organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 3,3′-di­phenyl-2,2′-[(S)-thio­phene-2,5-diylbis(carbonyl­aza­nedi­yl)]di­propano­ate tetra­hydro­furan monosolvate

aShandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Ji'nan 250022, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, University of Jinan, Ji'nan 250022, People's Republic of China
*Correspondence e-mail: chm_xiagm@ujn.edu.cn

(Received 6 August 2010; accepted 26 August 2010; online 4 September 2010)

The title compound, C26H26N2O6S·C4H8O, a solvated bis-amide derivative, is also a chiral amino acid ester with L-phenyl­alanine methyl ester groups as amine substituents. The thio­phene-2,5-dicarboxamide core approximates C2 point symmetry. The tetra­hydro­furan solvent mol­ecule is linked to the main mol­ecule through an inter­molecular N—H⋯O hydrogen bond. The central ring makes dihedral angles of 90.0 (2) and 76.5 (2)° with the pendant rings.

Related literature

For applications of thio­phene derivatives, see: Zhao et al. (2009[Zhao, L., Liang, J., Yue, G., Deng, X. & He, Y. (2009). Acta Cryst. E65, m722.]). For the synthesis of the title compound, see: Moriuchi et al. (2006[Moriuchi, T., Shen, X. & Hirao, T. (2006). Tetrahedron, 62, 12237-2246.]). For the structure of the unsolvated mol­ecule, see: Xia et al. (2010[Xia, G.-M., Liu, J., Li, Z., Ji, M.-W. & Sun, G.-X. (2010). Acta Cryst. E66, o2385.]).

[Scheme 1]

Experimental

Crystal data
  • C26H26N2O6S·C4H8O

  • Mr = 566.65

  • Orthorhombic, P 21 21 21

  • a = 8.3041 (3) Å

  • b = 12.1810 (4) Å

  • c = 29.6787 (11) Å

  • V = 3002.06 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.40 × 0.21 × 0.08 mm

Data collection
  • Oxford Xcalibur (Eos) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.941, Tmax = 0.988

  • 7782 measured reflections

  • 5081 independent reflections

  • 3167 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.094

  • S = 0.91

  • 5081 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1964 Friedel pairs

  • Flack parameter: −0.05 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O7 0.86 2.02 2.859 (3) 164

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The thiophene derivatives have been viewed as significant compounds for applications in many fields, such as photo-materials, electronic luminescence materials (Zhao et al., 2009). The title compound derives from thiophene-2,5-dicarboxylic acid and a natural amino acid. This makes this kind of structures very promising for biological activities and as precursors in the synthesis of various compounds.

In the structure of the title compound, the thiophene-2,5-dicarboxamide core approximates C2 point symmetry. The molecules are connected by intermolecular N—H···O hydrogen-bonding interactions with tetrahydrofuran molecules. Chiral atoms C3 and C19 in the main molecule retain the absolute S configuration of the parent L-phenylalanine. The procedure used for the synthesis of the title compound is thus carried-out without inversion for chiral centers. The structure of the unsolvated molecule with identical absolute configuration has been determined (Xia et al., 2010).

Related literature top

For applications of thiophene derivatives, see: Zhao et al. (2009). For the synthesis of the title compound, see: Moriuchi et al. (2006). For the structure of the unsolvated molecule, see: Xia et al. (2010).

Experimental top

A mixture of 2,5-thiophenedicarboxylic acid (0.3 mmol), thionyl chloride (3 mmol) and 3–5 drops of N,N-dimethylformamide in a flask was heated to 343 K for 10 h. The resulting solution was evaporated under vacuum, affording 2,5-thiophenedicarbonyldichloride as a pale yellow product.

The title compound was synthesized by a slight modification of a procedure described by Moriuchi et al. (2006). To a stirred mixture of L-phenylalanine methyl ester hydrochloride (129.4 mg, 0.6 mmol in 15 ml of dry dichloromethane) and triethylamine (0.21 ml, 1.5 mmol) was added dropwise 2,5-thiophenedicarbonyldichloride (62.7 mg, 0.3 mmol) in dichloromethane (3 ml) at 253 K and then 20 h at 293 K. The resulting mixture was diluted with dichloromethane, washed with saturated NaHCO3 solution and brine, and then dried over anhydrous MgSO4. The solvent was removed in vacuo. The title compound was isolated as a white solid by crystallization from 2-propanol (yield: 129.6 mg, 78%). Then the product was recrystallized from THF, to yield colourless blocks of the title solvate.

Refinement top

All H atoms were placed in idealized positions and refined using a riding model, with N—H = 0.86 Å, and C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2–1.5Ueq(carrier atom). Absolute configuration was assigned by refinement of the Flack parameter (Flack, 1983), based on 1964 measured Friedel pairs.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title structure with thermal ellipsoids at 30% probability level.
Dimethyl 3,3'-diphenyl-2,2'-[(S)-thiophene-2,5- diylbis(carbonylazanediyl)]dipropanoate tetrahydrofuran monosolvate top
Crystal data top
C26H26N2O6S·C4H8OF(000) = 1200
Mr = 566.65Dx = 1.254 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3062 reflections
a = 8.3041 (3) Åθ = 3.0–28.8°
b = 12.1810 (4) ŵ = 0.16 mm1
c = 29.6787 (11) ÅT = 293 K
V = 3002.06 (17) Å3Block, colourless
Z = 40.40 × 0.21 × 0.08 mm
Data collection top
Oxford Xcalibur (Eos) CCD detector
diffractometer
5081 independent reflections
Radiation source: Enhance (Mo) X-ray Source3167 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.0355 pixels mm-1θmax = 25.3°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
k = 1412
Tmin = 0.941, Tmax = 0.988l = 1535
7782 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0458P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
5081 reflectionsΔρmax = 0.19 e Å3
363 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), 1964 Friedel pairs
0 constraintsAbsolute structure parameter: 0.05 (9)
Primary atom site location: structure-invariant direct methods
Crystal data top
C26H26N2O6S·C4H8OV = 3002.06 (17) Å3
Mr = 566.65Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.3041 (3) ŵ = 0.16 mm1
b = 12.1810 (4) ÅT = 293 K
c = 29.6787 (11) Å0.40 × 0.21 × 0.08 mm
Data collection top
Oxford Xcalibur (Eos) CCD detector
diffractometer
5081 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
3167 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.988Rint = 0.022
7782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.19 e Å3
S = 0.91Δρmin = 0.21 e Å3
5081 reflectionsAbsolute structure: Flack (1983), 1964 Friedel pairs
363 parametersAbsolute structure parameter: 0.05 (9)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7362 (4)0.1856 (4)0.38825 (15)0.0993 (14)
H1A0.74250.21680.35860.149*
H1B0.77900.11240.38780.149*
H1C0.79760.22970.40880.149*
C20.4695 (4)0.1250 (3)0.37793 (13)0.0615 (9)
C30.2978 (3)0.1273 (2)0.39603 (10)0.0476 (8)
H30.27850.20030.40890.057*
C40.2776 (4)0.0426 (2)0.43389 (11)0.0555 (8)
H4A0.29110.03050.42150.067*
H4B0.36150.05380.45620.067*
C50.1160 (4)0.0496 (2)0.45669 (10)0.0466 (8)
C60.0864 (4)0.1295 (3)0.48868 (12)0.0638 (9)
H60.16730.17930.49600.077*
C70.0602 (5)0.1369 (3)0.50983 (13)0.0782 (11)
H70.07720.18970.53190.094*
C80.1798 (5)0.0671 (4)0.49844 (15)0.0794 (12)
H80.28040.07410.51190.095*
C90.1543 (5)0.0131 (3)0.46754 (16)0.0804 (12)
H90.23610.06240.46060.097*
C100.0064 (4)0.0216 (2)0.44637 (11)0.0628 (9)
H100.01020.07610.42490.075*
C110.1316 (3)0.1966 (3)0.33570 (10)0.0476 (7)
C120.0384 (3)0.1773 (2)0.29456 (10)0.0428 (7)
C130.0220 (4)0.0850 (2)0.27630 (10)0.0588 (9)
H130.01230.01600.28940.071*
C140.1017 (4)0.1042 (2)0.23495 (12)0.0609 (9)
H140.14890.04900.21780.073*
C150.1023 (3)0.2104 (2)0.22293 (9)0.0425 (7)
C160.1644 (3)0.2650 (2)0.18143 (10)0.0410 (7)
C170.7408 (4)0.3073 (4)0.15049 (14)0.1109 (16)
H17A0.80260.26480.12940.166*
H17B0.74520.38340.14220.166*
H17C0.78460.29830.18020.166*
C180.4957 (4)0.2807 (2)0.11222 (12)0.0541 (8)
C190.3256 (3)0.2374 (2)0.11366 (10)0.0449 (7)
H190.25530.29700.10340.054*
C200.3044 (3)0.1424 (2)0.08026 (11)0.0543 (9)
H20B0.36640.07990.09060.065*
H20A0.34660.16430.05110.065*
C210.1327 (4)0.1090 (3)0.07497 (11)0.0532 (9)
C220.0324 (4)0.1616 (3)0.04495 (12)0.0687 (10)
H220.07320.21820.02730.082*
C230.1266 (6)0.1322 (4)0.04062 (16)0.0960 (14)
H230.19160.16880.02000.115*
C240.1900 (6)0.0506 (5)0.0661 (2)0.1118 (18)
H240.29770.03090.06340.134*
C250.0910 (7)0.0024 (4)0.0962 (2)0.1108 (16)
H250.13270.05870.11390.133*
C260.0682 (5)0.0260 (3)0.10075 (14)0.0785 (11)
H260.13270.01110.12140.094*
C270.5480 (9)0.0480 (5)0.2287 (2)0.210 (4)
H27A0.48670.09420.24900.252*
H27B0.64680.08570.22070.252*
C280.5824 (9)0.0546 (6)0.2491 (2)0.184 (3)
H28B0.69610.05970.25630.221*
H28A0.52110.06290.27670.221*
C290.5388 (8)0.1382 (5)0.2175 (2)0.170 (3)
H29B0.62840.18750.21210.204*
H29A0.44800.18060.22850.204*
C300.4949 (7)0.0780 (4)0.17561 (19)0.1219 (16)
H30A0.40480.11330.16070.146*
H30B0.58540.07580.15500.146*
N10.1852 (3)0.11168 (19)0.35934 (8)0.0479 (6)
H10.15270.04660.35280.057*
N20.2705 (2)0.20642 (19)0.15812 (8)0.0430 (6)
H20.30830.14740.17000.052*
O10.5682 (3)0.1824 (2)0.40280 (8)0.0745 (7)
O20.5104 (3)0.0779 (3)0.34523 (11)0.1289 (13)
O30.1599 (3)0.29143 (18)0.34747 (8)0.0910 (8)
O40.1172 (2)0.35693 (15)0.17022 (7)0.0555 (6)
O50.5526 (3)0.3183 (3)0.07888 (10)0.1001 (9)
O60.5731 (3)0.2699 (2)0.15000 (9)0.0818 (8)
O70.4551 (4)0.0230 (2)0.18881 (12)0.1181 (11)
S10.00131 (10)0.28933 (5)0.26159 (3)0.0543 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (2)0.142 (4)0.102 (3)0.014 (2)0.001 (2)0.028 (3)
C20.060 (2)0.079 (2)0.045 (2)0.0056 (19)0.004 (2)0.0055 (19)
C30.0561 (19)0.0494 (17)0.037 (2)0.0002 (15)0.0048 (17)0.0052 (16)
C40.064 (2)0.0541 (19)0.048 (2)0.0067 (16)0.0060 (19)0.0004 (17)
C50.0574 (18)0.0435 (17)0.039 (2)0.0019 (16)0.0095 (17)0.0004 (16)
C60.073 (2)0.062 (2)0.056 (2)0.0068 (18)0.002 (2)0.015 (2)
C70.090 (3)0.081 (3)0.064 (3)0.006 (2)0.011 (2)0.014 (2)
C80.077 (3)0.083 (3)0.079 (3)0.003 (2)0.019 (3)0.016 (3)
C90.075 (3)0.073 (3)0.093 (4)0.020 (2)0.006 (3)0.020 (3)
C100.080 (2)0.0543 (18)0.054 (2)0.001 (2)0.004 (2)0.0020 (16)
C110.0565 (17)0.0441 (18)0.042 (2)0.0000 (16)0.0048 (16)0.0058 (16)
C120.0481 (16)0.0448 (16)0.0357 (18)0.0063 (13)0.0065 (15)0.0025 (14)
C130.083 (2)0.0396 (16)0.053 (2)0.0001 (17)0.022 (2)0.0063 (15)
C140.078 (2)0.0443 (18)0.061 (2)0.0057 (15)0.032 (2)0.0004 (17)
C150.0430 (14)0.0451 (17)0.0396 (19)0.0047 (13)0.0040 (14)0.0019 (15)
C160.0402 (16)0.0413 (17)0.042 (2)0.0075 (13)0.0025 (15)0.0023 (15)
C170.058 (2)0.169 (4)0.106 (4)0.041 (3)0.019 (2)0.003 (3)
C180.0449 (17)0.0638 (18)0.053 (2)0.0000 (18)0.006 (2)0.0113 (18)
C190.0463 (17)0.0491 (17)0.0394 (19)0.0077 (14)0.0069 (16)0.0049 (15)
C200.059 (2)0.064 (2)0.041 (2)0.0049 (16)0.0100 (17)0.0013 (17)
C210.063 (2)0.052 (2)0.044 (2)0.0059 (17)0.0036 (19)0.0103 (17)
C220.070 (3)0.075 (2)0.062 (3)0.0000 (19)0.000 (2)0.004 (2)
C230.080 (3)0.123 (4)0.085 (4)0.001 (3)0.019 (3)0.014 (3)
C240.070 (3)0.142 (5)0.123 (5)0.022 (3)0.009 (3)0.044 (4)
C250.111 (4)0.107 (4)0.115 (5)0.058 (3)0.026 (4)0.003 (3)
C260.090 (3)0.070 (2)0.076 (3)0.021 (2)0.004 (2)0.009 (2)
C270.296 (9)0.128 (4)0.205 (8)0.092 (5)0.165 (8)0.053 (5)
C280.273 (8)0.179 (6)0.100 (5)0.115 (6)0.059 (5)0.021 (5)
C290.221 (7)0.108 (4)0.183 (7)0.041 (4)0.082 (6)0.015 (5)
C300.136 (4)0.105 (3)0.125 (4)0.033 (3)0.008 (4)0.011 (3)
N10.0621 (15)0.0417 (14)0.0399 (17)0.0044 (12)0.0133 (14)0.0017 (12)
N20.0471 (13)0.0418 (12)0.0401 (15)0.0052 (12)0.0075 (12)0.0059 (13)
O10.0563 (14)0.0945 (17)0.0728 (18)0.0055 (13)0.0091 (13)0.0053 (15)
O20.0844 (19)0.212 (3)0.090 (2)0.004 (2)0.0221 (19)0.072 (2)
O30.141 (2)0.0481 (14)0.0839 (19)0.0028 (15)0.0556 (17)0.0047 (14)
O40.0709 (13)0.0386 (11)0.0568 (16)0.0086 (10)0.0112 (12)0.0071 (11)
O50.0672 (16)0.151 (2)0.082 (2)0.0221 (15)0.0101 (14)0.047 (2)
O60.0554 (13)0.128 (2)0.0623 (17)0.0274 (13)0.0090 (13)0.0150 (16)
O70.161 (3)0.0830 (19)0.110 (3)0.054 (2)0.056 (2)0.0078 (18)
S10.0711 (5)0.0404 (4)0.0516 (5)0.0027 (4)0.0181 (5)0.0008 (4)
Geometric parameters (Å, º) top
C1—O11.461 (4)C17—H17A0.9600
C1—H1A0.9600C17—H17B0.9600
C1—H1B0.9600C17—H17C0.9600
C1—H1C0.9600C18—O51.188 (3)
C2—O21.178 (4)C18—O61.299 (4)
C2—O11.306 (4)C18—C191.509 (4)
C2—C31.524 (4)C19—N21.446 (3)
C3—N11.448 (3)C19—C201.533 (4)
C3—C41.535 (4)C19—H190.9800
C3—H30.9800C20—C211.491 (4)
C4—C51.506 (4)C20—H20B0.9700
C4—H4A0.9700C20—H20A0.9700
C4—H4B0.9700C21—C261.377 (4)
C5—C101.371 (4)C21—C221.378 (4)
C5—C61.382 (4)C22—C231.374 (5)
C6—C71.373 (5)C22—H220.9300
C6—H60.9300C23—C241.357 (6)
C7—C81.350 (5)C23—H230.9300
C7—H70.9300C24—C251.374 (6)
C8—C91.357 (5)C24—H240.9300
C8—H80.9300C25—C261.373 (5)
C9—C101.383 (5)C25—H250.9300
C9—H90.9300C26—H260.9300
C10—H100.9300C27—C281.417 (7)
C11—O31.229 (3)C27—O71.445 (6)
C11—N11.327 (3)C27—H27A0.9700
C11—C121.465 (4)C27—H27B0.9700
C12—C131.345 (4)C28—C291.430 (7)
C12—S11.711 (3)C28—H28B0.9700
C13—C141.414 (4)C28—H28A0.9700
C13—H130.9300C29—C301.489 (6)
C14—C151.342 (4)C29—H29B0.9700
C14—H140.9300C29—H29A0.9700
C15—C161.491 (4)C30—O71.333 (4)
C15—S11.716 (3)C30—H30A0.9700
C16—O41.232 (3)C30—H30B0.9700
C16—N21.328 (3)N1—H10.8600
C17—O61.465 (4)N2—H20.8600
O1—C1—H1A109.5O6—C18—C19113.8 (3)
O1—C1—H1B109.5N2—C19—C18114.4 (3)
H1A—C1—H1B109.5N2—C19—C20110.9 (2)
O1—C1—H1C109.5C18—C19—C20110.7 (2)
H1A—C1—H1C109.5N2—C19—H19106.8
H1B—C1—H1C109.5C18—C19—H19106.8
O2—C2—O1123.1 (3)C20—C19—H19106.8
O2—C2—C3124.7 (3)C21—C20—C19112.6 (2)
O1—C2—C3112.2 (3)C21—C20—H20B109.1
N1—C3—C2109.7 (3)C19—C20—H20B109.1
N1—C3—C4113.1 (2)C21—C20—H20A109.1
C2—C3—C4110.3 (2)C19—C20—H20A109.1
N1—C3—H3107.9H20B—C20—H20A107.8
C2—C3—H3107.9C26—C21—C22117.8 (3)
C4—C3—H3107.9C26—C21—C20120.9 (3)
C5—C4—C3112.8 (2)C22—C21—C20121.3 (3)
C5—C4—H4A109.0C23—C22—C21121.3 (4)
C3—C4—H4A109.0C23—C22—H22119.3
C5—C4—H4B109.0C21—C22—H22119.3
C3—C4—H4B109.0C24—C23—C22120.8 (4)
H4A—C4—H4B107.8C24—C23—H23119.6
C10—C5—C6117.9 (3)C22—C23—H23119.6
C10—C5—C4121.7 (3)C23—C24—C25118.3 (4)
C6—C5—C4120.5 (3)C23—C24—H24120.8
C7—C6—C5121.2 (3)C25—C24—H24120.8
C7—C6—H6119.4C26—C25—C24121.5 (5)
C5—C6—H6119.4C26—C25—H25119.3
C8—C7—C6119.8 (4)C24—C25—H25119.3
C8—C7—H7120.1C25—C26—C21120.3 (4)
C6—C7—H7120.1C25—C26—H26119.8
C7—C8—C9120.5 (4)C21—C26—H26119.8
C7—C8—H8119.7C28—C27—O7105.8 (5)
C9—C8—H8119.7C28—C27—H27A110.6
C8—C9—C10119.9 (4)O7—C27—H27A110.6
C8—C9—H9120.0C28—C27—H27B110.6
C10—C9—H9120.0O7—C27—H27B110.6
C5—C10—C9120.7 (3)H27A—C27—H27B108.7
C5—C10—H10119.7C27—C28—C29107.3 (5)
C9—C10—H10119.7C27—C28—H28B110.3
O3—C11—N1121.2 (3)C29—C28—H28B110.3
O3—C11—C12119.3 (3)C27—C28—H28A110.3
N1—C11—C12119.5 (3)C29—C28—H28A110.3
C13—C12—C11131.8 (3)H28B—C28—H28A108.5
C13—C12—S1111.4 (2)C28—C29—C30105.0 (5)
C11—C12—S1116.8 (2)C28—C29—H29B110.8
C12—C13—C14112.7 (3)C30—C29—H29B110.8
C12—C13—H13123.7C28—C29—H29A110.8
C14—C13—H13123.7C30—C29—H29A110.8
C15—C14—C13113.1 (3)H29B—C29—H29A108.8
C15—C14—H14123.4O7—C30—C29105.7 (4)
C13—C14—H14123.4O7—C30—H30A110.6
C14—C15—C16130.6 (3)C29—C30—H30A110.6
C14—C15—S1111.1 (2)O7—C30—H30B110.6
C16—C15—S1118.1 (2)C29—C30—H30B110.6
O4—C16—N2123.9 (3)H30A—C30—H30B108.7
O4—C16—C15121.2 (3)C11—N1—C3120.8 (2)
N2—C16—C15114.8 (2)C11—N1—H1119.6
O6—C17—H17A109.5C3—N1—H1119.6
O6—C17—H17B109.5C16—N2—C19123.0 (2)
H17A—C17—H17B109.5C16—N2—H2118.5
O6—C17—H17C109.5C19—N2—H2118.5
H17A—C17—H17C109.5C2—O1—C1116.5 (3)
H17B—C17—H17C109.5C18—O6—C17116.6 (3)
O5—C18—O6124.1 (3)C30—O7—C27107.6 (4)
O5—C18—C19122.1 (3)C12—S1—C1591.70 (14)
O2—C2—C3—N127.1 (5)N2—C19—C20—C2161.3 (3)
O1—C2—C3—N1152.6 (3)C18—C19—C20—C21170.6 (3)
O2—C2—C3—C498.1 (4)C19—C20—C21—C2693.0 (4)
O1—C2—C3—C482.3 (3)C19—C20—C21—C2285.4 (4)
N1—C3—C4—C563.2 (3)C26—C21—C22—C230.3 (5)
C2—C3—C4—C5173.6 (3)C20—C21—C22—C23178.8 (3)
C3—C4—C5—C10100.2 (3)C21—C22—C23—C240.4 (6)
C3—C4—C5—C679.2 (4)C22—C23—C24—C250.4 (7)
C10—C5—C6—C70.7 (5)C23—C24—C25—C260.2 (8)
C4—C5—C6—C7179.9 (3)C24—C25—C26—C210.0 (7)
C5—C6—C7—C82.0 (6)C22—C21—C26—C250.1 (5)
C6—C7—C8—C92.7 (6)C20—C21—C26—C25178.6 (4)
C7—C8—C9—C102.1 (6)O7—C27—C28—C2911.0 (9)
C6—C5—C10—C90.1 (5)C27—C28—C29—C306.4 (9)
C4—C5—C10—C9179.6 (3)C28—C29—C30—O723.0 (7)
C8—C9—C10—C50.9 (5)O3—C11—N1—C38.9 (4)
O3—C11—C12—C13173.0 (3)C12—C11—N1—C3170.4 (2)
N1—C11—C12—C137.7 (5)C2—C3—N1—C1187.8 (3)
O3—C11—C12—S18.6 (4)C4—C3—N1—C11148.6 (3)
N1—C11—C12—S1170.8 (2)O4—C16—N2—C199.1 (4)
C11—C12—C13—C14178.4 (3)C15—C16—N2—C19170.2 (2)
S1—C12—C13—C140.1 (3)C18—C19—N2—C16107.0 (3)
C12—C13—C14—C150.8 (4)C20—C19—N2—C16127.0 (3)
C13—C14—C15—C16176.3 (3)O2—C2—O1—C10.3 (5)
C13—C14—C15—S11.2 (3)C3—C2—O1—C1179.9 (3)
C14—C15—C16—O4159.8 (3)O5—C18—O6—C170.1 (5)
S1—C15—C16—O415.0 (3)C19—C18—O6—C17178.2 (3)
C14—C15—C16—N219.5 (4)C29—C30—O7—C2730.3 (6)
S1—C15—C16—N2165.68 (19)C28—C27—O7—C3026.6 (7)
O5—C18—C19—N2173.3 (3)C13—C12—S1—C150.5 (2)
O6—C18—C19—N28.6 (4)C11—C12—S1—C15179.2 (2)
O5—C18—C19—C2060.6 (4)C14—C15—S1—C121.0 (2)
O6—C18—C19—C20117.5 (3)C16—C15—S1—C12176.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O70.862.022.859 (3)164

Experimental details

Crystal data
Chemical formulaC26H26N2O6S·C4H8O
Mr566.65
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.3041 (3), 12.1810 (4), 29.6787 (11)
V3)3002.06 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.40 × 0.21 × 0.08
Data collection
DiffractometerOxford Xcalibur (Eos) CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.941, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
7782, 5081, 3167
Rint0.022
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.094, 0.91
No. of reflections5081
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.21
Absolute structureFlack (1983), 1964 Friedel pairs
Absolute structure parameter0.05 (9)

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O70.862.022.859 (3)163.5
 

Acknowledgements

This work was supported by the Shandong Key Scientific and Technological Project (2008 GG30002014) and the Project of the Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, Chinese Academy of Sciences.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoriuchi, T., Shen, X. & Hirao, T. (2006). Tetrahedron, 62, 12237–2246.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, G.-M., Liu, J., Li, Z., Ji, M.-W. & Sun, G.-X. (2010). Acta Cryst. E66, o2385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, L., Liang, J., Yue, G., Deng, X. & He, Y. (2009). Acta Cryst. E65, m722.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds