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522. Web of Science CrossRef PubMed CAS Google Scholar
Go, Y. B., Wang, X. Q., Anokhina, E. V. & Jacobson, A. J. (2004). Inorg. Chem. 43, 5360–5367. Web of Science CSD CrossRef PubMed CAS Google Scholar
Huyskens, P. L. (1977). J. Am. Chem. Soc. 99, 2578–2582. CrossRef CAS Web of Science Google Scholar
Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. Web of Science CrossRef CAS Google Scholar
Lee, C. M. & Kumler, W. D. (1962). J. Am. Chem. Soc. 84, 571–578. CrossRef CAS Web of Science Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Y., Huang, Y. Q., Liu, G. X., Okamuraz, T.-A., Doi, M., Sheng, Y. W., Sun, W. Y. & Ueyama, N. (2007). Chem. Eur. J. 13, 7523–7531. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wu, S. T., Ma, L. Q., Long, L. S., Zheng, L. S. & Lin, W. B. (2009). Inorg. Chem. 48, 2436–2442. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714. Web of Science CrossRef PubMed CAS Google Scholar
Zhang, L. Y., Liu, G. F., Zheng, S. L., Ye, B. H. & Chen, X. M. (2003). Eur. J. Inorg. Chem. pp. 2965–2971. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coordination polymeric structures are one of the most attractive areas of materials research due to their intriguing structural topologies and functional properties such as molecular adsorption, magnetism and luminescence (Evans & Lin, 2002; Yaghi et al., 2003; Kitagawa et al.,2004; Biradha et al., 2006; Wu et al., 2009) but in spite of this interest the rational design and synthesis of new supramolecular frameworks by covalent and weak intra/intermolecular interactions is still a challenge (Eddaoudi, et al. 2001; Moulton & Zaworotko, 2001; Cheng, et al. 2002; Zhang, et al. 2003; Go, et al. 2004). On the other hand, it is well known that carboxylate and pyridine groups have good coordination capacities as well as the amide group, a fascinating functional group with two different types of hydrogen bonding sites: the –NH moiety which acts as an electron acceptor while the –C=O group acts as an electron donor (Lee, et al., 1962; Bent, 1968; Huyskens, 1977; Wang, et al., 2007). we have recently pursued systematic investigations into the assembly of polymers through ligands containing both carboxylate and amido-pyridine groups, in order to study the influence of different metal ions. In the present work we report the structure of a new cadmium coordination polymer of the bridging ligand 3,5-bis(isonicotinamido)benzoate (BBA-), namely {[Cd(BBA)2(H2O)2].4(H2O)}n, (I), which is isomorphous to its Mn isologue [Mn(BBA)2(H2O)2](Chen, et al. 2009).
As shown in Fig. 1, the asymmetric unit of (I) is composed of one-half of a CdII cation, which sits on a crystallographic twofold axis, one BBA- ligand, one coordinated water molecule and two solvent water molecules. The central CdII atom has the [CdN2O4] octahedral coordination geometry with four coordination sites in one plane occupied by two cis-positioned N atoms from two BBA- ligands ligands and two water molecules, and the other two coordination sites taken up by two trans-positioned carboxylate O atoms from two further BBA- ligands. The ligand (3,5-bis(isonicotinamido)benzoic acid) is fully deprotonated(BBA-) and the carboxylate group adopts a monodentate mode, coordinating only through one O atom to one CdII centre. On the other hand, the dihedral angles between the central benzene and terminal pyridine ring are 15.66 (10) ° and 19.72 (11)°, respectively.
It is noteworthy that each BBA- ligand in turn uses its carboxylate group and one of the two pyridinyl groups to connect two metal centers, while the other pyridinyl group does not coordinate. Then, two Cd(II) and two BBA- ligands form a Cd2(BBA)2 macrocyclic ring with Cd···Cd distance of 12.313 (18) Å. Such M2(BBA)2 macrocyclic rings are further connected by Cd—N and Cd—O coordination bonds to give an infinite one-dimensional zigzag chain structure(Fig. 2).
In addiiton, there are non-bonding interactions which consolidate the framework structure, in particular some O—H···O, N—H···O and O—H···N hydrogen bonds (Table 1) as well as π-π interactions between the central benzene ring of BBA- anions (C2-->C7) and its symmetry related counterpart, symmetry code:1/2 - x,3/2 - y,-z) with a centroid-centroid distance of 3.639 (2) Å, and slippage and interplanar distances of 1.514 and 3.308 Å, respectively.