organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2673-o2674

5H-Thio­chromeno[2,3-b]pyridine-5,10,10-trione

aDepartment of Chemistry, Islamia University, Bahawalpur, Pakistan, bApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 19 September 2010; accepted 24 September 2010; online 30 September 2010)

The asymmetric unit of the title compound, C12H7NO3S, contains two independent mol­ecules with different geometric­al configurations. The dihedral angles between the benzene and pyridine rings in the two mol­ecules are 3.7 (2) and 5.40 (19)°. The central heterocyclic fused rings have different puckering parameters [Q = 0.122 (3) Å, θ = 100.4 (13), φ = 185.3 (19)° in one mol­ecule, 0.101 (3) Å, 101.4 (3) and 2 (2)° in the other]. The SO2 group is oriented at dihedral angles of 81.06 (14) and 82.58 (15)° with the benzene and pyridine rings, respectively, in one mol­ecule [87.21 (14) and 87.66 (14)° in the second]. In the crystal, the mol­ecules are linked into zigzag polymeric chains along the b axis by inter­molecular C—H⋯O hydrogen bonding. ππ inter­actions with centroid–centroid distances in the range 3.825 (3)–4.153 (3) Å stabilize the structure. S—O⋯π and C—O⋯π inter­actions are also observed.

Related literature

For background to our work on pyridine- and thio-containing heterocyclic rings and for related structures, see: Khan et al. (2008a[Khan, M. N., Tahir, M. N., Khan, M. A., Khan, I. U. & Arshad, M. N. (2008a). Acta Cryst. E64, o730.],b[Khan, M. N., Tahir, M. N., Khan, M. A., Khan, I. U. & Arshad, M. N. (2008b). Acta Cryst. E64, o1704.]). For the preparation, see: Khan et al. (2008a[Khan, M. N., Tahir, M. N., Khan, M. A., Khan, I. U. & Arshad, M. N. (2008a). Acta Cryst. E64, o730.],b[Khan, M. N., Tahir, M. N., Khan, M. A., Khan, I. U. & Arshad, M. N. (2008b). Acta Cryst. E64, o1704.]); Kruger & Mann (1954[Kruger, S. & Mann, F. G. (1954). J. Chem. Soc. pp. 3905-3910.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C12H7NO3S

  • Mr = 245.25

  • Orthorhombic, P c a 21

  • a = 12.157 (5) Å

  • b = 11.483 (5) Å

  • c = 14.964 (7) Å

  • V = 2089.0 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.35 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.985

  • 29502 measured reflections

  • 3718 independent reflections

  • 2838 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.094

  • S = 1.04

  • 3718 reflections

  • 307 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1749 Friedel pairs

  • Flack parameter: 0.13 (9)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the S1/C1/C6/C7/C8/C12 and S2/C13/C18/C19/C20/C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O5i 0.93 2.59 3.372 (5) 142
C4—H4⋯O3ii 0.93 2.57 3.472 (5) 164
C15—H15⋯O2iii 0.93 2.58 3.367 (5) 143
S1—O3⋯Cg2iii 1.43 (1) 3.21 (1) 4.421 (3) 141 (1)
C19—O4⋯Cg1ii 1.21 (1) 2.87 (1) 3.585 (4) 117 (1)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+1, z]; (iii) [-x+{\script{3\over 2}}, y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) is an extension to our work related to pyridine and thio containing heterocyclic rings (Khan et al., 2008a, b). We have reported previously the crystal structures of (II) i.e. 7-nitro-5H-1-benzothiopyrano[2,3-b]-pyridin-5-one (Khan et al., 2008a) and 5H-1-benzothiopyrano[2,3-b]pyridin-5-one (Khan et al., 2008b), which are related to the title compound.

The title compound consist of two independent molecules having different configuration. In one molecule, the phenyl ring A (C1—C6) and pyridine ring B (C8—C11/N1/C12) are planar with r. m. s. deviation of 0.0077 and 0.0063 Å, respectively. The dihedral angle between A/B is 5.40 (19)°. The heterocyclic central fused ring C (S1/C1/C6—C8/C12) is slightly twisted with puckering parameters (Cremer & Pople, 1975) given by Q = 0.122 (3) Å, θ = 100.4 (14)°, ϕ = 185.3 (18)°. The SO2 group D (O2/S1/O3) of this molecule makes dihedral angle of 87.21 (14) and 87.66 (14) ° with the phenyl ring A and pyridine ring B, respectively. In the second molecule, the phenyl ring E (C13—C18) and pyridine ring F (C20—C23/N2/C24) are planar with r. m. s. deviation of 0.0040 and 0.0018 Å, respectively. The dihedral angle between E/F is 3.72 (20)°. The puckering parameters of the central fused ring G (S2/C13/C18—C20/C24) are given by Q = 0.101 (3) Å, θ = 101.4 (3)°, ϕ = 2(2)°. In this molecule, the SO2 group H (O5/S2/O6) makes dihedral angle of 81.06 (14) and 82.58 (15)° with the parent phenyl ring E and pyridine ring F, respectively. There exist intermolecular H-bonding of C—H···O type (Table 1) due to which molecules establish zigzag polymeric chains. The ππ interactions in the range of 3.825 (3)–4.153 (3) Å exist which plays important role in stabilizing the molecules.

Related literature top

For background to our work on pyridine- and thio-containing heterocyclic rings and for related structures, see: Khan et al. (2008a,b). For the preparation, see: Khan et al. (2008a,b); Kruger & Mann (1954). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

5H-1-Benzothiopyrano[2,3-b]pyridin-5-one was prepared freshly (Khan et al., 2008b) and was oxidized using acetic acid and hydrogen peroxide according to the method described by Kruger & Mann, 1954.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.2 for all aryl H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal displacements are drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form polymeric chains extending along the b axis.
5H-Thiochromeno[2,3-b]pyridine-5,10,10-trione top
Crystal data top
C12H7NO3SF(000) = 1008
Mr = 245.25Dx = 1.560 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2838 reflections
a = 12.157 (5) Åθ = 2.2–25.2°
b = 11.483 (5) ŵ = 0.30 mm1
c = 14.964 (7) ÅT = 296 K
V = 2089.0 (16) Å3Needle, white
Z = 80.35 × 0.14 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3718 independent reflections
Radiation source: fine-focus sealed tube2838 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 8.10 pixels mm-1θmax = 25.2°, θmin = 2.4°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.968, Tmax = 0.985l = 1717
29502 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.043P)2 + 0.3395P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3718 reflectionsΔρmax = 0.20 e Å3
307 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 1749 Friedal pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.13 (9)
Crystal data top
C12H7NO3SV = 2089.0 (16) Å3
Mr = 245.25Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 12.157 (5) ŵ = 0.30 mm1
b = 11.483 (5) ÅT = 296 K
c = 14.964 (7) Å0.35 × 0.14 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3718 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2838 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.985Rint = 0.061
29502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.20 e Å3
S = 1.04Δρmin = 0.25 e Å3
3718 reflectionsAbsolute structure: Flack (1983), 1749 Friedal pairs
307 parametersAbsolute structure parameter: 0.13 (9)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.81953 (6)0.23202 (7)0.11098 (7)0.0396 (3)
O10.4807 (2)0.2221 (2)0.2163 (2)0.0604 (10)
O20.8585 (2)0.2231 (2)0.0215 (2)0.0605 (10)
O30.90038 (19)0.2461 (2)0.1799 (2)0.0515 (10)
N10.7975 (3)0.0089 (3)0.1253 (4)0.0579 (16)
C10.7263 (2)0.3484 (3)0.1177 (2)0.0396 (11)
C20.7670 (3)0.4540 (3)0.0899 (3)0.0480 (14)
C30.7021 (3)0.5509 (4)0.0970 (3)0.0620 (17)
C40.5960 (3)0.5429 (4)0.1313 (3)0.0603 (18)
C50.5556 (3)0.4373 (4)0.1565 (3)0.0517 (16)
C60.6192 (3)0.3367 (3)0.1509 (2)0.0394 (11)
C70.5707 (3)0.2240 (3)0.1802 (2)0.0410 (12)
C80.6319 (3)0.1143 (3)0.1664 (3)0.0407 (11)
C90.5807 (3)0.0072 (3)0.1860 (4)0.0523 (18)
C100.6387 (4)0.0949 (3)0.1760 (3)0.0590 (19)
C110.7462 (4)0.0915 (4)0.1467 (3)0.0620 (18)
C120.7393 (3)0.1068 (3)0.1364 (3)0.0389 (14)
S20.55676 (6)0.72967 (8)0.42422 (7)0.0439 (3)
O40.2126 (2)0.7236 (2)0.33032 (18)0.0491 (9)
O50.5968 (2)0.7223 (2)0.5146 (2)0.0701 (11)
O60.6358 (2)0.7403 (2)0.3539 (2)0.0635 (10)
N20.5313 (3)0.5063 (3)0.4106 (3)0.0539 (13)
C130.4655 (2)0.8471 (3)0.4173 (3)0.0391 (11)
C140.5086 (3)0.9534 (3)0.4424 (3)0.0550 (16)
C150.4448 (3)1.0509 (4)0.4341 (4)0.0687 (19)
C160.3396 (3)1.0443 (4)0.4026 (4)0.0660 (19)
C170.2959 (3)0.9386 (3)0.3784 (3)0.0533 (16)
C180.3576 (3)0.8374 (3)0.3856 (2)0.0392 (11)
C190.3053 (3)0.7249 (3)0.3592 (2)0.0392 (11)
C200.3670 (3)0.6127 (3)0.3704 (3)0.0365 (11)
C210.3156 (3)0.5088 (3)0.3504 (4)0.0473 (16)
C220.3716 (3)0.4060 (3)0.3600 (3)0.0540 (16)
C230.4783 (4)0.4074 (4)0.3899 (3)0.0567 (19)
C240.4750 (3)0.6059 (3)0.4004 (3)0.0384 (11)
H20.837730.459510.066570.0578*
H30.729200.622840.078690.0744*
H40.552890.609380.137090.0725*
H50.483910.432250.177800.0621*
H90.508120.005520.205550.0627*
H100.605500.165920.189010.0705*
H110.784850.161050.141400.0741*
H140.579900.958720.464560.0658*
H150.473551.122960.450130.0823*
H160.297451.111600.397510.0790*
H170.224120.934880.357010.0641*
H210.243100.508520.330520.0567*
H220.337460.335690.346370.0648*
H230.515350.337050.396060.0682*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0312 (4)0.0449 (5)0.0428 (5)0.0024 (4)0.0075 (4)0.0005 (6)
O10.0356 (14)0.0615 (19)0.084 (2)0.0044 (13)0.0160 (15)0.0022 (16)
O20.0675 (17)0.063 (2)0.0510 (16)0.0010 (15)0.0260 (15)0.0026 (15)
O30.0278 (12)0.0550 (18)0.0716 (19)0.0022 (12)0.0036 (12)0.0009 (14)
N10.0506 (19)0.046 (2)0.077 (4)0.0001 (16)0.001 (2)0.0009 (19)
C10.0339 (18)0.048 (2)0.037 (2)0.0020 (15)0.0044 (17)0.0073 (19)
C20.041 (2)0.044 (2)0.059 (3)0.0074 (18)0.012 (2)0.008 (2)
C30.066 (3)0.047 (3)0.073 (3)0.004 (2)0.002 (3)0.013 (2)
C40.056 (2)0.046 (3)0.079 (4)0.013 (2)0.001 (2)0.007 (2)
C50.039 (2)0.054 (3)0.062 (3)0.007 (2)0.002 (2)0.004 (2)
C60.0312 (18)0.048 (2)0.039 (2)0.0023 (16)0.0043 (15)0.0007 (16)
C70.031 (2)0.049 (2)0.043 (2)0.0046 (17)0.0005 (16)0.0049 (18)
C80.0320 (19)0.047 (2)0.043 (2)0.0072 (18)0.0023 (17)0.0030 (19)
C90.041 (2)0.060 (3)0.056 (4)0.011 (2)0.002 (2)0.007 (2)
C100.058 (3)0.042 (3)0.077 (4)0.012 (2)0.006 (2)0.006 (2)
C110.059 (2)0.043 (3)0.084 (4)0.002 (2)0.002 (3)0.004 (2)
C120.0348 (19)0.041 (2)0.041 (3)0.0000 (17)0.0007 (17)0.0009 (18)
S20.0301 (4)0.0465 (5)0.0551 (6)0.0046 (4)0.0106 (4)0.0082 (7)
O40.0295 (14)0.0615 (17)0.0564 (18)0.0004 (12)0.0134 (13)0.0057 (14)
O50.0752 (19)0.065 (2)0.070 (2)0.0092 (15)0.0416 (18)0.0119 (16)
O60.0373 (15)0.0631 (19)0.090 (2)0.0025 (13)0.0133 (15)0.0150 (15)
N20.0447 (17)0.049 (2)0.068 (3)0.0048 (15)0.007 (2)0.0099 (17)
C130.0334 (18)0.043 (2)0.041 (2)0.0044 (15)0.0053 (17)0.0032 (18)
C140.041 (2)0.052 (3)0.072 (3)0.009 (2)0.011 (2)0.003 (2)
C150.070 (3)0.044 (3)0.092 (4)0.009 (2)0.012 (3)0.004 (3)
C160.062 (3)0.048 (3)0.088 (4)0.012 (2)0.004 (3)0.005 (3)
C170.042 (2)0.053 (3)0.065 (3)0.0102 (19)0.007 (2)0.010 (2)
C180.0316 (18)0.047 (2)0.039 (2)0.0004 (16)0.0020 (15)0.0030 (15)
C190.034 (2)0.052 (2)0.0317 (19)0.0013 (17)0.0002 (16)0.0005 (17)
C200.0294 (18)0.044 (2)0.036 (2)0.0040 (17)0.0018 (15)0.0006 (17)
C210.039 (2)0.049 (3)0.054 (3)0.0090 (19)0.002 (2)0.004 (2)
C220.051 (2)0.044 (3)0.067 (3)0.012 (2)0.009 (2)0.004 (2)
C230.058 (3)0.037 (3)0.075 (4)0.008 (2)0.006 (2)0.003 (2)
C240.0362 (19)0.039 (2)0.040 (2)0.0010 (17)0.0031 (17)0.0052 (18)
Geometric parameters (Å, º) top
S1—O21.424 (3)C2—H20.9300
S1—O31.434 (3)C3—H30.9300
S1—C11.755 (3)C4—H40.9300
S1—C121.779 (4)C5—H50.9300
S2—O51.440 (3)C9—H90.9300
S2—O61.430 (3)C10—H100.9300
S2—C131.749 (3)C11—H110.9300
S2—C241.771 (4)C13—C141.380 (5)
O1—C71.220 (4)C13—C181.399 (5)
O4—C191.207 (4)C14—C151.368 (6)
N1—C111.349 (6)C15—C161.365 (6)
N1—C121.339 (5)C16—C171.374 (6)
N2—C231.342 (6)C17—C181.387 (5)
N2—C241.342 (5)C18—C191.493 (5)
C1—C21.374 (5)C19—C201.500 (5)
C1—C61.400 (4)C20—C211.380 (5)
C2—C31.368 (6)C20—C241.390 (5)
C3—C41.391 (5)C21—C221.370 (5)
C4—C51.362 (6)C22—C231.372 (6)
C5—C61.393 (6)C14—H140.9300
C6—C71.488 (5)C15—H150.9300
C7—C81.478 (5)C16—H160.9300
C8—C121.383 (5)C17—H170.9300
C8—C91.409 (5)C21—H210.9300
C9—C101.376 (5)C22—H220.9300
C10—C111.379 (7)C23—H230.9300
O1···C223.293 (5)N2···O63.091 (5)
O1···C233.358 (6)N2···O53.035 (5)
O1···O5i3.226 (4)N1···H14iii2.8900
O1···C11ii3.385 (6)N1···H9iv2.8300
O2···C17i3.400 (5)N2···H2viii2.8800
O2···N13.002 (5)N2···H21v2.8500
O2···O4i3.051 (4)C1···O4v3.292 (4)
O2···C15iii3.367 (5)C3···O5x3.372 (5)
O2···C18i3.394 (5)C5···O5i3.362 (5)
O2···C19i3.197 (5)C6···O4v2.996 (4)
O3···N13.107 (5)C6···O5i3.393 (5)
O3···C10iv3.378 (5)C7···O4v2.896 (4)
O3···C19v2.940 (4)C7···O5i3.266 (5)
O3···O4v3.225 (4)C8···O4v3.232 (5)
O3···C20v3.305 (5)C10···O6xiii3.266 (5)
O3···C18v3.266 (4)C10···O3ii3.378 (5)
O4···O3vi3.225 (4)C11···O1iv3.385 (6)
O4···O2vii3.051 (4)C15···O2xi3.367 (5)
O4···C23vi3.342 (6)C17···O2vii3.400 (5)
O4···C6vi2.996 (4)C18···O3vi3.266 (4)
O4···C1vi3.292 (4)C18···O2vii3.394 (5)
O4···C8vi3.232 (5)C19···O2vii3.197 (5)
O4···C7vi2.896 (4)C19···O3vi2.940 (4)
O5···C5vii3.362 (5)C20···O3vi3.305 (5)
O5···N23.035 (5)C22···O13.293 (5)
O5···C3viii3.372 (5)C22···O6vi3.324 (5)
O5···C7vii3.266 (5)C23···O13.358 (6)
O5···O1vii3.226 (4)C23···O4v3.342 (6)
O5···C6vii3.393 (5)C22···H53.0600
O6···C22v3.324 (5)H2···O22.8100
O6···C10ix3.266 (5)H2···N2x2.8800
O6···N23.091 (5)H3···O5x2.5900
O1···H92.5100H4···O3vi2.5700
O1···H11ii2.7200H5···C223.0600
O1···H52.4800H5···O12.4800
O1···H222.9200H9···O12.5100
O2···H22.8100H9···N1ii2.8300
O2···H23x2.7500H10···O6xiii2.7200
O2···H15iii2.5800H10···O3ii2.6600
O3···H4v2.5700H11···O5iii2.7300
O3···H10iv2.6600H11···O1iv2.7200
O4···H212.5000H14···O52.8200
O4···H172.4600H14···N1xi2.8900
O4···H23vi2.6800H15···O2xi2.5800
O5···H11xi2.7300H16···O6xiv2.6800
O5···H142.8200H17···O42.4600
O5···H3viii2.5900H21···O42.5000
O6···H16xii2.6800H21···N2vi2.8500
O6···H10ix2.7200H22···O12.9200
O6···H22v2.6000H22···O6vi2.6000
N1···O33.107 (5)H23···O2viii2.7500
N1···O23.002 (5)H23···O4v2.6800
O2—S1—O3117.15 (15)C6—C5—H5119.00
O2—S1—C1108.87 (15)C8—C9—H9120.00
O2—S1—C12108.99 (18)C10—C9—H9120.00
O3—S1—C1108.40 (14)C9—C10—H10120.00
O3—S1—C12108.26 (18)C11—C10—H10120.00
C1—S1—C12104.43 (15)N1—C11—H11119.00
O5—S2—C13108.38 (18)C10—C11—H11119.00
O5—S2—C24109.37 (18)S2—C13—C14115.1 (2)
O6—S2—C13108.47 (17)S2—C13—C18123.6 (3)
O6—S2—C24107.31 (18)C14—C13—C18121.2 (3)
C13—S2—C24104.53 (16)C13—C14—C15118.9 (3)
O5—S2—O6117.97 (16)C14—C15—C16121.2 (4)
C11—N1—C12116.4 (4)C15—C16—C17120.2 (4)
C23—N2—C24116.8 (4)C16—C17—C18120.7 (4)
S1—C1—C2115.0 (2)C13—C18—C17117.8 (3)
S1—C1—C6123.2 (3)C13—C18—C19123.9 (3)
C2—C1—C6121.8 (3)C17—C18—C19118.3 (3)
C1—C2—C3119.1 (3)O4—C19—C18120.2 (3)
C2—C3—C4120.6 (4)O4—C19—C20119.8 (3)
C3—C4—C5119.7 (4)C18—C19—C20120.0 (3)
C4—C5—C6121.5 (3)C19—C20—C21119.5 (3)
C1—C6—C5117.3 (3)C19—C20—C24123.8 (3)
C5—C6—C7118.9 (3)C21—C20—C24116.7 (3)
C1—C6—C7123.8 (3)C20—C21—C22119.8 (4)
O1—C7—C8119.9 (3)C21—C22—C23119.6 (4)
C6—C7—C8120.1 (3)N2—C23—C22122.6 (4)
O1—C7—C6120.1 (3)S2—C24—N2112.0 (3)
C7—C8—C9119.5 (3)S2—C24—C20123.4 (3)
C7—C8—C12125.0 (3)N2—C24—C20124.5 (3)
C9—C8—C12115.5 (3)C13—C14—H14121.00
C8—C9—C10119.6 (4)C15—C14—H14120.00
C9—C10—C11119.7 (4)C14—C15—H15119.00
N1—C11—C10122.5 (4)C16—C15—H15119.00
S1—C12—N1111.3 (3)C15—C16—H16120.00
S1—C12—C8122.5 (3)C17—C16—H16120.00
N1—C12—C8126.3 (3)C16—C17—H17120.00
C3—C2—H2120.00C18—C17—H17120.00
C1—C2—H2120.00C20—C21—H21120.00
C2—C3—H3120.00C22—C21—H21120.00
C4—C3—H3120.00C21—C22—H22120.00
C5—C4—H4120.00C23—C22—H22120.00
C3—C4—H4120.00N2—C23—H23119.00
C4—C5—H5119.00C22—C23—H23119.00
O2—S1—C1—C256.2 (3)C1—C6—C7—C86.4 (5)
O2—S1—C1—C6125.4 (3)C5—C6—C7—O16.9 (5)
O3—S1—C1—C272.3 (3)C5—C6—C7—C8173.7 (3)
O3—S1—C1—C6106.1 (3)O1—C7—C8—C97.0 (6)
C12—S1—C1—C2172.5 (3)O1—C7—C8—C12171.8 (4)
C12—S1—C1—C69.1 (3)C6—C7—C8—C9173.6 (4)
O2—S1—C12—N157.7 (4)C6—C7—C8—C127.6 (6)
O2—S1—C12—C8124.3 (4)C7—C8—C9—C10177.9 (4)
O3—S1—C12—N170.7 (4)C12—C8—C9—C101.0 (7)
O3—S1—C12—C8107.3 (4)C7—C8—C12—S10.6 (6)
C1—S1—C12—N1173.9 (4)C7—C8—C12—N1178.3 (5)
C1—S1—C12—C88.0 (4)C9—C8—C12—S1178.3 (4)
O5—S2—C13—C18125.2 (3)C9—C8—C12—N10.5 (7)
O6—S2—C13—C1472.0 (4)C8—C9—C10—C110.2 (8)
O6—S2—C13—C18105.6 (3)C9—C10—C11—N11.4 (8)
C24—S2—C13—C14173.7 (3)S2—C13—C14—C15176.3 (4)
C24—S2—C13—C188.7 (4)C18—C13—C14—C151.4 (7)
O5—S2—C24—N258.7 (4)S2—C13—C18—C17176.1 (3)
O5—S2—C24—C20124.3 (4)S2—C13—C18—C193.9 (5)
O6—S2—C24—N270.3 (4)C14—C13—C18—C171.3 (6)
O6—S2—C24—C20106.7 (4)C14—C13—C18—C19178.7 (4)
C13—S2—C24—N2174.6 (3)C13—C14—C15—C160.8 (8)
C13—S2—C24—C208.4 (4)C14—C15—C16—C170.1 (9)
O5—S2—C13—C1457.2 (4)C15—C16—C17—C180.0 (8)
C11—N1—C12—C80.9 (8)C16—C17—C18—C130.6 (6)
C12—N1—C11—C101.8 (8)C16—C17—C18—C19179.4 (4)
C11—N1—C12—S1177.1 (4)C13—C18—C19—O4178.2 (3)
C23—N2—C24—S2176.8 (3)C13—C18—C19—C203.2 (5)
C23—N2—C24—C200.1 (7)C17—C18—C19—O41.8 (5)
C24—N2—C23—C220.3 (7)C17—C18—C19—C20176.8 (3)
S1—C1—C6—C5177.0 (3)O4—C19—C20—C212.2 (6)
S1—C1—C2—C3176.7 (3)O4—C19—C20—C24177.9 (4)
C6—C1—C2—C31.7 (6)C18—C19—C20—C21176.4 (4)
C2—C1—C6—C7178.8 (3)C18—C19—C20—C243.5 (6)
S1—C1—C6—C72.9 (4)C19—C20—C21—C22179.7 (4)
C2—C1—C6—C51.3 (5)C24—C20—C21—C220.4 (7)
C1—C2—C3—C40.4 (7)C19—C20—C24—S23.3 (6)
C2—C3—C4—C51.2 (7)C19—C20—C24—N2179.9 (4)
C3—C4—C5—C61.7 (7)C21—C20—C24—S2176.8 (4)
C4—C5—C6—C7179.5 (4)C21—C20—C24—N20.2 (7)
C4—C5—C6—C10.4 (6)C20—C21—C22—C230.3 (8)
C1—C6—C7—O1173.0 (3)C21—C22—C23—N20.1 (7)
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x1/2, y, z; (iii) x+3/2, y1, z1/2; (iv) x+1/2, y, z; (v) x+1/2, y+1, z; (vi) x1/2, y+1, z; (vii) x+1, y+1, z+1/2; (viii) x+3/2, y, z+1/2; (ix) x, y+1, z; (x) x+3/2, y, z1/2; (xi) x+3/2, y+1, z+1/2; (xii) x+1/2, y+2, z; (xiii) x, y1, z; (xiv) x1/2, y+2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1/C1/C6/C7/C8/C12 and S2/C13/C18/C19/C20/C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O5x0.932.593.372 (5)142
C4—H4···O3vi0.932.573.472 (5)164
C15—H15···O2xi0.932.583.367 (5)143
S1—O3···Cg2xi1.43 (1)3.21 (1)4.421 (3)141 (1)
C19—O4···Cg1vi1.21 (1)2.87 (1)3.585 (4)117 (1)
Symmetry codes: (vi) x1/2, y+1, z; (x) x+3/2, y, z1/2; (xi) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H7NO3S
Mr245.25
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)12.157 (5), 11.483 (5), 14.964 (7)
V3)2089.0 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.35 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.968, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
29502, 3718, 2838
Rint0.061
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.094, 1.04
No. of reflections3718
No. of parameters307
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25
Absolute structureFlack (1983), 1749 Friedal pairs
Absolute structure parameter0.13 (9)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1/C1/C6/C7/C8/C12 and S2/C13/C18/C19/C20/C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.932.593.372 (5)142
C4—H4···O3ii0.932.573.472 (5)164
C15—H15···O2iii0.932.583.367 (5)143
S1—O3···Cg2iii1.434 (3)3.212 (4)4.421 (3)141.14 (14)
C19—O4···Cg1ii1.207 (4)2.869 (3)3.585 (4)117.2 (2)
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x1/2, y+1, z; (iii) x+3/2, y+1, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhan, M. N., Tahir, M. N., Khan, M. A., Khan, I. U. & Arshad, M. N. (2008a). Acta Cryst. E64, o730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, M. N., Tahir, M. N., Khan, M. A., Khan, I. U. & Arshad, M. N. (2008b). Acta Cryst. E64, o1704.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKruger, S. & Mann, F. G. (1954). J. Chem. Soc. pp. 3905–3910.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2673-o2674
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds