metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(2-Pyrid­yl)methanol-κ2N,O]bis­­(thio­cyanato-κN)manganese(II)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and bDepartment of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 10 August 2010; accepted 26 August 2010; online 4 September 2010)

In the title complex, [Mn(NCS)2(C6H7NO)2], the MnII atom shows site symmetry 2. The distorted octa­hedral environment of MnII is defined by two N atoms [Mn—N = 2.217 (4) and 2.132 (5) Å] and one O atom [Mn—O 2.305 (4) Å]. There are inter­molecular O—H⋯S hydrogen bonds and inter­molecular ππ stacking inter­actions between adjacent (2-pyrid­yl)methano­late ligands [centroid–centroid distance = 3.5569 (7) Å], leading to a chain structure running along [100].

Related literature

For background to metallacrowns, see: Mezei et al. (2007[Mezei, G., Zeleski, Z. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5033.]); Lah & Pecoraro (1989[Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258-7259.]). For manganese clusters, see: Christou et al. (2000[Christou, G., Gatteschi, D. & Hendrickson, D. N. (2000). MRS Bull. 25, 66-66.]). For 2-(hy­droxy­meth­yl)pyridine, see: Shieh et al. (1997[Shieh, S. J., Chou, C. C. & Lee, C. C. (1997). Angew. Chem. Int. Ed. 36 , 56-59.]). For bond lengths and angles in related structures, see: Ito & Onaka (2004[Ito, M. & Onaka, S. (2004). Inorg. Chim. Acta, 357, 1039-1046.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(NCS)2(C6H7NO)2]

  • Mr = 389.35

  • Orthorhombic, P b c n

  • a = 11.4759 (12) Å

  • b = 8.398 (1) Å

  • c = 17.9451 (18) Å

  • V = 1729.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 298 K

  • 0.48 × 0.45 × 0.40 mm

Data collection
  • Rigaku SCXmini CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.641, Tmax = 0.687

  • 7935 measured reflections

  • 1521 independent reflections

  • 1214 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.135

  • S = 1.35

  • 1521 reflections

  • 105 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯S1i 0.82 2.49 3.297 (4) 167
Symmetry code: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some metallacrowns show diverse molecular architectures, selective recognition of ions and intramolecular magnetic exchange interactions (Lah & Pecoraro (1989); Mezei et al.2007). Among all metallacrowns, manganese clusters have been frequently investigated in recent years, because of their behavior in single molecule magnets(SMMs), which show magnetic hysteresis arising from slow magnetization reversal due to a high energy barrier (Christou et al. 2000). Pyridine derivatives with two ortho-substituents have recently been revised as an important supporting ligands of multiple metal-metal bonds and/or linear metal-metal bonded arrays which are composed by more than three metal atoms. 2-(hydroxymethyl)pyridine(Hhmp) is one of the preferred achelate ligands, because the alkoxide arm often supports ferromagnetic coupling between the metal atoms. Many nuclear manganese clusters based on hmp- have been obtained. It was clearly revealed that the Hhmp can function as a chelating ligand for a single manganese ion. In order to construct new structures based on manganese ions, we chose 2-(hydroxymethyl)pyridine (Hhmp) as a pyridine ligand (Shieh et al. 1997). Herein, we report a symmetric manganese complex, [Mn(Hhmp)2(SCN)2]. The compound presents a a MnII center on a two fold axis bisecting the distorted octahedral environment provided by one Hhmp, one SCN- and their symmetry related counterparts. A molecular view of the complex is shown in Fig.1. The MnII center is surrounded by two nitrogens from the SCN– anions (Mn—N2: 2.132 (5) Å), and two nitrogens and two oxygens from the chelating Hhmp ligands (Mn—N1: 2.217 (4), Mn—O1: 2.305 (4) Å) to form the distorted octahedral geometry. Distances and angles within the coordination environment of MnII are similar to those reported in Ito & Onaka (2004). Non bonding interactions include an intermolecular O—H···S hydrogen bond (Table 1) and a weak aromatic p···p stacking linking adjacent bpy ligand rings at (x, y, z) and (1/2-x, -1/2+y, z) (centroid-centroid distance: 3.557 (8)Å). These interactions define a 1D structure running along [100] (Fig.2).

Related literature top

For background to metallacrowns, see: Mezei et al. (2007); Lah & Pecoraro (1989). For manganese clusters, see: Christou et al. (2000). For 2-(hydroxymethyl)pyridine, see: Shieh et al. (1997). For bond lengths and angles in related structures, see: Ito & Onaka (2004).

Experimental top

All chemicals used (reagent grade) were commercially available. The reaction of MnCl2.4H2O, Hhmp, KSCN and triethylamine in a 2:5:5:1 molar ratio in MeCN/CH3CN (1:2, v/v) gave a dark solution with stirring. The resulting solution was continuously stirred for a moment, and then filtered. The filtrate was slowly evaporated at room temperature over several days, and dark quadrangle crystals suitable for X-ray analysis were obtained.

Refinement top

Positional parameters of all H atoms were calculated geometrically.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme and all hydrogen atoms. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code A: 2 - x, -y, 1 - z]
[Figure 2] Fig. 2. Crystal packing of the compound (1). Hydrogen bonds are shown as dashed lines.
[(2-Pyridyl)methanol-κ2N,O]bis(thiocyanato- κN)manganese(II) top
Crystal data top
[Mn(NCS)2(C6H7NO)2]F(000) = 796
Mr = 389.35Dx = 1.495 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 3027 reflections
a = 11.4759 (12) Åθ = 2.3–25.0°
b = 8.398 (1) ŵ = 1.02 mm1
c = 17.9451 (18) ÅT = 298 K
V = 1729.5 (3) Å3Prism, dark brown
Z = 40.48 × 0.45 × 0.40 mm
Data collection top
Rigaku model name? CCD area-detector
diffractometer
1521 independent reflections
Radiation source: fine-focus sealed tube1214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 2.3°
ϕ and ω scansh = 813
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 89
Tmin = 0.641, Tmax = 0.687l = 1821
7935 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.35 w = 1/[σ2(Fo2) + (0.0123P)2 + 5.1205P]
where P = (Fo2 + 2Fc2)/3
1521 reflections(Δ/σ)max < 0.001
105 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Mn(NCS)2(C6H7NO)2]V = 1729.5 (3) Å3
Mr = 389.35Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 11.4759 (12) ŵ = 1.02 mm1
b = 8.398 (1) ÅT = 298 K
c = 17.9451 (18) Å0.48 × 0.45 × 0.40 mm
Data collection top
Rigaku model name? CCD area-detector
diffractometer
1521 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1214 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 0.687Rint = 0.046
7935 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.35Δρmax = 0.33 e Å3
1521 reflectionsΔρmin = 0.56 e Å3
105 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.20604 (14)0.25000.0459 (3)
S10.30922 (15)0.1799 (2)0.08535 (9)0.0699 (5)
N10.3448 (4)0.2711 (5)0.3170 (2)0.0517 (12)
N20.4118 (5)0.0404 (6)0.1798 (3)0.0635 (14)
O10.5552 (4)0.3948 (5)0.3363 (2)0.0623 (11)
H10.62290.37750.34850.093*
C10.4838 (5)0.3959 (8)0.4006 (3)0.0641 (17)
H1A0.48630.50020.42380.077*
H1B0.51240.31850.43630.077*
C20.3599 (5)0.3560 (7)0.3791 (3)0.0528 (14)
C30.2673 (7)0.4019 (8)0.4232 (3)0.0710 (19)
H30.28020.46090.46630.085*
C40.1568 (6)0.3600 (9)0.4032 (4)0.077 (2)
H40.09350.38890.43260.092*
C50.1405 (6)0.2744 (9)0.3388 (4)0.0731 (19)
H50.06580.24650.32340.088*
C60.2357 (5)0.2308 (7)0.2976 (3)0.0600 (15)
H60.22430.17100.25460.072*
C70.3687 (5)0.0499 (7)0.1405 (3)0.0469 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0442 (6)0.0468 (6)0.0466 (6)0.0000.0000 (5)0.000
S10.0688 (10)0.0746 (11)0.0664 (10)0.0037 (9)0.0120 (8)0.0178 (9)
N10.053 (3)0.055 (3)0.047 (3)0.005 (2)0.003 (2)0.006 (2)
N20.061 (3)0.057 (3)0.073 (3)0.002 (3)0.010 (3)0.012 (3)
O10.056 (2)0.074 (3)0.057 (2)0.006 (2)0.003 (2)0.009 (2)
C10.068 (4)0.078 (4)0.046 (3)0.014 (4)0.005 (3)0.007 (3)
C20.064 (4)0.055 (3)0.040 (3)0.016 (3)0.001 (3)0.007 (3)
C30.091 (5)0.076 (4)0.047 (3)0.023 (4)0.007 (3)0.007 (3)
C40.070 (5)0.094 (5)0.067 (4)0.029 (4)0.024 (4)0.022 (4)
C50.052 (4)0.090 (5)0.077 (5)0.014 (4)0.007 (3)0.024 (4)
C60.055 (4)0.066 (4)0.060 (4)0.002 (3)0.001 (3)0.011 (3)
C70.039 (3)0.050 (3)0.052 (3)0.009 (3)0.001 (3)0.004 (3)
Geometric parameters (Å, º) top
Mn1—N22.132 (5)C1—C21.511 (8)
Mn1—N2i2.132 (5)C1—H1A0.9700
Mn1—N1i2.217 (4)C1—H1B0.9700
Mn1—N12.217 (4)C2—C31.379 (8)
Mn1—O12.305 (4)C3—C41.365 (10)
Mn1—O1i2.305 (4)C3—H30.9300
S1—C71.624 (6)C4—C51.373 (10)
N1—C21.335 (7)C4—H40.9300
N1—C61.343 (7)C5—C61.368 (8)
N2—C71.148 (7)C5—H50.9300
O1—C11.415 (6)C6—H60.9300
O1—H10.8200
N2—Mn1—N2i98.5 (3)O1—C1—C2109.6 (4)
N2—Mn1—N1i102.81 (18)O1—C1—H1A109.7
N2i—Mn1—N1i95.73 (19)C2—C1—H1A109.7
N2—Mn1—N195.73 (19)O1—C1—H1B109.7
N2i—Mn1—N1102.81 (18)C2—C1—H1B109.7
N1i—Mn1—N1151.5 (2)H1A—C1—H1B108.2
N2—Mn1—O1167.46 (18)N1—C2—C3121.9 (6)
N2i—Mn1—O185.49 (17)N1—C2—C1117.0 (5)
N1i—Mn1—O188.50 (15)C3—C2—C1121.1 (6)
N1—Mn1—O171.76 (16)C4—C3—C2119.5 (6)
N2—Mn1—O1i85.49 (17)C4—C3—H3120.3
N2i—Mn1—O1i167.46 (18)C2—C3—H3120.3
N1i—Mn1—O1i71.76 (16)C3—C4—C5118.9 (6)
N1—Mn1—O1i88.50 (15)C3—C4—H4120.5
O1—Mn1—O1i93.1 (2)C5—C4—H4120.5
C2—N1—C6118.1 (5)C6—C5—C4119.0 (7)
C2—N1—Mn1118.7 (4)C6—C5—H5120.5
C6—N1—Mn1123.2 (4)C4—C5—H5120.5
C7—N2—Mn1177.1 (5)N1—C6—C5122.6 (6)
C1—O1—Mn1113.1 (3)N1—C6—H6118.7
C1—O1—H1109.5C5—C6—H6118.7
Mn1—O1—H1108.5N2—C7—S1179.0 (5)
N2—Mn1—N1—C2168.6 (4)Mn1—O1—C1—C234.4 (6)
N2i—Mn1—N1—C268.5 (4)C6—N1—C2—C30.2 (8)
N1i—Mn1—N1—C260.7 (4)Mn1—N1—C2—C3179.4 (4)
O1—Mn1—N1—C212.3 (4)C6—N1—C2—C1178.4 (5)
O1i—Mn1—N1—C2106.0 (4)Mn1—N1—C2—C12.3 (7)
N2—Mn1—N1—C612.1 (5)O1—C1—C2—N124.8 (7)
N2i—Mn1—N1—C6112.3 (4)O1—C1—C2—C3156.9 (5)
N1i—Mn1—N1—C6118.5 (4)N1—C2—C3—C40.0 (9)
O1—Mn1—N1—C6166.9 (5)C1—C2—C3—C4178.2 (6)
O1i—Mn1—N1—C673.2 (4)C2—C3—C4—C50.8 (10)
N2—Mn1—O1—C130.2 (10)C3—C4—C5—C61.4 (10)
N2i—Mn1—O1—C179.2 (4)C2—N1—C6—C50.5 (9)
N1i—Mn1—O1—C1175.1 (4)Mn1—N1—C6—C5178.7 (5)
N1—Mn1—O1—C125.9 (4)C4—C5—C6—N11.3 (10)
O1i—Mn1—O1—C1113.3 (4)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1ii0.822.493.297 (4)167
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(NCS)2(C6H7NO)2]
Mr389.35
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)11.4759 (12), 8.398 (1), 17.9451 (18)
V3)1729.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.48 × 0.45 × 0.40
Data collection
DiffractometerRigaku model name? CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.641, 0.687
No. of measured, independent and
observed [I > 2σ(I)] reflections
7935, 1521, 1214
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.135, 1.35
No. of reflections1521
No. of parameters105
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.56

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1i0.822.493.297 (4)166.8
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

References

First citationChristou, G., Gatteschi, D. & Hendrickson, D. N. (2000). MRS Bull. 25, 66–66.  CrossRef CAS Google Scholar
First citationIto, M. & Onaka, S. (2004). Inorg. Chim. Acta, 357, 1039–1046.  Web of Science CSD CrossRef CAS Google Scholar
First citationLah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258–7259.  CSD CrossRef CAS Web of Science Google Scholar
First citationMezei, G., Zeleski, Z. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5033.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShieh, S. J., Chou, C. C. & Lee, C. C. (1997). Angew. Chem. Int. Ed. 36 , 56–59.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds