organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-3,6-di­phenyl-1,4-di­hydro-1,2,4,5-tetra­zine

aDepartment of Biological and Chemical Engineering, Taizhou Vocational and Technical college, Taizhou 318000, People's Republic of China
*Correspondence e-mail: xufeng901@126.com

(Received 22 September 2010; accepted 23 September 2010; online 30 September 2010)

In the title compound, C21H16N4O, the central tetra­zine ring adopts an unsymmetrical boat conformation with the two N atoms as the bow and stern. The crystal packing is stabilized by inter­molecular N—H—O hydrogen bonds.

Related literature

For related structures, see: Xu et al. (2010[Xu, F., Yang, Z. Z., Hu, W. X. & Xi, L. M. (2010). Chin. J. Org. Chem. 30, 260-265.]); Hu et al. (2004[Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177-1181.]); Rao et al. (2006[Rao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702-3705.]). For applications of 1,2,4,5-tetra­zine derivatives, see: Sauer et al. (1996[Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901-955. Oxford: Elsevier.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16N4O

  • Mr = 340.38

  • Orthorhombic, P 21 21 21

  • a = 7.1100 (19) Å

  • b = 12.115 (3) Å

  • c = 19.884 (6) Å

  • V = 1712.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 93 K

  • 0.43 × 0.27 × 0.27 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • 13708 measured reflections

  • 2254 independent reflections

  • 2128 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.085

  • S = 1.00

  • 2254 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O1i 0.91 (2) 1.97 (2) 2.806 (2) 150.9 (18)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,2,4,5-Tetrazine derivatives have high potential for biological activity, possessing a wide spectrum of antiviral and antitumor properties. They have been widely used in pesticides and herbicides (Sauer, 1996). Dihydro-1,2,4,5- tetrazine has four isomers, namely 1,2-, 1,4-, 1,6- and 3,6-dihydro-1,2,4,5- tetrazines. The 1,4-dihydro structures (Rao et al., 2006) were found to have potential antitumor properties. In continuation of our work on the structure-activity relationship of dihydro-1,2,4,5-tetrazine derivatives (Hu et al., 2004 & Xu et al., 2010), we report here the crystal structure of the title compound (I) (Fig. 1).

In the tetrazine ring, atoms N2, C3, N5 and C6 are almost coplanar, while atoms N1 and N4 deviate from the plane by 0.447 (2) and 0.330 (2) Å, respectively. The N1/N2/C6 and C3/N4/N5 planes make dihedral angles of 35.76 (2)° and 27.66 (2)°, respectively, with the N2/C3/N5/C6 plane, i.e. the tetrazine ring adopts an unsymmetrical boat conformation. The benzene rings C7—C12, C13—C18 and C20—C25 make dihedral angles of 22.88 (2)°, 17.80 (2)° and 87.09 (2)° with the N2/C3/N5/C6 plane, respectively. Atom N1 is almost sp2 hybridized due to the angles around it add up to 358.0 (2)°.

The crystal packing (Fig.2) is stabilized by intermolecular N—H—O interactions between a hydrogen on nitrogen N(4) and the O atom of carbonyl group, with a N—H—O separation of 2.806 (2) Å (Table 2).

Related literature top

For related structures, see: Xu et al. (2010); Hu et al. (2004); Rao et al. (2006). For applications of 1,2,4,5-tetrazine derivatives, see: Sauer et al. (1996).

Experimental top

To a solution of 1,2-dihydro-1,2,4,5-tetrazine (0.47 g, 2 mmol) in chloroform (20 ml) was added dropwise benzoyl chloride (0.28 g, 2 mmol) in chloroform (10 ml) under stirring at room temperature using pyridine (0.17 g, 2.1 mmol) as the catalyst. After stirring for 2 h, the solvent was distilled off under vacuum. The residue was chromatographed on a silica gel column using cyclohexane-dichloromethane (V/V, 1:2) as the eluent to get the yellow solid (0.37 g, 55%). An anhydrous ethanol solution of the title compound was stood at room temperature, and by slowly evaporating ethanol from the solution, yellow crystals suitable for X-ray diffraction analysis were isolated one month later. m.p.: 500–501 K.

Refinement top

H atoms were placed in calculated positions with N—H = 0.86 Å, C—H = 0.93 (aromatic) and 0.96 Å (methyl), and refined in riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). 1662 Friedel pairs were averaged before the final refinement as the absolute structure could not be determined unambiguously.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. Crystal structure of (I) viewed down the a axis. N—H···O hydrogen bondings are shown as dashed lines.
1-Benzoyl-3,6-diphenyl-1,4-dihydro-1,2,4,5-tetrazine top
Crystal data top
C21H16N4OF(000) = 712
Mr = 340.38Dx = 1.320 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2254 reflections
a = 7.1100 (19) Åθ = 3.4–27.5°
b = 12.115 (3) ŵ = 0.09 mm1
c = 19.884 (6) ÅT = 93 K
V = 1712.7 (8) Å3Column, yellow
Z = 40.43 × 0.27 × 0.27 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2128 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.032
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
Detector resolution: 28.5714 pixels mm-1h = 99
ϕ and ω scansk = 1514
13708 measured reflectionsl = 2425
2254 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.196P]
where P = (Fo2 + 2Fc2)/3
2254 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H16N4OV = 1712.7 (8) Å3
Mr = 340.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1100 (19) ŵ = 0.09 mm1
b = 12.115 (3) ÅT = 93 K
c = 19.884 (6) Å0.43 × 0.27 × 0.27 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2128 reflections with I > 2σ(I)
13708 measured reflectionsRint = 0.032
2254 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.23 e Å3
2254 reflectionsΔρmin = 0.20 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41566 (18)0.55133 (9)0.57735 (6)0.0169 (3)
N10.1772 (2)0.56642 (12)0.50300 (7)0.0160 (3)
N20.1136 (2)0.55047 (12)0.43512 (7)0.0166 (3)
N40.0860 (2)0.74205 (12)0.44154 (7)0.0166 (3)
N50.0366 (2)0.74009 (12)0.50949 (7)0.0171 (3)
C30.0818 (2)0.64438 (14)0.40646 (8)0.0155 (3)
C60.0824 (2)0.65060 (13)0.53963 (8)0.0153 (3)
C70.0230 (2)0.62957 (14)0.60945 (8)0.0166 (4)
C80.0051 (3)0.52210 (15)0.63299 (9)0.0203 (4)
H80.03570.46200.60430.024*
C90.0570 (3)0.50186 (15)0.69807 (9)0.0237 (4)
H90.06890.42810.71370.028*
C100.1015 (3)0.58866 (16)0.74016 (9)0.0234 (4)
H100.14380.57470.78470.028*
C110.0842 (3)0.69637 (16)0.71726 (9)0.0230 (4)
H110.11440.75610.74630.028*
C120.0230 (3)0.71750 (15)0.65229 (9)0.0197 (4)
H120.01240.79140.63680.024*
C130.0390 (2)0.64618 (14)0.33354 (8)0.0163 (3)
C140.1052 (3)0.55940 (15)0.29386 (9)0.0203 (4)
H140.17290.50040.31400.024*
C150.0725 (3)0.55907 (16)0.22504 (9)0.0225 (4)
H150.11690.49960.19820.027*
C160.0250 (3)0.64547 (16)0.19537 (9)0.0217 (4)
H160.04680.64530.14820.026*
C170.0907 (3)0.73210 (16)0.23452 (9)0.0234 (4)
H170.15700.79140.21410.028*
C180.0594 (3)0.73225 (15)0.30386 (9)0.0200 (4)
H180.10540.79130.33070.024*
C190.3449 (2)0.52356 (13)0.52322 (8)0.0141 (3)
C200.4384 (2)0.44072 (14)0.47866 (8)0.0153 (3)
C210.6317 (3)0.45175 (15)0.46805 (9)0.0197 (4)
H210.69760.51230.48720.024*
C220.7276 (3)0.37442 (15)0.42963 (10)0.0242 (4)
H220.85830.38330.42110.029*
C230.6319 (3)0.28419 (16)0.40369 (9)0.0221 (4)
H230.69780.23020.37820.027*
C240.4404 (3)0.27244 (15)0.41477 (8)0.0207 (4)
H240.37570.21040.39690.025*
C250.3424 (3)0.35102 (14)0.45181 (9)0.0187 (4)
H250.21080.34350.45870.022*
H4N0.048 (3)0.8053 (17)0.4209 (10)0.020 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0209 (6)0.0155 (6)0.0144 (5)0.0013 (5)0.0018 (5)0.0010 (4)
N10.0183 (7)0.0151 (7)0.0145 (6)0.0020 (6)0.0008 (6)0.0025 (6)
N20.0181 (7)0.0185 (7)0.0132 (6)0.0027 (6)0.0010 (6)0.0031 (6)
N40.0226 (7)0.0142 (7)0.0129 (6)0.0022 (6)0.0006 (6)0.0005 (5)
N50.0198 (7)0.0172 (7)0.0145 (7)0.0004 (6)0.0018 (6)0.0028 (5)
C30.0140 (8)0.0153 (8)0.0171 (7)0.0000 (7)0.0003 (6)0.0029 (6)
C60.0164 (8)0.0126 (8)0.0170 (8)0.0012 (7)0.0021 (6)0.0039 (6)
C70.0140 (8)0.0185 (9)0.0172 (8)0.0001 (7)0.0017 (6)0.0020 (7)
C80.0201 (9)0.0174 (8)0.0233 (8)0.0022 (7)0.0023 (7)0.0025 (7)
C90.0226 (9)0.0227 (10)0.0256 (9)0.0035 (8)0.0032 (8)0.0035 (7)
C100.0214 (9)0.0323 (10)0.0165 (8)0.0013 (8)0.0031 (7)0.0020 (7)
C110.0239 (9)0.0273 (10)0.0179 (8)0.0037 (8)0.0005 (7)0.0052 (7)
C120.0231 (9)0.0179 (8)0.0181 (8)0.0039 (8)0.0008 (7)0.0019 (7)
C130.0141 (8)0.0184 (8)0.0162 (7)0.0025 (7)0.0005 (6)0.0009 (6)
C140.0222 (9)0.0180 (9)0.0206 (8)0.0016 (7)0.0017 (7)0.0019 (7)
C150.0240 (9)0.0241 (9)0.0195 (8)0.0004 (9)0.0015 (7)0.0060 (7)
C160.0200 (8)0.0303 (10)0.0148 (7)0.0042 (8)0.0006 (7)0.0006 (7)
C170.0235 (9)0.0256 (10)0.0210 (8)0.0022 (8)0.0044 (7)0.0016 (7)
C180.0197 (9)0.0213 (9)0.0191 (8)0.0023 (8)0.0005 (7)0.0023 (7)
C190.0173 (8)0.0108 (7)0.0143 (7)0.0013 (7)0.0017 (6)0.0027 (6)
C200.0197 (8)0.0141 (8)0.0121 (7)0.0015 (7)0.0004 (6)0.0017 (6)
C210.0189 (9)0.0183 (9)0.0219 (8)0.0006 (7)0.0013 (7)0.0003 (7)
C220.0180 (9)0.0276 (10)0.0269 (9)0.0035 (8)0.0017 (7)0.0001 (8)
C230.0254 (10)0.0218 (9)0.0192 (8)0.0093 (8)0.0009 (7)0.0007 (7)
C240.0262 (9)0.0162 (8)0.0197 (8)0.0018 (8)0.0054 (7)0.0025 (7)
C250.0191 (8)0.0162 (8)0.0208 (8)0.0008 (8)0.0011 (7)0.0008 (7)
Geometric parameters (Å, º) top
O1—C191.235 (2)C13—C141.396 (2)
N1—C191.361 (2)C14—C151.388 (2)
N1—C61.423 (2)C14—H140.9500
N1—N21.4363 (19)C15—C161.387 (3)
N2—C31.292 (2)C15—H150.9500
N4—C31.374 (2)C16—C171.388 (3)
N4—N51.3961 (19)C16—H160.9500
N4—H4N0.91 (2)C17—C181.397 (2)
N5—C61.281 (2)C17—H170.9500
C3—C131.482 (2)C18—H180.9500
C6—C71.473 (2)C19—C201.495 (2)
C7—C81.389 (3)C20—C251.390 (2)
C7—C121.403 (2)C20—C211.396 (2)
C8—C91.389 (3)C21—C221.388 (3)
C8—H80.9500C21—H210.9500
C9—C101.381 (3)C22—C231.387 (3)
C9—H90.9500C22—H220.9500
C10—C111.388 (3)C23—C241.387 (3)
C10—H100.9500C23—H230.9500
C11—C121.387 (2)C24—C251.391 (3)
C11—H110.9500C24—H240.9500
C12—H120.9500C25—H250.9500
C13—C181.387 (2)
C19—N1—C6122.48 (14)C15—C14—H14119.9
C19—N1—N2120.12 (13)C13—C14—H14119.9
C6—N1—N2115.36 (14)C16—C15—C14120.06 (17)
C3—N2—N1110.55 (13)C16—C15—H15120.0
C3—N4—N5118.11 (14)C14—C15—H15120.0
C3—N4—H4N119.3 (13)C15—C16—C17120.02 (16)
N5—N4—H4N112.0 (13)C15—C16—H16120.0
C6—N5—N4113.79 (14)C17—C16—H16120.0
N2—C3—N4122.04 (14)C16—C17—C18120.08 (18)
N2—C3—C13118.71 (15)C16—C17—H17120.0
N4—C3—C13119.25 (15)C18—C17—H17120.0
N5—C6—N1119.17 (15)C13—C18—C17119.95 (17)
N5—C6—C7120.97 (15)C13—C18—H18120.0
N1—C6—C7119.61 (15)C17—C18—H18120.0
C8—C7—C12119.05 (16)O1—C19—N1120.69 (15)
C8—C7—C6120.39 (15)O1—C19—C20121.22 (15)
C12—C7—C6120.52 (15)N1—C19—C20118.08 (14)
C9—C8—C7120.56 (17)C25—C20—C21120.00 (17)
C9—C8—H8119.7C25—C20—C19122.27 (16)
C7—C8—H8119.7C21—C20—C19117.59 (16)
C10—C9—C8120.20 (17)C22—C21—C20120.15 (18)
C10—C9—H9119.9C22—C21—H21119.9
C8—C9—H9119.9C20—C21—H21119.9
C9—C10—C11119.80 (16)C23—C22—C21119.68 (18)
C9—C10—H10120.1C23—C22—H22120.2
C11—C10—H10120.1C21—C22—H22120.2
C12—C11—C10120.47 (17)C24—C23—C22120.24 (18)
C12—C11—H11119.8C24—C23—H23119.9
C10—C11—H11119.8C22—C23—H23119.9
C11—C12—C7119.92 (17)C23—C24—C25120.37 (18)
C11—C12—H12120.0C23—C24—H24119.8
C7—C12—H12120.0C25—C24—H24119.8
C18—C13—C14119.71 (15)C20—C25—C24119.52 (17)
C18—C13—C3122.06 (15)C20—C25—H25120.2
C14—C13—C3118.20 (16)C24—C25—H25120.2
C15—C14—C13120.18 (17)
C19—N1—N2—C3123.18 (17)N2—C3—C13—C1425.1 (2)
C6—N1—N2—C341.0 (2)N4—C3—C13—C14155.04 (17)
C3—N4—N5—C633.1 (2)C18—C13—C14—C150.1 (3)
N1—N2—C3—N48.0 (2)C3—C13—C14—C15178.39 (17)
N1—N2—C3—C13172.13 (14)C13—C14—C15—C160.5 (3)
N5—N4—C3—N230.0 (2)C14—C15—C16—C170.3 (3)
N5—N4—C3—C13149.85 (15)C15—C16—C17—C180.2 (3)
N4—N5—C6—N10.9 (2)C14—C13—C18—C170.4 (3)
N4—N5—C6—C7173.36 (15)C3—C13—C18—C17177.78 (17)
C19—N1—C6—N5124.94 (18)C16—C17—C18—C130.6 (3)
N2—N1—C6—N538.8 (2)C6—N1—C19—O15.0 (2)
C19—N1—C6—C760.7 (2)N2—N1—C19—O1168.06 (15)
N2—N1—C6—C7135.50 (16)C6—N1—C19—C20176.05 (15)
N5—C6—C7—C8154.45 (17)N2—N1—C19—C2013.0 (2)
N1—C6—C7—C819.8 (2)O1—C19—C20—C25130.67 (18)
N5—C6—C7—C1223.1 (3)N1—C19—C20—C2548.2 (2)
N1—C6—C7—C12162.63 (17)O1—C19—C20—C2145.1 (2)
C12—C7—C8—C90.1 (3)N1—C19—C20—C21136.01 (17)
C6—C7—C8—C9177.77 (17)C25—C20—C21—C221.2 (3)
C7—C8—C9—C100.1 (3)C19—C20—C21—C22177.08 (16)
C8—C9—C10—C110.1 (3)C20—C21—C22—C232.1 (3)
C9—C10—C11—C120.2 (3)C21—C22—C23—C241.4 (3)
C10—C11—C12—C70.5 (3)C22—C23—C24—C250.1 (3)
C8—C7—C12—C110.4 (3)C21—C20—C25—C240.3 (3)
C6—C7—C12—C11178.06 (17)C19—C20—C25—C24175.30 (15)
N2—C3—C13—C18156.66 (17)C23—C24—C25—C201.0 (3)
N4—C3—C13—C1823.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O1i0.91 (2)1.97 (2)2.806 (2)150.9 (18)
Symmetry code: (i) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H16N4O
Mr340.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)93
a, b, c (Å)7.1100 (19), 12.115 (3), 19.884 (6)
V3)1712.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.27 × 0.27
Data collection
DiffractometerRigaku AFC10/Saturn724+
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13708, 2254, 2128
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.00
No. of reflections2254
No. of parameters239
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O1i0.91 (2)1.97 (2)2.806 (2)150.9 (18)
Symmetry code: (i) x1/2, y+3/2, z+1.
 

Acknowledgements

We are very grateful to the Science Foundation for Excellent Youth Scholars of the Department of Education of Zhejiang Province and the Educational Commission of Zhejiang Province of China (Y201018289).

References

First citationHu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177–1181.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702–3705.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901–955. Oxford: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, F., Yang, Z. Z., Hu, W. X. & Xi, L. M. (2010). Chin. J. Org. Chem. 30, 260–265.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds