metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1189-m1190

Bis(carbonyl-κC)(N,N-di­methyl­thio­carbamoyl-κ2C,S)(pyridine-2-thiol­ato-κ2N,S)(tri­phenyl­phosphine-κP)molybdenum(II)

aDepartment of Applied Cosmetology, Hungkuang University, Shalu 433, Taichung, Taiwan, and bInstrumentation Center, College of Science, National Taiwan University, Taipei 106, Taiwan
*Correspondence e-mail: khyih@sunrise.hk.edu.tw, ghlee@ntu.edu.tw

(Received 17 August 2010; accepted 27 August 2010; online 4 September 2010)

There are two independent mol­ecules with similar configurations in the title complex, [Mo(C3H6NS)(C5H4NS)(C18H15P)(CO)2]. The geometry around the metal atom is that of a capped octa­hedron. The thio­cabamoyl and pyridine-2-thiol­ate ligands coordinate to the molybdenum metal center through the C and S atoms, and N and S atoms, respectively. NMR, IR and MS analyses are in agreement with the structure of the title compound.

Related literature

Molybdenum complexes containing Mo—S and Mo—N bonds are of special inter­est because of their relevance to a variety of molybdenum-containing enzymes (Cramer et al., 1978[Cramer, S. P., Hogson, K. O., Gillum, W. O. & Moretenson, L. E. (1978). J. Am. Chem. Soc. 100, 3398-3407.]) and hydro­desulfurization catalysts (Anzenhofer & de Boer, 1969[Anzenhofer, K. & de Boer, J. J. (1969). Acta Cryst. B25, 1419-1420.]). For complexes of group VI metals and the pyridine-2-thiol­ate ligand, see: Baker et al. (1995[Baker, P. K., Harman, M. E., Hughes, S., Hursthouse, M. B. & Malik, K. M. A. (1995). J. Organomet. Chem. 498, 257-266.]); Cotton & Ilsley (1981[Cotton, F. A. & Ilsley, W. H. (1981). Inorg. Chem. 20, 614-616.]). For related structures of thio­cabamo­yl–molybdenum complexes, see: Anderson & Hill (1993[Anderson, S. & Hill, A. F. (1993). J. Chem. Soc. Dalton Trans. pp. 587-590.]); Foreman et al. (2003[Foreman, M. R. St.-J., Hill, A. F., Tshabang, N., White, A. J. P. & Williams, D. J. (2003). Organometallics, 22, 5593-5596.]); Lim et al. (2005[Lim, P. J., Slizys, D. A., Tiekink, E. R. T. & Young, C. G. (2005). Inorg. Chem. 44, 114-121.]). For bond lengths in molybdenum–carbonyl complexes, see: Yih & Lee (2008[Yih, K. H. & Lee, G. H. (2008). J. Organomet. Chem. 693, 3303-3311.]) and references therein. For the SCNMe2 ligand, see: Lin et al. (2004[Lin, Y. C., Yih, K. H., Lee, G. H., Huang, S. L. & Wang, Y. (2004). J. Chin. Chem. Soc. 51, 279-290.]) and for typical bond lengths, see: Huheey (1983[Huheey, J. E. (1983). Inorganic Chemistry: Principles of Structure and Reactivity, 3rd ed., p. A-37. USA: Harper & Row]). For bond distances and angles in molybdenum–pyridine-2-thiol­ate complexes, see: Yih et al. (2003a[Yih, K. H., Lee, G. H. & Wang, Y. (2003a). Inorg. Chem. Commun. 6, 213-216.], 2003b[Yih, K. H., Lee, G. H. & Wang, Y. (2003b). Inorg. Chem. 42, 1092-1100.]) and references therein.

[Scheme 1]

Experimental

Crystal data
  • [Mo(C3H6NS)(C5H4NS)(C18H15P)(CO)2]

  • Mr = 612.53

  • Monoclinic, P 21 /c

  • a = 20.0947 (8) Å

  • b = 15.8720 (6) Å

  • c = 17.8596 (7) Å

  • β = 107.563 (1)°

  • V = 5430.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 150 K

  • 0.35 × 0.06 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.95, Tmax = 0.97

  • 41353 measured reflections

  • 12460 independent reflections

  • 8888 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.123

  • S = 1.08

  • 12460 reflections

  • 653 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.78 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molybdenum complexes containing Mo—S and Mo—N bonds are of special interest because of their relevance to a variety of molybdenum-containing enzymes (Cramer et al., 1978) and hydrodesulfurization catalysts (Anzenhofer & de Boer, 1969). For the group VI metals, several investigators have reported complexes relevant to pyridine-2-thiolate ligand (Cotton & Ilsley, 1981; Baker et al., 1995). Thiocarbamoyl Mo and W (VIB) complexes are known (Anderson & Hill, 1993). To our knowledge, no thiocarbamoyl complex of molybdenum (II) containing pyridine-2-thiolate has been described.

To synthesis of seven coordinated and NS-coordinated metal compound, complex [Mo(CO)2(SCNMe2)(PPh3)2Cl] was used to react with C5H4NSH in dichloromethane at room temperature. As a result, a chloride and triphenylphosphine displaced complex [Mo(CO)2(SNC5H4)(SCNMe2)(PPh3)] was isolated with 82% yield. The X-ray crystal structure analysis has been carried out to provide structural parameters.

The molecular structure and the packing diagram of the title compound are shown in Fig. 1 and 2 respectively. X-ray analysis shows that the unit cell contains two independent molecules. There are small difference in bond distances (in the range of 0.002–0.025 Å) and bond angles (in the range of 0–3.32°) between the two independent molecules around the metal atoms. The geometry around the cations is midway a capped trigonal prism and a capped octahedron. The capped trigonal prism consists of a phosphorus atom, P1(P2), in the unique capping position [Mo—P(av) = 2.5651 (12)], carbonyl group, C1-O1(C29-O3) and sulfur atom of the thiocabamoyl group, S1(S3), and nitrogen and sulfur atoms of the pyridine-2-thiolate ligand, in the capped quadrilateral face [Mo—C1(C29)(av) = 1.946 (5); Mo—S1(S3)(av) = 2.5031 (12); Mo—N2(N4)(av) = 2.252 (4); Mo—S2(S4)(av) = 2.5393 (12)] and the other carbonyl group in the unique edge [Mo—C2(C30)(av) = 1.983 (5)]. In contrast the capped octahedron is made up of C3(C31) in the capping position, C3(C31), S1(S3), and C2(C30) in the capped face, and P1(P2), S2(S4), and N2(N4) in the uncapped face. The PPh3 and carbonyl group is in trans position: P1—Mo—C(av) = 142.64 (14)°, while the pyridine-2-thiolate ligand and carbonyl and sulfur atom of the SCNMe2 ligand are trans to each other: C1—Mo—N2(C29—Mo2—N4)(av) = 175.40 (16)° and S1—Mo—S2(S3—Mo2—S4) = 149.29 (4)°. The Mo—C—O angles of (I) are essentially linear in the region of 170.3 (4)–178.3 (4)° and similar to those found for other terminal carbonyls contained in Mo systems. The Mo—CO(av) (1.946 (5), 1.983 (5) Å) and C—O(av) distances (1.163 (5), 1.153 (5) Å) are both with the range of values reported for the other molybdenum carbonyl complexes (Yih & Lee, 2008 and references therein).

Within the SCNMe2 ligand (Lin et al., 2004), the C—S(av) (1.694 (5) Å) and SC—N(av) (1.309 (5) Å) bond distances are typical for C—N and C—S bonds having partial double bond character and are certainly much shorter than the normal C—N (1.47 Å) and C—S (1.82 Å) single bonds (Huheey, 1983). The Me—N(av) bond distances (1.454 (6) and 1.470 (6) Å) are normal for a single bond. Within the SNC5H4 ligand, the S2—C6—N2(S4—C34—N4) bond distances and angles shows a geometrical environment characteristic of a sp2 hybridization of the carbon atom. In addition, the S2—C6—N2(S4—C34—N4)(av) angle of 110.8 (3)° and the S2—Mo—N2(S4—Mo2—N4)(av) angle of 64.11 (10)° is similar to other molybdenum pyridine-2-thiolate complexes (Yih et al., 2003a, 2003b and references therein).

In the 1H NMR spectrum of (I), three protons of the SNC5H4 ligand exhibits one doublet resonance at δ 6.21 and two triplet resonances at δ 6.46, 6.88 with ratio of 1:1:1. Two methyl resonances at δ 3.55 and δ 3.78 of the SCNMe2 ligand are observed in the 1H NMR spectra of complex (I), consistent with hindered rotation about the partially multiple C—N bond. In the 13C{1H} NMR spectrum of (I), two singlet resonances appear at δ 45.2, δ 50.4 for the carbon atoms of N-methyl groups, respectively. Three singlet resonances appear at δ 176.8, 235.1 and 248.0 for the carbon atom of the NCS, CO and Me2NCS groups, respectively. The 31P{1H} NMR spectrum of (I) shows one resonance at δ 48.5.

It is also noted the IR spectrum of the title complex (I) shows five stretching bands at 1921 and 1824 cm-1 for C=O, at 1563 cm-1 for C=N, at 1481 and 1434 cm-1 for C=S groups. In the FAB mass spectra, base peak with the typical Mo isotope distribution is in agreement with the [M+] molecular mass of (I).

Related literature top

Molybdenum complexes containing Mo—S and Mo—N bonds are of special interest because of their relevance to a variety of molybdenum-containing enzymes (Cramer et al., 1978) and hydrodesulfurization catalysts (Anzenhofer & de Boer, 1969). For complexes of group VI metals and the pyridine-2-thiolate ligand, see: Baker et al. (1995); Cotton & Ilsley (1981). For related structures of thiocabamoyl–molybdenum complexes, see: Anderson & Hill (1993); Foreman et al. (2003); Lim et al. (2005). For bond lengths in molybdenum–carbonyl complexes, see: Yih & Lee (2008) and references therein. For the SCNMe2 ligand, see: Lin et al. (2004) and for typical bond lengths, see: Huheey (1983). For bond distances and angles in molybdenum–pyridine-2-thiolate complexes, see: Yih et al. (2003a, 2003b) and references therein.

Experimental top

The synthesis of the title compound (I) was carried out as follows. CH2Cl2 (10 ml) was added to a flask (100 ml) containing C5H4NSH (0.111 g, 1.0 mmol) and [Mo(CO)2(SCNMe2)(PPh3)2Cl] (0.800 g, 1.0 mmol). The solution was stirred for 10 min at room temperature. The solution is concentrated under vacuum and MeOH (10 ml) was added to initiate precipitation. The orange solids were isolated by filtration (G4), washed with diethyl ether (2 x 10 ml) and subsequently drying under vacuum yielding [Mo(CO)2(SNC5H4)(SCNMe2)(PPh3)] (0.501 g, 82%). Further purification was accomplished by recrystallization from 1/10 CH2Cl2/n-hexane. The orange crystals of (I) for X-ray structure analysis were obtained by slow diffusion of n-hexane into the CH2Cl2 solution of the title compound at room temperature for 3 days. Spectroscopic analysis: 1H NMR (CDCl3, 298 K, δ, p.p.m.): 3.55, 3.78 (s, 6H, NMe2), 6.21 (d, 1H, NCH, 3JH—H = 8.15 Hz), 6.46 (t, 1H, NCCH, 3JH—H = 6.45 Hz), 6.88 (t, 1H, NCCCH, 3JH—H = 7.25 Hz), 7.35–7.55 (m, 16H, Ph, HCCNS). 31P{1H} NMR (CDCl3, 298 K, δ, p.p.m.): δ 48.5. 13C{1H} NMR (CDCl3, 298 K, δ, p.p.m.): δ 45.2, 50.4 (s, NMe), 176.8 (s, NCS), 235.1 (s, CO), 248.0 (s, MeNCS). MS (m/z): 614 (M+). Anal. Calcd for C28H25N2O2PS2Mo: C, 54.90; H, 4.11; N, 4.57. Found: C, 55.10; H, 4.25; N, 4.22.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.98 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing two independent molecules and the 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of (I).
Bis(carbonyl-κC)(N,N-dimethylthiocarbamoyl- κ2C,S)(pyridine-2-thiolato- κ2N,S)(triphenylphosphine-κP)molybdenum(II) top
Crystal data top
[Mo(C3H6NS)(C5H4NS)(C18H15P)(CO)2]F(000) = 2496
Mr = 612.53Dx = 1.498 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3107 reflections
a = 20.0947 (8) Åθ = 2.3–19.9°
b = 15.8720 (6) ŵ = 0.72 mm1
c = 17.8596 (7) ÅT = 150 K
β = 107.563 (1)°Needle, orange-red
V = 5430.7 (4) Å30.35 × 0.06 × 0.04 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
12460 independent reflections
Radiation source: fine-focus sealed tube8888 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
ω scansθmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2626
Tmin = 0.95, Tmax = 0.97k = 2020
41353 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0357P)2 + 4.9994P]
where P = (Fo2 + 2Fc2)/3
12460 reflections(Δ/σ)max = 0.001
653 parametersΔρmax = 0.96 e Å3
1 restraintΔρmin = 0.78 e Å3
Crystal data top
[Mo(C3H6NS)(C5H4NS)(C18H15P)(CO)2]V = 5430.7 (4) Å3
Mr = 612.53Z = 8
Monoclinic, P21/cMo Kα radiation
a = 20.0947 (8) ŵ = 0.72 mm1
b = 15.8720 (6) ÅT = 150 K
c = 17.8596 (7) Å0.35 × 0.06 × 0.04 mm
β = 107.563 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
12460 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
8888 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.97Rint = 0.089
41353 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0631 restraint
wR(F2) = 0.123H-atom parameters constrained
S = 1.08Δρmax = 0.96 e Å3
12460 reflectionsΔρmin = 0.78 e Å3
653 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.806022 (19)0.49072 (2)0.20800 (2)0.01743 (10)
S10.82845 (6)0.56981 (8)0.09595 (7)0.0248 (3)
S20.82401 (6)0.47101 (7)0.35379 (7)0.0216 (2)
P10.93923 (6)0.47268 (7)0.26360 (7)0.0170 (2)
O10.80516 (19)0.3184 (2)0.1255 (2)0.0383 (9)
O20.66462 (18)0.3986 (2)0.1908 (2)0.0407 (9)
N10.6957 (2)0.6123 (2)0.0831 (2)0.0260 (9)
N20.81074 (18)0.6102 (2)0.2784 (2)0.0210 (8)
C10.8062 (2)0.3835 (3)0.1558 (3)0.0237 (10)
C20.7146 (2)0.4383 (3)0.2006 (3)0.0274 (11)
C30.7511 (2)0.5672 (3)0.1156 (3)0.0216 (10)
C40.6906 (3)0.6710 (3)0.0191 (3)0.0397 (14)
H4A0.72100.65210.01140.060*
H4B0.70520.72720.04060.060*
H4C0.64220.67330.01500.060*
C50.6355 (3)0.6117 (3)0.1140 (3)0.0386 (14)
H5A0.64600.57580.16080.058*
H5B0.59440.58970.07390.058*
H5C0.62610.66930.12800.058*
C60.8229 (2)0.5806 (3)0.3522 (3)0.0222 (10)
C70.8324 (3)0.6347 (3)0.4162 (3)0.0310 (12)
H70.84060.61310.46790.037*
C80.8295 (3)0.7203 (3)0.4025 (3)0.0367 (13)
H80.83640.75860.44510.044*
C90.8167 (3)0.7506 (3)0.3271 (3)0.0349 (13)
H90.81390.80950.31700.042*
C100.8080 (3)0.6941 (3)0.2670 (3)0.0289 (11)
H100.79960.71500.21510.035*
C110.9890 (2)0.4740 (3)0.1922 (3)0.0191 (9)
C121.0533 (2)0.5140 (3)0.2086 (3)0.0260 (11)
H121.07020.54680.25500.031*
C131.0928 (2)0.5061 (3)0.1574 (3)0.0320 (12)
H131.13690.53320.16910.038*
C141.0688 (3)0.4595 (3)0.0903 (3)0.0335 (13)
H141.09660.45360.05600.040*
C151.0043 (3)0.4210 (3)0.0723 (3)0.0338 (12)
H150.98720.38940.02520.041*
C160.9646 (2)0.4288 (3)0.1236 (3)0.0254 (11)
H160.92010.40250.11120.030*
C170.9711 (2)0.3735 (3)0.3144 (3)0.0192 (10)
C181.0428 (2)0.3568 (3)0.3409 (3)0.0248 (11)
H181.07480.39780.33390.030*
C191.0673 (3)0.2815 (3)0.3770 (3)0.0276 (11)
H191.11620.27100.39510.033*
C201.0214 (3)0.2214 (3)0.3869 (3)0.0292 (11)
H201.03860.16980.41240.035*
C210.9497 (3)0.2360 (3)0.3598 (3)0.0284 (11)
H210.91800.19420.36610.034*
C220.9252 (2)0.3118 (3)0.3236 (3)0.0212 (10)
H220.87640.32170.30490.025*
C230.9799 (2)0.5561 (3)0.3320 (3)0.0182 (9)
C241.0134 (2)0.5434 (3)0.4113 (3)0.0224 (10)
H241.01840.48810.43250.027*
C251.0397 (2)0.6121 (3)0.4596 (3)0.0277 (11)
H251.06170.60360.51420.033*
C261.0340 (3)0.6926 (3)0.4289 (3)0.0300 (12)
H261.05300.73910.46200.036*
C271.0005 (3)0.7054 (3)0.3496 (3)0.0310 (12)
H270.99600.76080.32840.037*
C280.9738 (2)0.6377 (3)0.3016 (3)0.0247 (11)
H280.95090.64670.24730.030*
Mo20.674279 (19)0.00407 (2)0.20870 (2)0.02074 (10)
S30.60303 (7)0.10985 (8)0.11544 (8)0.0313 (3)
S40.73214 (6)0.03888 (8)0.35052 (7)0.0250 (3)
P20.57175 (6)0.01510 (8)0.26382 (7)0.0222 (3)
O30.6161 (2)0.1508 (2)0.1027 (2)0.0444 (10)
O40.79629 (19)0.1014 (2)0.1818 (2)0.0422 (10)
N30.7251 (2)0.1167 (3)0.0823 (2)0.0307 (10)
N40.71783 (19)0.1094 (2)0.2930 (2)0.0241 (9)
C290.6359 (2)0.0925 (3)0.1423 (3)0.0269 (10)
C300.7558 (3)0.0579 (3)0.1958 (3)0.0295 (11)
C310.6867 (2)0.0848 (3)0.1233 (3)0.0251 (11)
C320.6979 (3)0.1766 (4)0.0178 (3)0.0485 (16)
H32A0.64700.17160.00220.073*
H32B0.71820.16430.02450.073*
H32C0.71050.23410.03700.073*
C330.7986 (3)0.0952 (4)0.0995 (3)0.0406 (14)
H33A0.81290.05950.14640.061*
H33B0.82660.14690.10880.061*
H33C0.80580.06470.05480.061*
C340.7465 (2)0.0687 (3)0.3624 (3)0.0251 (11)
C350.7818 (2)0.1125 (3)0.4309 (3)0.0295 (12)
H350.80080.08360.47920.035*
C360.7884 (3)0.1967 (4)0.4265 (3)0.0372 (13)
H360.81350.22710.47210.045*
C370.7590 (3)0.2404 (3)0.3563 (3)0.0366 (13)
H370.76300.29990.35380.044*
C380.7239 (3)0.1944 (3)0.2908 (3)0.0314 (12)
H380.70340.22310.24260.038*
C390.4836 (2)0.0016 (3)0.1958 (3)0.0265 (10)
C400.4703 (3)0.0151 (3)0.1159 (3)0.0337 (12)
H400.50710.03190.09610.040*
C410.4035 (3)0.0045 (3)0.0645 (3)0.0405 (13)
H410.39530.01220.00970.049*
C420.3491 (3)0.0170 (4)0.0927 (3)0.0446 (15)
H420.30340.02390.05740.054*
C430.3611 (3)0.0286 (3)0.1717 (3)0.0337 (12)
H430.32340.04170.19140.040*
C440.4278 (2)0.0212 (3)0.2226 (3)0.0277 (11)
H440.43590.03180.27700.033*
C450.5651 (2)0.1195 (3)0.3041 (3)0.0256 (11)
C460.5118 (3)0.1382 (3)0.3360 (3)0.0361 (13)
H460.47760.09670.33580.043*
C470.5081 (3)0.2169 (3)0.3680 (3)0.0399 (14)
H470.47190.22870.39060.048*
C480.5561 (3)0.2778 (3)0.3675 (3)0.0391 (14)
H480.55300.33160.38950.047*
C490.6093 (3)0.2612 (3)0.3350 (3)0.0362 (13)
H490.64280.30330.33460.043*
C500.6130 (3)0.1825 (3)0.3032 (3)0.0300 (12)
H500.64890.17120.28020.036*
C510.5712 (2)0.0588 (3)0.3419 (3)0.0244 (10)
C520.5847 (3)0.0367 (4)0.4208 (3)0.0430 (15)
H520.59670.01960.43730.052*
C530.5805 (4)0.0973 (4)0.4745 (4)0.064 (2)
H530.58990.08250.52830.077*
C540.5627 (4)0.1785 (4)0.4513 (4)0.062 (2)
H540.55800.21890.48860.074*
C550.5518 (3)0.2020 (4)0.3752 (4)0.0512 (17)
H550.54110.25890.35970.061*
C560.5564 (3)0.1425 (3)0.3207 (3)0.0369 (13)
H560.54930.15900.26780.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01436 (18)0.0187 (2)0.0181 (2)0.00014 (16)0.00320 (15)0.00006 (16)
S10.0213 (6)0.0303 (7)0.0233 (6)0.0000 (5)0.0076 (5)0.0035 (5)
S20.0211 (6)0.0222 (6)0.0208 (6)0.0019 (5)0.0053 (5)0.0012 (5)
P10.0144 (5)0.0194 (6)0.0172 (6)0.0001 (4)0.0047 (5)0.0005 (5)
O10.046 (2)0.031 (2)0.035 (2)0.0014 (17)0.0079 (18)0.0105 (17)
O20.026 (2)0.045 (2)0.053 (3)0.0123 (17)0.0128 (18)0.0053 (19)
N10.023 (2)0.031 (2)0.021 (2)0.0036 (18)0.0017 (18)0.0030 (18)
N20.0144 (18)0.025 (2)0.023 (2)0.0030 (16)0.0052 (16)0.0034 (17)
C10.022 (2)0.027 (3)0.020 (2)0.002 (2)0.003 (2)0.004 (2)
C20.021 (2)0.032 (3)0.028 (3)0.001 (2)0.006 (2)0.003 (2)
C30.020 (2)0.022 (2)0.019 (2)0.0007 (19)0.001 (2)0.0067 (19)
C40.043 (3)0.038 (3)0.033 (3)0.009 (3)0.004 (3)0.013 (3)
C50.025 (3)0.047 (3)0.046 (4)0.011 (2)0.014 (3)0.010 (3)
C60.016 (2)0.023 (2)0.027 (3)0.0020 (19)0.006 (2)0.002 (2)
C70.040 (3)0.033 (3)0.021 (3)0.008 (2)0.010 (2)0.001 (2)
C80.043 (3)0.031 (3)0.035 (3)0.001 (2)0.011 (3)0.010 (2)
C90.043 (3)0.022 (3)0.036 (3)0.006 (2)0.008 (3)0.004 (2)
C100.029 (3)0.029 (3)0.028 (3)0.005 (2)0.007 (2)0.005 (2)
C110.022 (2)0.018 (2)0.019 (2)0.0009 (18)0.0076 (19)0.0036 (18)
C120.020 (2)0.031 (3)0.027 (3)0.000 (2)0.007 (2)0.002 (2)
C130.023 (2)0.036 (3)0.039 (3)0.001 (2)0.013 (2)0.011 (3)
C140.037 (3)0.038 (3)0.035 (3)0.014 (2)0.025 (3)0.013 (2)
C150.042 (3)0.032 (3)0.031 (3)0.010 (2)0.018 (3)0.008 (2)
C160.025 (3)0.027 (3)0.025 (3)0.001 (2)0.008 (2)0.002 (2)
C170.019 (2)0.024 (2)0.014 (2)0.0018 (19)0.0049 (19)0.0022 (19)
C180.022 (2)0.025 (3)0.028 (3)0.002 (2)0.008 (2)0.001 (2)
C190.025 (3)0.033 (3)0.023 (3)0.010 (2)0.005 (2)0.002 (2)
C200.036 (3)0.030 (3)0.024 (3)0.010 (2)0.011 (2)0.002 (2)
C210.037 (3)0.023 (3)0.029 (3)0.000 (2)0.017 (2)0.002 (2)
C220.019 (2)0.026 (3)0.019 (2)0.0036 (19)0.007 (2)0.001 (2)
C230.015 (2)0.022 (2)0.019 (2)0.0005 (18)0.0072 (19)0.0001 (19)
C240.018 (2)0.024 (2)0.027 (3)0.0012 (19)0.009 (2)0.002 (2)
C250.023 (3)0.040 (3)0.016 (2)0.006 (2)0.001 (2)0.003 (2)
C260.028 (3)0.030 (3)0.029 (3)0.006 (2)0.005 (2)0.010 (2)
C270.036 (3)0.024 (3)0.032 (3)0.007 (2)0.008 (2)0.001 (2)
C280.029 (3)0.025 (3)0.019 (3)0.000 (2)0.005 (2)0.000 (2)
Mo20.0189 (2)0.0235 (2)0.0214 (2)0.00080 (17)0.00855 (16)0.00052 (18)
S30.0245 (6)0.0370 (7)0.0332 (8)0.0063 (6)0.0101 (6)0.0067 (6)
S40.0227 (6)0.0285 (6)0.0235 (6)0.0003 (5)0.0067 (5)0.0028 (5)
P20.0190 (6)0.0274 (7)0.0207 (6)0.0007 (5)0.0070 (5)0.0000 (5)
O30.053 (3)0.036 (2)0.046 (3)0.0092 (19)0.018 (2)0.0191 (19)
O40.037 (2)0.040 (2)0.056 (3)0.0087 (18)0.024 (2)0.0011 (19)
N30.028 (2)0.035 (2)0.028 (2)0.0039 (19)0.0072 (19)0.0084 (19)
N40.020 (2)0.029 (2)0.028 (2)0.0029 (17)0.0138 (18)0.0053 (18)
C290.020 (2)0.031 (2)0.029 (3)0.0027 (19)0.006 (2)0.0050 (17)
C300.029 (3)0.031 (3)0.031 (3)0.004 (2)0.012 (2)0.004 (2)
C310.023 (2)0.031 (3)0.025 (3)0.004 (2)0.011 (2)0.008 (2)
C320.043 (4)0.052 (4)0.047 (4)0.011 (3)0.007 (3)0.023 (3)
C330.024 (3)0.050 (4)0.050 (4)0.007 (3)0.014 (3)0.004 (3)
C340.019 (2)0.033 (3)0.025 (3)0.000 (2)0.009 (2)0.004 (2)
C350.025 (3)0.041 (3)0.024 (3)0.002 (2)0.011 (2)0.010 (2)
C360.029 (3)0.047 (4)0.036 (3)0.008 (3)0.011 (3)0.020 (3)
C370.038 (3)0.034 (3)0.046 (4)0.012 (2)0.024 (3)0.013 (3)
C380.029 (3)0.030 (3)0.041 (3)0.005 (2)0.019 (2)0.003 (2)
C390.023 (2)0.029 (3)0.027 (3)0.003 (2)0.006 (2)0.005 (2)
C400.026 (3)0.046 (3)0.027 (3)0.009 (2)0.005 (2)0.009 (2)
C410.033 (3)0.049 (4)0.034 (3)0.006 (3)0.001 (2)0.006 (3)
C420.024 (3)0.057 (4)0.046 (4)0.000 (3)0.000 (3)0.007 (3)
C430.021 (2)0.040 (3)0.042 (3)0.002 (2)0.011 (2)0.001 (3)
C440.025 (2)0.028 (3)0.031 (3)0.000 (2)0.009 (2)0.002 (2)
C450.023 (2)0.031 (3)0.022 (3)0.005 (2)0.005 (2)0.001 (2)
C460.033 (3)0.039 (3)0.038 (3)0.004 (2)0.014 (3)0.004 (3)
C470.041 (3)0.042 (3)0.040 (3)0.016 (3)0.016 (3)0.003 (3)
C480.045 (3)0.029 (3)0.039 (3)0.018 (3)0.006 (3)0.003 (3)
C490.042 (3)0.028 (3)0.036 (3)0.005 (2)0.007 (3)0.004 (2)
C500.029 (3)0.030 (3)0.031 (3)0.004 (2)0.008 (2)0.002 (2)
C510.021 (2)0.030 (3)0.026 (3)0.001 (2)0.012 (2)0.006 (2)
C520.063 (4)0.041 (3)0.027 (3)0.012 (3)0.016 (3)0.000 (3)
C530.108 (6)0.060 (5)0.035 (4)0.028 (4)0.037 (4)0.017 (3)
C540.090 (5)0.051 (4)0.060 (5)0.026 (4)0.049 (4)0.030 (4)
C550.053 (4)0.037 (3)0.068 (5)0.006 (3)0.026 (4)0.018 (3)
C560.038 (3)0.041 (3)0.033 (3)0.004 (3)0.013 (3)0.006 (3)
Geometric parameters (Å, º) top
Mo1—C11.941 (5)Mo2—C291.948 (5)
Mo1—C21.984 (5)Mo2—C301.982 (5)
Mo1—C32.077 (5)Mo2—C312.064 (5)
Mo1—N22.261 (4)Mo2—N42.243 (4)
Mo1—S12.5156 (12)Mo2—S32.4907 (13)
Mo1—S22.5378 (12)Mo2—S42.5407 (12)
Mo1—P12.5746 (11)Mo2—P22.5555 (12)
S1—C31.694 (5)S3—C311.692 (5)
S2—C61.739 (5)S4—C341.735 (5)
P1—C231.819 (4)P2—C511.825 (5)
P1—C171.833 (5)P2—C451.828 (5)
P1—C111.842 (4)P2—C391.833 (5)
O1—C11.163 (5)O3—C291.161 (5)
O2—C21.153 (5)O4—C301.151 (6)
N1—C31.304 (5)N3—C311.315 (6)
N1—C41.454 (6)N3—C331.454 (6)
N1—C51.472 (6)N3—C321.468 (6)
N2—C101.346 (6)N4—C381.356 (6)
N2—C61.351 (6)N4—C341.361 (6)
C4—H4A0.9800C32—H32A0.9800
C4—H4B0.9800C32—H32B0.9800
C4—H4C0.9800C32—H32C0.9800
C5—H5A0.9800C33—H33A0.9800
C5—H5B0.9800C33—H33B0.9800
C5—H5C0.9800C33—H33C0.9800
C6—C71.396 (6)C34—C351.399 (6)
C7—C81.380 (7)C35—C361.348 (7)
C7—H70.9500C35—H350.9500
C8—C91.379 (7)C36—C371.398 (7)
C8—H80.9500C36—H360.9500
C9—C101.368 (7)C37—C381.378 (7)
C9—H90.9500C37—H370.9500
C10—H100.9500C38—H380.9500
C11—C161.376 (6)C39—C401.387 (6)
C11—C121.390 (6)C39—C441.393 (6)
C12—C131.385 (6)C40—C411.387 (7)
C12—H120.9500C40—H400.9500
C13—C141.366 (7)C41—C421.377 (7)
C13—H130.9500C41—H410.9500
C14—C151.379 (7)C42—C431.371 (7)
C14—H140.9500C42—H420.9500
C15—C161.390 (6)C43—C441.379 (7)
C15—H150.9500C43—H430.9500
C16—H160.9500C44—H440.9500
C17—C221.389 (6)C45—C461.388 (6)
C17—C181.399 (6)C45—C501.390 (7)
C18—C191.377 (6)C46—C471.386 (7)
C18—H180.9500C46—H460.9500
C19—C201.375 (7)C47—C481.367 (8)
C19—H190.9500C47—H470.9500
C20—C211.394 (7)C48—C491.387 (7)
C20—H200.9500C48—H480.9500
C21—C221.384 (6)C49—C501.384 (7)
C21—H210.9500C49—H490.9500
C22—H220.9500C50—H500.9500
C23—C241.387 (6)C51—C561.389 (7)
C23—C281.396 (6)C51—C521.396 (7)
C24—C251.392 (6)C52—C531.380 (8)
C24—H240.9500C52—H520.9500
C25—C261.382 (7)C53—C541.367 (9)
C25—H250.9500C53—H530.9500
C26—C271.387 (7)C54—C551.362 (9)
C26—H260.9500C54—H540.9500
C27—C281.379 (6)C55—C561.379 (7)
C27—H270.9500C55—H550.9500
C28—H280.9500C56—H560.9500
C1—Mo1—C274.69 (19)C29—Mo2—C3074.2 (2)
C1—Mo1—C3102.06 (18)C29—Mo2—C3198.75 (19)
C2—Mo1—C386.17 (19)C30—Mo2—C3186.17 (19)
C1—Mo1—N2175.17 (16)C29—Mo2—N4175.61 (17)
C2—Mo1—N2105.77 (17)C30—Mo2—N4106.20 (18)
C3—Mo1—N282.77 (15)C31—Mo2—N485.63 (16)
C1—Mo1—S191.66 (14)C29—Mo2—S394.65 (15)
C2—Mo1—S1122.74 (14)C30—Mo2—S3125.80 (14)
C3—Mo1—S141.95 (13)C31—Mo2—S342.35 (13)
N2—Mo1—S192.07 (10)N4—Mo2—S388.60 (11)
C1—Mo1—S2111.36 (14)C29—Mo2—S4111.94 (15)
C2—Mo1—S281.89 (14)C30—Mo2—S480.62 (15)
C3—Mo1—S2139.81 (12)C31—Mo2—S4141.47 (13)
N2—Mo1—S264.16 (10)N4—Mo2—S464.05 (11)
S1—Mo1—S2150.87 (4)S3—Mo2—S4147.71 (4)
C1—Mo1—P186.29 (14)C29—Mo2—P285.62 (14)
C2—Mo1—P1144.36 (14)C30—Mo2—P2140.90 (14)
C3—Mo1—P1127.78 (13)C31—Mo2—P2130.56 (13)
N2—Mo1—P190.83 (9)N4—Mo2—P291.54 (9)
S1—Mo1—P186.98 (4)S3—Mo2—P288.30 (4)
S2—Mo1—P177.35 (4)S4—Mo2—P276.33 (4)
C3—S1—Mo155.04 (16)C31—S3—Mo255.22 (17)
C6—S2—Mo182.13 (16)C34—S4—Mo282.35 (17)
C23—P1—C17105.9 (2)C51—P2—C45105.3 (2)
C23—P1—C11103.22 (19)C51—P2—C39101.8 (2)
C17—P1—C1199.83 (19)C45—P2—C39101.3 (2)
C23—P1—Mo1112.48 (14)C51—P2—Mo2114.16 (15)
C17—P1—Mo1116.98 (14)C45—P2—Mo2115.02 (16)
C11—P1—Mo1116.74 (15)C39—P2—Mo2117.41 (16)
C3—N1—C4123.4 (4)C31—N3—C33121.4 (4)
C3—N1—C5121.1 (4)C31—N3—C32123.0 (4)
C4—N1—C5115.3 (4)C33—N3—C32115.5 (4)
C10—N2—C6118.6 (4)C38—N4—C34118.8 (4)
C10—N2—Mo1138.9 (3)C38—N4—Mo2137.9 (3)
C6—N2—Mo1102.5 (3)C34—N4—Mo2103.3 (3)
O1—C1—Mo1178.3 (4)O3—C29—Mo2176.9 (4)
O2—C2—Mo1170.3 (4)O4—C30—Mo2170.4 (5)
N1—C3—S1127.4 (4)N3—C31—S3126.8 (4)
N1—C3—Mo1148.5 (4)N3—C31—Mo2150.8 (4)
S1—C3—Mo183.00 (19)S3—C31—Mo282.43 (19)
N1—C4—H4A109.5N3—C32—H32A109.5
N1—C4—H4B109.5N3—C32—H32B109.5
H4A—C4—H4B109.5H32A—C32—H32B109.5
N1—C4—H4C109.5N3—C32—H32C109.5
H4A—C4—H4C109.5H32A—C32—H32C109.5
H4B—C4—H4C109.5H32B—C32—H32C109.5
N1—C5—H5A109.5N3—C33—H33A109.5
N1—C5—H5B109.5N3—C33—H33B109.5
H5A—C5—H5B109.5H33A—C33—H33B109.5
N1—C5—H5C109.5N3—C33—H33C109.5
H5A—C5—H5C109.5H33A—C33—H33C109.5
H5B—C5—H5C109.5H33B—C33—H33C109.5
N2—C6—C7121.7 (4)N4—C34—C35121.6 (5)
N2—C6—S2111.2 (3)N4—C34—S4110.3 (3)
C7—C6—S2127.1 (4)C35—C34—S4128.1 (4)
C8—C7—C6118.2 (5)C36—C35—C34118.3 (5)
C8—C7—H7120.9C36—C35—H35120.8
C6—C7—H7120.9C34—C35—H35120.8
C9—C8—C7120.2 (5)C35—C36—C37121.4 (5)
C9—C8—H8119.9C35—C36—H36119.3
C7—C8—H8119.9C37—C36—H36119.3
C10—C9—C8118.6 (5)C38—C37—C36117.9 (5)
C10—C9—H9120.7C38—C37—H37121.0
C8—C9—H9120.7C36—C37—H37121.0
N2—C10—C9122.8 (5)N4—C38—C37122.0 (5)
N2—C10—H10118.6N4—C38—H38119.0
C9—C10—H10118.6C37—C38—H38119.0
C16—C11—C12118.9 (4)C40—C39—C44117.9 (4)
C16—C11—P1119.3 (3)C40—C39—P2120.8 (4)
C12—C11—P1121.6 (3)C44—C39—P2121.3 (4)
C13—C12—C11120.1 (5)C39—C40—C41120.6 (5)
C13—C12—H12120.0C39—C40—H40119.7
C11—C12—H12120.0C41—C40—H40119.7
C14—C13—C12120.5 (5)C42—C41—C40120.3 (5)
C14—C13—H13119.8C42—C41—H41119.9
C12—C13—H13119.8C40—C41—H41119.9
C13—C14—C15120.2 (5)C43—C42—C41119.8 (5)
C13—C14—H14119.9C43—C42—H42120.1
C15—C14—H14119.9C41—C42—H42120.1
C14—C15—C16119.5 (5)C42—C43—C44120.1 (5)
C14—C15—H15120.3C42—C43—H43119.9
C16—C15—H15120.3C44—C43—H43119.9
C11—C16—C15120.9 (5)C43—C44—C39121.2 (5)
C11—C16—H16119.6C43—C44—H44119.4
C15—C16—H16119.6C39—C44—H44119.4
C22—C17—C18118.5 (4)C46—C45—C50118.3 (5)
C22—C17—P1121.3 (3)C46—C45—P2120.8 (4)
C18—C17—P1120.1 (3)C50—C45—P2120.9 (4)
C19—C18—C17120.7 (4)C47—C46—C45120.4 (5)
C19—C18—H18119.6C47—C46—H46119.8
C17—C18—H18119.6C45—C46—H46119.8
C20—C19—C18120.1 (5)C48—C47—C46120.6 (5)
C20—C19—H19119.9C48—C47—H47119.7
C18—C19—H19119.9C46—C47—H47119.7
C19—C20—C21120.3 (5)C47—C48—C49120.2 (5)
C19—C20—H20119.9C47—C48—H48119.9
C21—C20—H20119.9C49—C48—H48119.9
C22—C21—C20119.4 (5)C50—C49—C48119.1 (5)
C22—C21—H21120.3C50—C49—H49120.5
C20—C21—H21120.3C48—C49—H49120.5
C21—C22—C17120.9 (4)C49—C50—C45121.4 (5)
C21—C22—H22119.5C49—C50—H50119.3
C17—C22—H22119.5C45—C50—H50119.3
C24—C23—C28119.3 (4)C56—C51—C52118.4 (5)
C24—C23—P1124.2 (3)C56—C51—P2117.1 (4)
C28—C23—P1116.5 (3)C52—C51—P2124.5 (4)
C23—C24—C25119.8 (4)C53—C52—C51119.6 (6)
C23—C24—H24120.1C53—C52—H52120.2
C25—C24—H24120.1C51—C52—H52120.2
C26—C25—C24120.5 (4)C54—C53—C52120.7 (6)
C26—C25—H25119.8C54—C53—H53119.7
C24—C25—H25119.8C52—C53—H53119.7
C25—C26—C27119.8 (5)C55—C54—C53120.7 (6)
C25—C26—H26120.1C55—C54—H54119.6
C27—C26—H26120.1C53—C54—H54119.6
C28—C27—C26119.9 (5)C54—C55—C56119.4 (6)
C28—C27—H27120.0C54—C55—H55120.3
C26—C27—H27120.0C56—C55—H55120.3
C27—C28—C23120.7 (4)C55—C56—C51121.2 (5)
C27—C28—H28119.7C55—C56—H56119.4
C23—C28—H28119.7C51—C56—H56119.4

Experimental details

Crystal data
Chemical formula[Mo(C3H6NS)(C5H4NS)(C18H15P)(CO)2]
Mr612.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)20.0947 (8), 15.8720 (6), 17.8596 (7)
β (°) 107.563 (1)
V3)5430.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.35 × 0.06 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.95, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
41353, 12460, 8888
Rint0.089
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.123, 1.08
No. of reflections12460
No. of parameters653
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.78

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the National Science Council of the Republic of China for financial support (NSC98–2113-M-241–011-MY2).

References

First citationAnderson, S. & Hill, A. F. (1993). J. Chem. Soc. Dalton Trans. pp. 587–590.  CrossRef Web of Science Google Scholar
First citationAnzenhofer, K. & de Boer, J. J. (1969). Acta Cryst. B25, 1419–1420.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBaker, P. K., Harman, M. E., Hughes, S., Hursthouse, M. B. & Malik, K. M. A. (1995). J. Organomet. Chem. 498, 257–266.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A. & Ilsley, W. H. (1981). Inorg. Chem. 20, 614–616.  CSD CrossRef CAS Web of Science Google Scholar
First citationCramer, S. P., Hogson, K. O., Gillum, W. O. & Moretenson, L. E. (1978). J. Am. Chem. Soc. 100, 3398–3407.  CrossRef CAS Web of Science Google Scholar
First citationForeman, M. R. St.-J., Hill, A. F., Tshabang, N., White, A. J. P. & Williams, D. J. (2003). Organometallics, 22, 5593–5596.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuheey, J. E. (1983). Inorganic Chemistry: Principles of Structure and Reactivity, 3rd ed., p. A-37. USA: Harper & Row  Google Scholar
First citationLim, P. J., Slizys, D. A., Tiekink, E. R. T. & Young, C. G. (2005). Inorg. Chem. 44, 114–121.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLin, Y. C., Yih, K. H., Lee, G. H., Huang, S. L. & Wang, Y. (2004). J. Chin. Chem. Soc. 51, 279–290.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYih, K. H. & Lee, G. H. (2008). J. Organomet. Chem. 693, 3303–3311.  Web of Science CrossRef CAS Google Scholar
First citationYih, K. H., Lee, G. H. & Wang, Y. (2003a). Inorg. Chem. Commun. 6, 213–216.  Web of Science CSD CrossRef CAS Google Scholar
First citationYih, K. H., Lee, G. H. & Wang, Y. (2003b). Inorg. Chem. 42, 1092–1100.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1189-m1190
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds