metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1253-m1254

catena-Poly[[[di­aqua­cadmium(II)]-bis­­[μ-3,5-bis­­(isonicotinamido)benzoato]] tetra­hydrate]

aKey Laboratory of Functional Organometallic Materials, Department of Chemistry and Materials Science, Hengyang Normal University, Hengyang, Hunan 421008, People's Republic of China
*Correspondence e-mail: cmsniu@163.com

(Received 21 July 2010; accepted 8 September 2010; online 11 September 2010)

The title compound, {[Cd(C19H13N4O4)2(H2O)2]·4H2O}n or {[Cd(BBA)2(H2O)2]·4H2O}n, where BBA is 3,5-bis­(iso­nicotin­amido)­benzoate, is isotypic with its Mn isologue [Chen et al. (2009[Chen, M. S., Chen, S. S., Okamuraz, T.-A., Su, Z., Sun, W. Y. & Ueyama, N. (2009). J. Coord. Chem. 62, 2421-2428.]). J. Coord. Chem. 62, 2421–2428]. The cation sits on a twofold axis and is six-coordinated in a slightly distorted octa­hedral geometry; the polyhedra are linked into zigzag chains, which are further connected by N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds as well as ππ inter­actions [centroid-centroid distance of 3.639 (2) Å], giving a three-dimensional supra­molecular framework.

Related literature

For the isotypic Mn structure, see: Chen et al. (2009[Chen, M. S., Chen, S. S., Okamuraz, T.-A., Su, Z., Sun, W. Y. & Ueyama, N. (2009). J. Coord. Chem. 62, 2421-2428.]). For the properties of coordination polymers, see: Evans & Lin (2002[Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511-522.]); Yaghi et al. (2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Biradha et al. (2006[Biradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169-4179.]); Wu et al. (2009[Wu, S. T., Ma, L. Q., Long, L. S., Zheng, L. S. & Lin, W. B. (2009). Inorg. Chem. 48, 2436-2442.]). For the rational design and synthesis of new supra­molecular frameworks by covalent and weak intra/inter­molecular inter­actions, see: Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Cheng et al. (2002[Cheng, D. P., Khan, M. A. & Houser, R. P. (2002). J. Chem. Soc. Dalton Trans. pp. 4555-4560.]); Zhang et al. (2003[Zhang, L. Y., Liu, G. F., Zheng, S. L., Ye, B. H. & Chen, X. M. (2003). Eur. J. Inorg. Chem. pp. 2965-2971.]); Go et al. (2004[Go, Y. B., Wang, X. Q., Anokhina, E. V. & Jacobson, A. J. (2004). Inorg. Chem. 43, 5360-5367.]). For the coordination capacities of carboxyl­ate, pyridine and amide groups, see: Bent (1968[Bent, H. A. (1968). Chem. Rev. 68, 587-648.]); Huyskens (1977[Huyskens, P. L. (1977). J. Am. Chem. Soc. 99, 2578-2582.]); Lee & Kumler (1962[Lee, C. M. & Kumler, W. D. (1962). J. Am. Chem. Soc. 84, 571-578.]); Wang et al. (2007[Wang, Y., Huang, Y. Q., Liu, G. X., Okamuraz, T.-A., Doi, M., Sheng, Y. W., Sun, W. Y. & Ueyama, N. (2007). Chem. Eur. J. 13, 7523-7531.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C19H13N4O4)2(H2O)2]·4H2O

  • Mr = 943.16

  • Monoclinic, C 2/c

  • a = 17.584 (3) Å

  • b = 10.8568 (19) Å

  • c = 21.891 (4) Å

  • β = 103.801 (2)°

  • V = 4058.5 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.887, Tmax = 0.941

  • 10338 measured reflections

  • 3867 independent reflections

  • 3391 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.110

  • S = 1.08

  • 3867 reflections

  • 300 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O6 0.86 2.10 2.885 (5) 151
N4—H4⋯O3i 0.86 2.26 3.096 (4) 164
O5—H5B⋯O2 0.83 (3) 1.98 (3) 2.710 (4) 145 (4)
O5—H5A⋯N1ii 0.83 (2) 2.00 (2) 2.825 (4) 172 (4)
O6—H6B⋯O5iii 0.84 (2) 2.40 (4) 3.163 (6) 151 (6)
O6—H6A⋯O7 0.82 (3) 1.92 (4) 2.681 (6) 148 (5)
O7—H7A⋯O2iv 0.85 (2) 1.96 (3) 2.767 (4) 162 (5)
O7—H7B⋯O4v 0.84 (2) 1.99 (3) 2.791 (4) 159 (6)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination polymeric structures are one of the most attractive areas of materials research due to their intriguing structural topologies and functional properties such as molecular adsorption, magnetism and luminescence (Evans & Lin, 2002; Yaghi et al., 2003; Kitagawa et al.,2004; Biradha et al., 2006; Wu et al., 2009) but in spite of this interest the rational design and synthesis of new supramolecular frameworks by covalent and weak intra/intermolecular interactions is still a challenge (Eddaoudi, et al. 2001; Moulton & Zaworotko, 2001; Cheng, et al. 2002; Zhang, et al. 2003; Go, et al. 2004). On the other hand, it is well known that carboxylate and pyridine groups have good coordination capacities as well as the amide group, a fascinating functional group with two different types of hydrogen bonding sites: the –NH moiety which acts as an electron acceptor while the –C=O group acts as an electron donor (Lee, et al., 1962; Bent, 1968; Huyskens, 1977; Wang, et al., 2007). we have recently pursued systematic investigations into the assembly of polymers through ligands containing both carboxylate and amido-pyridine groups, in order to study the influence of different metal ions. In the present work we report the structure of a new cadmium coordination polymer of the bridging ligand 3,5-bis(isonicotinamido)benzoate (BBA-), namely {[Cd(BBA)2(H2O)2].4(H2O)}n, (I), which is isomorphous to its Mn isologue [Mn(BBA)2(H2O)2](Chen, et al. 2009).

As shown in Fig. 1, the asymmetric unit of (I) is composed of one-half of a CdII cation, which sits on a crystallographic twofold axis, one BBA- ligand, one coordinated water molecule and two solvent water molecules. The central CdII atom has the [CdN2O4] octahedral coordination geometry with four coordination sites in one plane occupied by two cis-positioned N atoms from two BBA- ligands ligands and two water molecules, and the other two coordination sites taken up by two trans-positioned carboxylate O atoms from two further BBA- ligands. The ligand (3,5-bis(isonicotinamido)benzoic acid) is fully deprotonated(BBA-) and the carboxylate group adopts a monodentate mode, coordinating only through one O atom to one CdII centre. On the other hand, the dihedral angles between the central benzene and terminal pyridine ring are 15.66 (10) ° and 19.72 (11)°, respectively.

It is noteworthy that each BBA- ligand in turn uses its carboxylate group and one of the two pyridinyl groups to connect two metal centers, while the other pyridinyl group does not coordinate. Then, two Cd(II) and two BBA- ligands form a Cd2(BBA)2 macrocyclic ring with Cd···Cd distance of 12.313 (18) Å. Such M2(BBA)2 macrocyclic rings are further connected by Cd—N and Cd—O coordination bonds to give an infinite one-dimensional zigzag chain structure(Fig. 2).

In addiiton, there are non-bonding interactions which consolidate the framework structure, in particular some O—H···O, N—H···O and O—H···N hydrogen bonds (Table 1) as well as π-π interactions between the central benzene ring of BBA- anions (C2-->C7) and its symmetry related counterpart, symmetry code:1/2 - x,3/2 - y,-z) with a centroid-centroid distance of 3.639 (2) Å, and slippage and interplanar distances of 1.514 and 3.308 Å, respectively.

Related literature top

For an isotypic Mn structure, see: Chen et al. (2009). For the properties of coordination polymers, see: Evans & Lin (2002); Yaghi et al. (2003); Kitagawa et al. (2004); Biradha et al. (2006); Wu et al. (2009). For the rational design and synthesis of new supramolecular frameworks by covalent and weak intra/intermolecular interactions, see: Eddaoudi et al. (2001); Moulton & Zaworotko (2001); Cheng et al. (2002); Zhang et al. (2003); Go et al. (2004). For the coordination capacities of carboxylate, pyridine and amide groups, see: Bent (1968); Huyskens (1977); Lee & Kumler (1962); Wang et al. (2007).

Experimental top

All reagents and solvents were used as obtained commercially without further purification. A mixture containing Cd(NO3)2.6H2O (31.1 mg, 0.1 mmol), HL (36.5 mg, 0.12 mmol), N(CH2CH3)3 (0.5 mL, 0.1 mmol), 10 ml H2O was sealed in a 16 ml Teflon-lined stainless steel container and heated at 393 K for 3 days. After cooling to room temperature within 12 h, block colorless crystals of (I) suitable for X-ray diffraction analysis were obtained in 39% Yield. Anal. Calcd for C38H38CdN8O14: C, 48.39; H, 4.06; N, 11.88%; Found: C, 48.43; H, 4.11; N, 11.76%.

Refinement top

H atoms bonded to C atoms were placed geometrically and treated as riding, with C—H distances 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of water molecules were determined from a difference Fourier synthesis and refined with restrained O—H distances 0.85 (2) Å. The amide H atoms were located from difference maps and refined with the N—H distances restrained to 0.8600 Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP drawing of the title compound (I). Displacement ellipsoids are drawn at 30% probability level [symmetry code: (i) -x, y,-z - 1/2 (ii) x, 2 - y, -1/2 + z (iii) -x, 2 - y,-z].
[Figure 2] Fig. 2. Projection showing the one-dimensional structure of the compound (I).
catena-Poly[[[diaquacadmium(II)]-bis[µ-3,5- bis(isonicotinamido)benzoato]] tetrahydrate] top
Crystal data top
[Cd(C19H13N4O4)2(H2O)2]·4H2OF(000) = 1928
Mr = 943.16Dx = 1.544 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3272 reflections
a = 17.584 (3) Åθ = 2.3–25.3°
b = 10.8568 (19) ŵ = 0.62 mm1
c = 21.891 (4) ÅT = 293 K
β = 103.801 (2)°Block, colorless
V = 4058.5 (12) Å30.20 × 0.16 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3867 independent reflections
Radiation source: fine-focus sealed tube3391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
phi and ω scansθmax = 25.8°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2121
Tmin = 0.887, Tmax = 0.941k = 136
10338 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0527P)2]
where P = (Fo2 + 2Fc2)/3
3867 reflections(Δ/σ)max = 0.022
300 parametersΔρmax = 0.80 e Å3
13 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cd(C19H13N4O4)2(H2O)2]·4H2OV = 4058.5 (12) Å3
Mr = 943.16Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.584 (3) ŵ = 0.62 mm1
b = 10.8568 (19) ÅT = 293 K
c = 21.891 (4) Å0.20 × 0.16 × 0.10 mm
β = 103.801 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3867 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3391 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.941Rint = 0.055
10338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04713 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.80 e Å3
3867 reflectionsΔρmin = 0.48 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.74023 (3)0.25000.03203 (14)
C10.1391 (2)0.6471 (3)0.14433 (15)0.0341 (8)
C20.16577 (18)0.6286 (3)0.07425 (14)0.0304 (7)
C30.21138 (19)0.5274 (3)0.04962 (15)0.0340 (8)
H3A0.22660.47050.07620.041*
C40.23363 (19)0.5125 (3)0.01481 (16)0.0334 (8)
C50.2124 (2)0.5954 (3)0.05570 (15)0.0360 (8)
H50.22760.58320.09900.043*
C60.16780 (19)0.6977 (3)0.03069 (15)0.0312 (7)
C70.14483 (19)0.7127 (3)0.03395 (15)0.0316 (7)
H70.11470.78070.05050.038*
C80.3530 (2)0.3931 (3)0.03346 (16)0.0390 (8)
C90.3967 (2)0.2847 (3)0.06802 (18)0.0406 (9)
C100.4431 (2)0.2140 (4)0.0395 (2)0.0550 (11)
H100.44530.22920.00180.066*
C110.4868 (3)0.1191 (4)0.0739 (2)0.0638 (13)
H110.51720.07010.05410.077*
C120.4417 (3)0.1640 (4)0.1594 (2)0.0609 (12)
H120.44060.14720.20080.073*
C130.3957 (3)0.2595 (3)0.1292 (2)0.0532 (11)
H130.36480.30540.14990.064*
C140.1521 (2)0.7883 (3)0.13085 (16)0.0372 (8)
C150.1209 (2)0.9006 (3)0.15632 (15)0.0352 (8)
C160.1481 (3)0.9300 (4)0.21868 (17)0.0524 (11)
H160.18640.88190.24460.063*
C170.1180 (3)1.0315 (4)0.24232 (18)0.0534 (11)
H170.13801.05170.28440.064*
C180.0367 (2)1.0727 (4)0.14846 (17)0.0487 (10)
H180.00181.12200.12360.058*
C190.0636 (2)0.9741 (3)0.12058 (17)0.0460 (9)
H190.04330.95720.07820.055*
N10.4871 (2)0.0953 (3)0.13331 (19)0.0625 (10)
N20.06210 (18)1.1019 (3)0.20837 (13)0.0398 (7)
N30.28104 (17)0.4100 (3)0.04134 (13)0.0402 (7)
H30.26240.35730.06320.048*
N40.14702 (16)0.7905 (3)0.06830 (12)0.0353 (7)
H40.12880.85720.04910.042*
O10.09323 (16)0.7351 (2)0.16214 (11)0.0429 (6)
O20.16316 (16)0.5753 (2)0.17948 (11)0.0505 (7)
O30.38414 (17)0.4597 (2)0.00154 (13)0.0585 (8)
O40.17829 (19)0.7016 (2)0.16454 (12)0.0571 (8)
O50.07154 (19)0.6011 (3)0.29733 (14)0.0501 (7)
O60.1941 (3)0.3124 (5)0.1269 (2)0.1053 (14)
O70.2760 (3)0.1472 (3)0.20727 (17)0.0782 (11)
H5A0.050 (2)0.539 (3)0.3152 (17)0.055 (13)*
H7B0.299 (3)0.154 (6)0.2454 (12)0.12 (2)*
H7A0.283 (3)0.073 (2)0.198 (2)0.11 (2)*
H5B0.109 (2)0.575 (4)0.2698 (18)0.088 (19)*
H6B0.150 (2)0.325 (7)0.135 (3)0.16 (3)*
H6A0.207 (4)0.243 (3)0.143 (3)0.112 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0418 (2)0.0269 (2)0.0257 (2)0.0000.00478 (15)0.000
C10.0364 (19)0.0347 (19)0.0303 (18)0.0015 (16)0.0064 (15)0.0028 (15)
C20.0296 (17)0.0320 (17)0.0274 (17)0.0024 (14)0.0027 (14)0.0007 (13)
C30.038 (2)0.0279 (18)0.0353 (19)0.0029 (15)0.0069 (16)0.0035 (14)
C40.0333 (19)0.0292 (18)0.0377 (19)0.0076 (14)0.0082 (15)0.0049 (14)
C50.043 (2)0.0360 (19)0.0276 (18)0.0080 (16)0.0061 (15)0.0047 (14)
C60.0327 (18)0.0293 (17)0.0324 (18)0.0043 (14)0.0095 (15)0.0024 (14)
C70.0304 (18)0.0292 (17)0.0348 (18)0.0057 (14)0.0069 (15)0.0022 (14)
C80.045 (2)0.0354 (19)0.035 (2)0.0108 (17)0.0064 (17)0.0046 (15)
C90.040 (2)0.0330 (19)0.047 (2)0.0070 (16)0.0064 (17)0.0066 (16)
C100.055 (3)0.049 (2)0.062 (3)0.016 (2)0.015 (2)0.010 (2)
C110.053 (3)0.045 (2)0.095 (4)0.016 (2)0.020 (3)0.013 (2)
C120.054 (3)0.063 (3)0.060 (3)0.001 (2)0.003 (2)0.024 (2)
C130.053 (2)0.052 (3)0.053 (3)0.013 (2)0.010 (2)0.0152 (19)
C140.041 (2)0.0374 (19)0.0326 (19)0.0035 (16)0.0077 (16)0.0008 (15)
C150.043 (2)0.0338 (18)0.0314 (18)0.0054 (16)0.0139 (16)0.0018 (14)
C160.066 (3)0.049 (2)0.038 (2)0.023 (2)0.0029 (19)0.0039 (18)
C170.071 (3)0.054 (3)0.030 (2)0.014 (2)0.0031 (19)0.0071 (18)
C180.056 (2)0.053 (2)0.037 (2)0.023 (2)0.0090 (18)0.0032 (18)
C190.054 (2)0.053 (2)0.0300 (19)0.014 (2)0.0076 (17)0.0028 (17)
N10.044 (2)0.050 (2)0.090 (3)0.0065 (17)0.006 (2)0.027 (2)
N20.0495 (19)0.0383 (17)0.0319 (16)0.0079 (14)0.0104 (14)0.0013 (13)
N30.0494 (19)0.0319 (16)0.0403 (18)0.0120 (14)0.0127 (15)0.0111 (12)
N40.0453 (18)0.0305 (15)0.0307 (16)0.0105 (13)0.0104 (14)0.0038 (12)
O10.0536 (16)0.0396 (14)0.0300 (13)0.0159 (12)0.0009 (11)0.0014 (10)
O20.0682 (19)0.0500 (16)0.0320 (14)0.0208 (14)0.0094 (13)0.0039 (12)
O30.0618 (18)0.0565 (18)0.0640 (18)0.0204 (15)0.0286 (15)0.0286 (15)
O40.094 (2)0.0429 (15)0.0350 (15)0.0257 (16)0.0179 (15)0.0076 (12)
O50.0571 (19)0.0382 (16)0.0509 (18)0.0037 (13)0.0048 (14)0.0158 (13)
O60.105 (3)0.114 (3)0.112 (3)0.032 (3)0.057 (3)0.061 (3)
O70.124 (3)0.058 (2)0.053 (2)0.027 (2)0.021 (2)0.0028 (17)
Geometric parameters (Å, º) top
Cd1—O12.210 (2)C11—H110.9300
Cd1—O1i2.210 (2)C12—N11.318 (5)
Cd1—N2ii2.331 (3)C12—C131.382 (5)
Cd1—N2iii2.331 (3)C12—H120.9300
Cd1—O5i2.358 (3)C13—H130.9300
Cd1—O52.358 (3)C14—O41.217 (4)
C1—O21.239 (4)C14—N41.351 (4)
C1—O11.252 (4)C14—C151.498 (5)
C1—C21.507 (4)C15—C161.372 (5)
C2—C71.379 (4)C15—C191.374 (5)
C2—C31.391 (4)C16—C171.376 (5)
C3—C41.380 (4)C16—H160.9300
C3—H3A0.9300C17—N21.325 (5)
C4—C51.382 (4)C17—H170.9300
C4—N31.428 (4)C18—N21.319 (4)
C5—C61.394 (4)C18—C191.371 (5)
C5—H50.9300C18—H180.9300
C6—C71.386 (4)C19—H190.9300
C6—N41.404 (4)N2—Cd1ii2.331 (3)
C7—H70.9300N3—H30.8600
C8—O31.222 (4)N4—H40.8600
C8—N31.330 (4)O5—H5A0.829 (19)
C8—C91.507 (5)O5—H5B0.83 (3)
C9—C131.372 (6)O6—H6B0.84 (2)
C9—C101.373 (6)O6—H6A0.83 (2)
C10—C111.394 (5)O7—H7B0.84 (2)
C10—H100.9300O7—H7A0.85 (2)
C11—N11.325 (5)
O1—Cd1—O1i177.13 (12)C11—C10—H10120.7
O1—Cd1—N2ii89.86 (9)N1—C11—C10123.1 (4)
O1i—Cd1—N2ii92.25 (10)N1—C11—H11118.5
O1—Cd1—N2iii92.25 (10)C10—C11—H11118.5
O1i—Cd1—N2iii89.86 (9)N1—C12—C13124.4 (4)
N2ii—Cd1—N2iii85.36 (15)N1—C12—H12117.8
O1—Cd1—O5i87.95 (10)C13—C12—H12117.8
O1i—Cd1—O5i90.21 (10)C9—C13—C12118.2 (4)
N2ii—Cd1—O5i87.17 (11)C9—C13—H13120.9
N2iii—Cd1—O5i172.53 (10)C12—C13—H13120.9
O1—Cd1—O590.21 (10)O4—C14—N4123.5 (3)
O1i—Cd1—O587.95 (10)O4—C14—C15121.6 (3)
N2ii—Cd1—O5172.53 (10)N4—C14—C15114.9 (3)
N2iii—Cd1—O587.17 (11)C16—C15—C19117.8 (3)
O5i—Cd1—O5100.30 (15)C16—C15—C14119.2 (3)
O2—C1—O1125.3 (3)C19—C15—C14123.0 (3)
O2—C1—C2118.7 (3)C15—C16—C17119.1 (4)
O1—C1—C2116.1 (3)C15—C16—H16120.5
C7—C2—C3119.5 (3)C17—C16—H16120.5
C7—C2—C1119.8 (3)N2—C17—C16123.5 (4)
C3—C2—C1120.7 (3)N2—C17—H17118.2
C4—C3—C2119.0 (3)C16—C17—H17118.2
C4—C3—H3A120.5N2—C18—C19124.0 (3)
C2—C3—H3A120.5N2—C18—H18118.0
C3—C4—C5122.1 (3)C19—C18—H18118.0
C3—C4—N3120.2 (3)C15—C19—C18118.9 (3)
C5—C4—N3117.7 (3)C15—C19—H19120.5
C4—C5—C6118.5 (3)C18—C19—H19120.5
C4—C5—H5120.7C12—N1—C11117.0 (4)
C6—C5—H5120.7C18—N2—C17116.7 (3)
C7—C6—C5119.6 (3)C18—N2—Cd1ii119.1 (2)
C7—C6—N4117.5 (3)C17—N2—Cd1ii124.0 (2)
C5—C6—N4122.9 (3)C8—N3—C4122.4 (3)
C2—C7—C6121.2 (3)C8—N3—H3118.8
C2—C7—H7119.4C4—N3—H3118.8
C6—C7—H7119.4C14—N4—C6128.2 (3)
O3—C8—N3124.2 (3)C14—N4—H4115.9
O3—C8—C9120.3 (3)C6—N4—H4115.9
N3—C8—C9115.5 (3)C1—O1—Cd1125.4 (2)
C13—C9—C10118.7 (3)Cd1—O5—H5A120 (3)
C13—C9—C8121.5 (3)Cd1—O5—H5B109 (3)
C10—C9—C8119.7 (4)H5A—O5—H5B105 (4)
C9—C10—C11118.6 (4)H6B—O6—H6A104 (6)
C9—C10—H10120.7H7B—O7—H7A104 (5)
O2—C1—C2—C7175.0 (3)O4—C14—C15—C19151.8 (4)
O1—C1—C2—C75.5 (5)N4—C14—C15—C1926.8 (5)
O2—C1—C2—C35.1 (5)C19—C15—C16—C170.9 (6)
O1—C1—C2—C3174.5 (3)C14—C15—C16—C17178.5 (4)
C7—C2—C3—C41.0 (5)C15—C16—C17—N21.8 (7)
C1—C2—C3—C4179.0 (3)C16—C15—C19—C180.3 (6)
C2—C3—C4—C50.4 (5)C14—C15—C19—C18177.8 (4)
C2—C3—C4—N3179.4 (3)N2—C18—C19—C150.5 (6)
C3—C4—C5—C60.7 (5)C13—C12—N1—C111.2 (7)
N3—C4—C5—C6178.4 (3)C10—C11—N1—C121.9 (7)
C4—C5—C6—C71.1 (5)C19—C18—N2—C171.3 (6)
C4—C5—C6—N4176.4 (3)C19—C18—N2—Cd1ii173.3 (3)
C3—C2—C7—C60.6 (5)C16—C17—N2—C181.9 (6)
C1—C2—C7—C6179.4 (3)C16—C17—N2—Cd1ii172.4 (3)
C5—C6—C7—C20.5 (5)O3—C8—N3—C42.7 (6)
N4—C6—C7—C2177.1 (3)C9—C8—N3—C4176.3 (3)
O3—C8—C9—C13135.5 (4)C3—C4—N3—C862.3 (5)
N3—C8—C9—C1343.5 (5)C5—C4—N3—C8116.8 (4)
O3—C8—C9—C1040.0 (5)O4—C14—N4—C61.7 (6)
N3—C8—C9—C10141.0 (4)C15—C14—N4—C6176.9 (3)
C13—C9—C10—C110.4 (6)C7—C6—N4—C14169.1 (3)
C8—C9—C10—C11176.0 (4)C5—C6—N4—C1413.4 (6)
C9—C10—C11—N11.5 (7)O2—C1—O1—Cd131.5 (5)
C10—C9—C13—C120.2 (6)C2—C1—O1—Cd1148.0 (2)
C8—C9—C13—C12175.3 (4)N2ii—Cd1—O1—C1160.5 (3)
N1—C12—C13—C90.2 (7)N2iii—Cd1—O1—C1114.2 (3)
O4—C14—C15—C1625.7 (6)O5i—Cd1—O1—C173.3 (3)
N4—C14—C15—C16155.7 (3)O5—Cd1—O1—C127.0 (3)
Symmetry codes: (i) x, y, z1/2; (ii) x, y+2, z; (iii) x, y+2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O60.862.102.885 (5)151
N4—H4···O3iv0.862.263.096 (4)164
O5—H5B···O20.83 (3)1.98 (3)2.710 (4)145 (4)
O5—H5A···N1v0.83 (2)2.00 (2)2.825 (4)172 (4)
O6—H6B···O5vi0.84 (2)2.40 (4)3.163 (6)151 (6)
O6—H6A···O70.82 (3)1.92 (4)2.681 (6)148 (5)
O7—H7A···O2vii0.85 (2)1.96 (3)2.767 (4)162 (5)
O7—H7B···O4viii0.84 (2)1.99 (3)2.791 (4)159 (6)
Symmetry codes: (iv) x+1/2, y+3/2, z; (v) x1/2, y+1/2, z1/2; (vi) x, y+1, z+1/2; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C19H13N4O4)2(H2O)2]·4H2O
Mr943.16
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.584 (3), 10.8568 (19), 21.891 (4)
β (°) 103.801 (2)
V3)4058.5 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.20 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.887, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
10338, 3867, 3391
Rint0.055
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.110, 1.08
No. of reflections3867
No. of parameters300
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.80, 0.48

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O60.862.102.885 (5)151.4
N4—H4···O3i0.862.263.096 (4)164.2
O5—H5B···O20.83 (3)1.98 (3)2.710 (4)145 (4)
O5—H5A···N1ii0.83 (2)2.00 (2)2.825 (4)172 (4)
O6—H6B···O5iii0.84 (2)2.40 (4)3.163 (6)151 (6)
O6—H6A···O70.82 (3)1.92 (4)2.681 (6)148 (5)
O7—H7A···O2iv0.85 (2)1.96 (3)2.767 (4)162 (5)
O7—H7B···O4v0.84 (2)1.99 (3)2.791 (4)159 (6)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Construct Program of Key Disciplines in Hunan Province, Distinguished Young Cadreman of Hunan Province (2008) and Distinguished Young Cadreman of Hengyang Normal University (2007). We also acknowledge support from the Foundation of Education Department of Hunan Province (10C0473)

References

First citationBent, H. A. (1968). Chem. Rev. 68, 587–648.  CrossRef CAS Web of Science Google Scholar
First citationBiradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169–4179.  Web of Science CrossRef Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, M. S., Chen, S. S., Okamuraz, T.-A., Su, Z., Sun, W. Y. & Ueyama, N. (2009). J. Coord. Chem. 62, 2421–2428.  Web of Science CSD CrossRef CAS Google Scholar
First citationCheng, D. P., Khan, M. A. & Houser, R. P. (2002). J. Chem. Soc. Dalton Trans. pp. 4555–4560.  Web of Science CSD CrossRef Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEvans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGo, Y. B., Wang, X. Q., Anokhina, E. V. & Jacobson, A. J. (2004). Inorg. Chem. 43, 5360–5367.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuyskens, P. L. (1977). J. Am. Chem. Soc. 99, 2578–2582.  CrossRef CAS Web of Science Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLee, C. M. & Kumler, W. D. (1962). J. Am. Chem. Soc. 84, 571–578.  CrossRef CAS Web of Science Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Huang, Y. Q., Liu, G. X., Okamuraz, T.-A., Doi, M., Sheng, Y. W., Sun, W. Y. & Ueyama, N. (2007). Chem. Eur. J. 13, 7523–7531.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, S. T., Ma, L. Q., Long, L. S., Zheng, L. S. & Lin, W. B. (2009). Inorg. Chem. 48, 2436–2442.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, L. Y., Liu, G. F., Zheng, S. L., Ye, B. H. & Chen, X. M. (2003). Eur. J. Inorg. Chem. pp. 2965–2971.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1253-m1254
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds