metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Pyrid­yl)pyridinium penta­aqua(pyridazine-4,5-di­carboxyl­ato)praseodymate(III)

aSchool of Pharmacy, Nanjing Medical University, Nanjing, People's Republic of China, and bThe Scientific and Technological Information Research Department of Jiangsu, Nanjing, People's Republic of China
*Correspondence e-mail: huijun_jiang@263.net

(Received 9 August 2010; accepted 19 August 2010; online 25 September 2010)

In the title complex, (C10H9N2)[Pr(C6H2N2O4)2(H2O)5], the Pr atom is nine-coordinated by nine O atoms from two pyridazine-4,5-dicarboxyl­ate anions and five water mol­ecules. It is noteworthy that there is a protonated bipyridine mol­ecule in the structure. Inter­molecular O—H⋯O, O—H⋯N and N—H⋯N hydrogen bonds are present, resulting in a three-dimensional network.

Related literature

For general background to metal carboxyl­ate coordination compounds, see: Escuer et al. (1997[Escuer, A., Vicente, R., Mernari, B., Gueddi, A. & Pierrot, M. (1997). Inorg. Chem. 36, 2511-2516.]). For pyridazine dicarb­oxy­lic metal complexes, see: Gryz et al. (2006[Gryz, M., Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m3470-m3472.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H9N2)[Pr(C6H2N2O4)2(H2O)5]

  • Mr = 720.37

  • Orthorhombic, P 21 21 2

  • a = 11.2726 (17) Å

  • b = 12.0023 (18) Å

  • c = 9.5266 (14) Å

  • V = 1288.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.97 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.22 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.454, Tmax = 0.649

  • 12497 measured reflections

  • 2358 independent reflections

  • 2280 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.052

  • S = 1.09

  • 2358 reflections

  • 216 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.43 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 981 Friedel pairs

  • Flack parameter: −0.014 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O4i 0.82 (4) 1.85 (4) 2.662 (3) 171 (5)
O6—H6B⋯O3i 0.82 (5) 1.93 (5) 2.749 (4) 178 (7)
O6—H6A⋯N1ii 0.82 (7) 2.07 (6) 2.881 (5) 172 (8)
O5—H5B⋯N2iii 0.82 (3) 2.14 (4) 2.953 (4) 172 (6)
O5—H5A⋯O3 0.82 (4) 2.00 (4) 2.809 (4) 173 (5)
N3—H3A⋯N4iv 0.91 (1) 1.65 (1) 2.555 (6) 180
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+2]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+1]; (iii) x, y, z+1; (iv) x, y, z-1.

Data collection: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 1999[Rigaku (1999). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

In the past few years, investigations on metal carboxylate coordination compounds have become of increasing interest (Escuer et al.(1997); Gryz et al. 2006). As part of our ongoing investigations in this field we report here the crystal structure of the title compound. In the crystal structure of (I) the Pr atom is coordinated by five oxygen atoms of five water molecules and four oxygen atoms from two pyridazine-4,5-dicarboxylate anions within a distorted orthorhombic coordination symmetry (Figure 1). The bond lengths (Allen et al., 1987) and angles are within normal ranges. The crystal structure contain additional bipyridine molecule that is linked to the complexes via O—H···N hydrogen bonding (Figure 2). The complexes are additionally connected by intermolecular O—H···O hydrogen bonding between the carboxyl O atoms and the water H atoms (Table 1 and Figure 2).

Related literature top

For general background to metal carboxylate coordination compounds, see: Escuer et al. (1997). For pyridazine dicarboxylic complexes, see: Gryz et al. (2006).

For related literature, see: Allen et al. (1987).

Experimental top

A mixture of pyridazine-4,5-dicarboxylic acid (84 mg, 0.5 mmol), NaOH (40 mg, 1.0 mmol), PrCl3.6H2O (177.7 mg, 0.5 mmol) and 4,4'-bipyridine (78 mg, 0.5 mmol) in warer (10 ml) was placed in a Teflon-lined stainless steel Parr bomb. The bomb was heated at 433 K for 4 d. The bomb was cooled naturally to room temperature, and yellow block crystals of (I) were obtained after several days. Analysis calculated for C22H23N6O13Pr: C 36.68, H 3.22, N 11.67%; found: C 36.64, H 3.30, N 11.62%.

Refinement top

Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C–H = 0.93 Å, N—H =0.905 Å, and with Uiso(H) = 1.2 Ueq(C, N).The H atoms of water molecules were located in difference Fouier maps, their bond lengths were set to 0.82 Å and afterwards they were refined using a riding model.

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure (Rigaku, 1999).

Figures top
[Figure 1] Fig. 1. Crystal structure and atom numbering of the title compound, shown with 20% probability displacement ellipsoids. Symmetry code for atoms labelled with A: 1-x, 1-y, z.
[Figure 2] Fig. 2. The packing digram of the title compound.
4-(4-Pyridyl)pyridinium pentaaqua(pyridazine-4,5-dicarboxylato)praseodymate(III) top
Crystal data top
(C10H9N2)[Pr(C6H2N2O4)2(H2O)5]F(000) = 720
Mr = 720.37Dx = 1.856 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2 2abCell parameters from 5385 reflections
a = 11.2726 (17) Åθ = 3.3–25.3°
b = 12.0023 (18) ŵ = 1.97 mm1
c = 9.5266 (14) ÅT = 293 K
V = 1288.9 (3) Å3Block, yellow
Z = 20.40 × 0.30 × 0.22 mm
Data collection top
Rigaku Mercury
diffractometer
2358 independent reflections
Radiation source: fine-focus sealed tube2280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.3°
ω scansh = 1313
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1413
Tmin = 0.454, Tmax = 0.649l = 1110
12497 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0271P)2 + 0.6051P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2358 reflectionsΔρmax = 1.25 e Å3
216 parametersΔρmin = 0.43 e Å3
6 restraintsAbsolute structure: Flack (1983), 981 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.014 (18)
Crystal data top
(C10H9N2)[Pr(C6H2N2O4)2(H2O)5]V = 1288.9 (3) Å3
Mr = 720.37Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 11.2726 (17) ŵ = 1.97 mm1
b = 12.0023 (18) ÅT = 293 K
c = 9.5266 (14) Å0.40 × 0.30 × 0.22 mm
Data collection top
Rigaku Mercury
diffractometer
2358 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2280 reflections with I > 2σ(I)
Tmin = 0.454, Tmax = 0.649Rint = 0.030
12497 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052Δρmax = 1.25 e Å3
S = 1.09Δρmin = 0.43 e Å3
2358 reflectionsAbsolute structure: Flack (1983), 981 Friedel pairs
216 parametersAbsolute structure parameter: 0.014 (18)
6 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.50000.50000.89791 (2)0.01750 (8)
O10.4932 (4)0.32723 (19)0.7261 (2)0.0323 (6)
O20.6434 (3)0.4430 (2)0.7086 (3)0.0351 (7)
O30.7353 (3)0.2019 (3)0.8030 (3)0.0471 (8)
O40.8272 (3)0.0738 (3)0.6792 (3)0.0552 (10)
O50.6242 (4)0.3454 (3)0.9953 (3)0.0490 (10)
H5A0.651 (4)0.303 (3)0.936 (4)0.049 (15)*
H5B0.629 (5)0.322 (5)1.076 (2)0.070 (19)*
O60.6757 (3)0.6135 (3)0.9524 (3)0.0405 (8)
H6A0.708 (7)0.643 (7)0.885 (5)0.14 (3)*
H6B0.701 (6)0.640 (5)1.026 (4)0.09 (2)*
O70.50000.50001.1547 (3)0.0276 (7)
H7A0.558 (3)0.522 (4)1.198 (4)0.059 (16)*
N10.7159 (3)0.1957 (3)0.3012 (3)0.0281 (7)
N20.6400 (3)0.2828 (3)0.2946 (3)0.0298 (7)
N31.00000.50000.3965 (5)0.0465 (11)
H3A1.00000.50000.3016 (12)0.042 (14)*
N41.00000.50001.1284 (5)0.0510 (12)
C10.6374 (3)0.2932 (3)0.5471 (4)0.0216 (8)
C20.7136 (3)0.2042 (3)0.5549 (4)0.0207 (8)
C30.7492 (3)0.1586 (3)0.4262 (4)0.0258 (8)
H3B0.80020.09770.42870.031*
C40.6030 (4)0.3280 (3)0.4125 (4)0.0291 (9)
H40.55020.38730.40620.035*
C50.5883 (3)0.3579 (3)0.6721 (4)0.0233 (8)
C60.7630 (3)0.1562 (3)0.6912 (4)0.0257 (8)
C70.9297 (4)0.4314 (4)0.4686 (6)0.0479 (12)
H7B0.88060.38300.41930.058*
C80.9268 (4)0.4292 (4)0.6114 (5)0.0458 (11)
H80.87630.38070.65840.055*
C91.00000.50000.6851 (6)0.0367 (11)
C100.9720 (8)0.4083 (5)1.0594 (6)0.081 (3)
H100.95340.34371.10880.097*
C110.9700 (7)0.4073 (5)0.9169 (5)0.073 (2)
H110.94800.34270.86980.087*
C121.00000.50000.8421 (5)0.0373 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.02098 (13)0.01818 (12)0.01336 (12)0.0006 (2)0.0000.000
O10.0269 (14)0.0402 (13)0.0298 (12)0.001 (2)0.010 (2)0.0098 (10)
O20.0478 (18)0.0265 (13)0.0310 (16)0.0096 (13)0.0152 (13)0.0092 (12)
O30.072 (2)0.0531 (19)0.0159 (14)0.0347 (16)0.0059 (15)0.0025 (14)
O40.077 (2)0.059 (2)0.0293 (17)0.0450 (19)0.0121 (17)0.0020 (16)
O50.079 (3)0.049 (2)0.0189 (18)0.0398 (19)0.0008 (17)0.0046 (16)
O60.042 (2)0.058 (2)0.0207 (16)0.0254 (17)0.0008 (15)0.0003 (16)
O70.0284 (18)0.0378 (18)0.0167 (15)0.003 (4)0.0000.000
N10.0346 (19)0.0321 (18)0.0176 (16)0.0084 (14)0.0010 (14)0.0026 (14)
N20.042 (2)0.0306 (17)0.0165 (16)0.0100 (16)0.0005 (15)0.0023 (14)
N30.053 (3)0.049 (3)0.038 (3)0.007 (6)0.0000.000
N40.061 (3)0.051 (3)0.041 (3)0.015 (8)0.0000.000
C10.026 (2)0.0207 (19)0.0184 (18)0.0002 (15)0.0018 (15)0.0006 (15)
C20.0216 (19)0.0222 (19)0.0183 (18)0.0001 (15)0.0010 (14)0.0017 (15)
C30.029 (2)0.027 (2)0.022 (2)0.0063 (17)0.0017 (15)0.0021 (16)
C40.040 (2)0.025 (2)0.022 (2)0.0088 (17)0.0001 (17)0.0015 (16)
C50.027 (2)0.026 (2)0.0165 (18)0.0067 (16)0.0017 (15)0.0037 (16)
C60.032 (2)0.026 (2)0.0188 (19)0.0056 (17)0.0008 (16)0.0028 (17)
C70.042 (3)0.043 (3)0.058 (3)0.009 (2)0.005 (2)0.002 (2)
C80.045 (3)0.048 (3)0.044 (3)0.011 (2)0.000 (2)0.003 (2)
C90.032 (3)0.031 (2)0.048 (3)0.008 (7)0.0000.000
C100.143 (9)0.050 (3)0.048 (3)0.022 (4)0.007 (4)0.003 (2)
C110.118 (8)0.056 (3)0.044 (3)0.028 (4)0.001 (3)0.001 (2)
C120.034 (3)0.033 (3)0.045 (3)0.001 (7)0.0000.000
Geometric parameters (Å, º) top
Pr1—O72.446 (3)N3—C7ii1.333 (5)
Pr1—O62.459 (3)N3—C71.333 (5)
Pr1—O6i2.459 (3)N3—H3A0.905 (10)
Pr1—O52.503 (3)N4—C101.321 (6)
Pr1—O5i2.503 (3)N4—C10ii1.321 (6)
Pr1—O2i2.516 (3)C1—C21.373 (5)
Pr1—O22.516 (3)C1—C41.403 (5)
Pr1—O12.643 (2)C1—C51.525 (5)
Pr1—O1i2.643 (2)C2—C31.401 (5)
Pr1—C52.921 (4)C2—C61.526 (5)
Pr1—C5i2.921 (4)C3—H3B0.9300
O1—C51.245 (5)C4—H40.9300
O2—C51.246 (4)C7—C81.361 (7)
O3—C61.238 (5)C7—H7B0.9300
O4—C61.231 (4)C8—C91.377 (5)
O5—H5A0.82 (4)C8—H80.9300
O5—H5B0.82 (3)C9—C8ii1.377 (5)
O6—H6A0.82 (7)C9—C121.496 (7)
O6—H6B0.82 (5)C10—C111.357 (7)
O7—H7A0.82 (4)C10—H100.9300
N1—C31.326 (5)C11—C121.363 (6)
N1—N21.354 (4)C11—H110.9300
N2—C41.315 (5)C12—C11ii1.363 (6)
O7—Pr1—O677.81 (8)C5—O1—Pr190.0 (2)
O7—Pr1—O6i77.81 (8)C5—O2—Pr195.9 (2)
O6—Pr1—O6i155.63 (15)Pr1—O5—H5A115 (4)
O7—Pr1—O568.24 (7)Pr1—O5—H5B130 (4)
O6—Pr1—O583.23 (14)H5A—O5—H5B114 (5)
O6i—Pr1—O587.78 (16)Pr1—O6—H6A115 (6)
O7—Pr1—O5i68.24 (7)Pr1—O6—H6B132 (5)
O6—Pr1—O5i87.78 (16)H6A—O6—H6B111 (7)
O6i—Pr1—O5i83.23 (14)Pr1—O7—H7A120 (3)
O5—Pr1—O5i136.47 (14)C3—N1—N2118.7 (3)
O7—Pr1—O2i135.77 (7)C4—N2—N1118.6 (3)
O6—Pr1—O2i121.20 (10)C7ii—N3—C7118.0 (6)
O6i—Pr1—O2i77.56 (11)C7ii—N3—H3A121.0 (3)
O5—Pr1—O2i145.74 (10)C7—N3—H3A121.0 (3)
O5i—Pr1—O2i72.84 (10)C10—N4—C10ii120.3 (6)
O7—Pr1—O2135.77 (7)C2—C1—C4117.0 (3)
O6—Pr1—O277.56 (11)C2—C1—C5125.5 (3)
O6i—Pr1—O2121.20 (10)C4—C1—C5117.5 (3)
O5—Pr1—O272.84 (10)C1—C2—C3115.8 (3)
O5i—Pr1—O2145.74 (10)C1—C2—C6124.7 (3)
O2i—Pr1—O288.45 (14)C3—C2—C6119.5 (3)
O7—Pr1—O1128.27 (5)N1—C3—C2125.0 (3)
O6—Pr1—O1126.08 (14)N1—C3—H3B117.5
O6i—Pr1—O170.89 (12)C2—C3—H3B117.5
O5—Pr1—O170.39 (11)N2—C4—C1124.8 (3)
O5i—Pr1—O1142.66 (14)N2—C4—H4117.6
O2i—Pr1—O175.56 (10)C1—C4—H4117.6
O2—Pr1—O150.33 (10)O2—C5—O1123.8 (3)
O7—Pr1—O1i128.27 (5)O2—C5—C1117.1 (3)
O6—Pr1—O1i70.89 (12)O1—C5—C1119.0 (3)
O6i—Pr1—O1i126.08 (14)O2—C5—Pr158.96 (19)
O5—Pr1—O1i142.66 (14)O1—C5—Pr164.81 (18)
O5i—Pr1—O1i70.39 (11)C1—C5—Pr1174.8 (3)
O2i—Pr1—O1i50.33 (10)O4—C6—O3125.7 (4)
O2—Pr1—O1i75.56 (10)O4—C6—C2116.0 (3)
O1—Pr1—O1i103.45 (10)O3—C6—C2118.2 (3)
O7—Pr1—C5137.44 (7)N3—C7—C8122.8 (5)
O6—Pr1—C5101.81 (12)N3—C7—H7B118.6
O6i—Pr1—C596.11 (11)C8—C7—H7B118.6
O5—Pr1—C569.47 (9)C7—C8—C9118.9 (5)
O5i—Pr1—C5153.75 (10)C7—C8—H8120.5
O2i—Pr1—C581.37 (9)C9—C8—H8120.5
O2—Pr1—C525.10 (9)C8—C9—C8ii118.7 (6)
O1—Pr1—C525.24 (11)C8—C9—C12120.7 (3)
O1i—Pr1—C589.54 (9)C8ii—C9—C12120.7 (3)
O7—Pr1—C5i137.44 (7)N4—C10—C11120.5 (6)
O6—Pr1—C5i96.11 (11)N4—C10—H10119.7
O6i—Pr1—C5i101.81 (12)C11—C10—H10119.7
O5—Pr1—C5i153.75 (10)C10—C11—C12120.8 (5)
O5i—Pr1—C5i69.47 (9)C10—C11—H11119.6
O2i—Pr1—C5i25.10 (9)C12—C11—H11119.6
O2—Pr1—C5i81.37 (9)C11—C12—C11ii117.0 (6)
O1—Pr1—C5i89.54 (9)C11—C12—C9121.5 (3)
O1i—Pr1—C5i25.24 (11)C11ii—C12—C9121.5 (3)
C5—Pr1—C5i85.11 (13)
O7—Pr1—O1—C5121.79 (19)C4—C1—C5—O190.2 (4)
O6—Pr1—O1—C517.8 (3)O7—Pr1—C5—O299.9 (2)
O6i—Pr1—O1—C5177.9 (3)O6—Pr1—C5—O215.2 (2)
O5—Pr1—O1—C583.3 (2)O6i—Pr1—C5—O2178.6 (2)
O5i—Pr1—O1—C5133.4 (3)O5—Pr1—C5—O293.2 (3)
O2i—Pr1—O1—C5100.5 (2)O5i—Pr1—C5—O294.4 (4)
O2—Pr1—O1—C50.3 (2)O2i—Pr1—C5—O2105.1 (2)
O1i—Pr1—O1—C558.21 (19)O1—Pr1—C5—O2179.4 (4)
C5i—Pr1—O1—C579.5 (3)O1i—Pr1—C5—O255.2 (2)
O7—Pr1—O2—C5107.2 (2)C5i—Pr1—C5—O280.1 (2)
O6—Pr1—O2—C5164.8 (2)O7—Pr1—C5—O180.6 (2)
O6i—Pr1—O2—C51.7 (3)O6—Pr1—C5—O1165.4 (2)
O5—Pr1—O2—C578.1 (2)O6i—Pr1—C5—O12.0 (2)
O5i—Pr1—O2—C5128.4 (3)O5—Pr1—C5—O187.3 (2)
O2i—Pr1—O2—C572.8 (2)O5i—Pr1—C5—O185.1 (4)
O1—Pr1—O2—C50.3 (2)O2i—Pr1—C5—O174.4 (2)
O1i—Pr1—O2—C5122.0 (2)O2—Pr1—C5—O1179.4 (4)
C5i—Pr1—O2—C597.0 (2)O1i—Pr1—C5—O1124.24 (19)
C3—N1—N2—C40.6 (5)C5i—Pr1—C5—O199.4 (2)
C4—C1—C2—C30.5 (5)C1—C2—C6—O4177.7 (4)
C5—C1—C2—C3178.8 (3)C3—C2—C6—O44.3 (6)
C4—C1—C2—C6178.6 (4)C1—C2—C6—O31.9 (6)
C5—C1—C2—C60.8 (6)C3—C2—C6—O3176.0 (4)
N2—N1—C3—C21.3 (6)C7ii—N3—C7—C80.3 (4)
C1—C2—C3—N10.7 (6)N3—C7—C8—C90.5 (7)
C6—C2—C3—N1177.5 (4)C7—C8—C9—C8ii0.2 (4)
N1—N2—C4—C10.7 (6)C7—C8—C9—C12179.8 (4)
C2—C1—C4—N21.2 (6)C10ii—N4—C10—C110.9 (6)
C5—C1—C4—N2178.2 (4)N4—C10—C11—C121.8 (13)
Pr1—O2—C5—O10.6 (4)C10—C11—C12—C11ii0.9 (6)
Pr1—O2—C5—C1176.2 (3)C10—C11—C12—C9179.1 (6)
Pr1—O1—C5—O20.6 (4)C8—C9—C12—C1127.2 (4)
Pr1—O1—C5—C1176.1 (3)C8ii—C9—C12—C11152.8 (4)
C2—C1—C5—O293.8 (5)C8—C9—C12—C11ii152.8 (4)
C4—C1—C5—O285.6 (4)C8ii—C9—C12—C11ii27.2 (4)
C2—C1—C5—O190.4 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4iii0.82 (4)1.85 (4)2.662 (3)171 (5)
O6—H6B···O3iii0.82 (5)1.93 (5)2.749 (4)178 (7)
O6—H6A···N1iv0.82 (7)2.07 (6)2.881 (5)172 (8)
O5—H5B···N2v0.82 (3)2.14 (4)2.953 (4)172 (6)
O5—H5A···O30.82 (4)2.00 (4)2.809 (4)173 (5)
N3—H3A···N4vi0.91 (1)1.65 (1)2.555 (6)180
Symmetry codes: (iii) x+3/2, y+1/2, z+2; (iv) x+3/2, y+1/2, z+1; (v) x, y, z+1; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula(C10H9N2)[Pr(C6H2N2O4)2(H2O)5]
Mr720.37
Crystal system, space groupOrthorhombic, P21212
Temperature (K)293
a, b, c (Å)11.2726 (17), 12.0023 (18), 9.5266 (14)
V3)1288.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.97
Crystal size (mm)0.40 × 0.30 × 0.22
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.454, 0.649
No. of measured, independent and
observed [I > 2σ(I)] reflections
12497, 2358, 2280
Rint0.030
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.052, 1.09
No. of reflections2358
No. of parameters216
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.25, 0.43
Absolute structureFlack (1983), 981 Friedel pairs
Absolute structure parameter0.014 (18)

Computer programs: CrystalClear (Rigaku, 1999), CrystalStructure (Rigaku, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4i0.82 (4)1.85 (4)2.662 (3)171 (5)
O6—H6B···O3i0.82 (5)1.93 (5)2.749 (4)178 (7)
O6—H6A···N1ii0.82 (7)2.07 (6)2.881 (5)172 (8)
O5—H5B···N2iii0.82 (3)2.14 (4)2.953 (4)172 (6)
O5—H5A···O30.82 (4)2.00 (4)2.809 (4)173 (5)
N3—H3A···N4iv0.91 (1)1.65 (1)2.555 (6)180
Symmetry codes: (i) x+3/2, y+1/2, z+2; (ii) x+3/2, y+1/2, z+1; (iii) x, y, z+1; (iv) x, y, z1.
 

Acknowledgements

Financial support from the Science Foundation of Nangjing Medical University (Reference: 8651) is gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBurnett, M. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEscuer, A., Vicente, R., Mernari, B., Gueddi, A. & Pierrot, M. (1997). Inorg. Chem. 36, 2511–2516.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGryz, M., Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m3470–m3472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds