metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A two-dimensional manganese(II) complex: poly[bis­­(μ2-4,4′-bipyrid­yl)tetra­kis­(μ2-3,5-di­nitro­benzoato)dimanganese(II)]

aDepartment of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350004, People's Republic of China
*Correspondence e-mail: lizhulai@126.com

(Received 16 August 2010; accepted 26 August 2010; online 4 September 2010)

The Mn atom in the title compound, [Mn2(C7H3N2O6)4(C10H8N2)2]n, is six-coordinated by two N atoms and four O atoms, forming a distorted octa­hedral geometry. The Mn—O bond lengths are in the range 2.1281 (13)–2.2011 (12) Å and the Mn—N bond lengths are 2.269 (2) and 2.278 (2) Å. Mn(II) atoms are double-bridged along the a axis by two pairs of bi-monodentate carboxyl groups, forming a double-stranded chain, while the bidentate 4,4′-bipyridine ligand bridges the Mn atom along the b axis. This results in a two-dimensional structure constructed of oblong grids with the sides of length 11.634 and 5.075 Å

Related literature

In order to study the relationship between the manganese ion and the biological coordination agent, the role of the manganese ion in the active sites and the structure of the active sites in the manganese enzymes, small mol­ecule complexes are often applied to modeling the structure and the properties of reaction in the active centers, see: Shi et al. (2000[Shi, Z., Zhang, L. R., Gao, S., Yang, G., Hua, J., Gao, L. & Feng, S. (2000). Inorg. Chem. 39, 1990-1993.]). The characterization of metal complexes containing monocarb­oxy­lic acids has demonstrated the versatility of the carboxyl­ate group as an innersphere ligand, see: Mehrotra & Bohra (1983[Mehrotra, R. C. & Bohra, R. (1983). Metal Carboxylates. London: Academic Press.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C7H3N2O6)4(C10H8N2)2]

  • Mr = 633.35

  • Monoclinic, P 2/n

  • a = 10.0873 (6) Å

  • b = 11.6336 (6) Å

  • c = 21.2191 (12) Å

  • β = 98.075 (3)°

  • V = 2465.41 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 293 K

  • 0.82 × 0.45 × 0.35 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (CrystalStructure; Rigaku, 2000[Rigaku (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.779, Tmax = 1.000

  • 14626 measured reflections

  • 4334 independent reflections

  • 4149 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.01

  • 4334 reflections

  • 393 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: CrystalClear Rigaku (2000[Rigaku (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In order to study the relationship between the manganese ion and the biological coordination agent, the role of manganese ion in the active sites and the structure of the active sites in the manganese enzymes, small molecule complexes are often applied to modeling the structure and the properties of reaction in the active centers (Shi et al.2000). Metal complexes containing monocarboxylic acids are well known and the publication of many structurally characterized examples of this class of compounds has demonstrated the versatility of the carboxylate group as an innersphere ligand (Mehrotra et al., 1983). In this paper, we will report the synthesis and crystal structure of a new two-dimensional manganese complex, [Mn2.(dinitrobenzoic acid)4.(4,4-bipy)2]n,(I). The crystal structure was confirmeded by X-ray crystallography.

The crystal structure of the title compound is illustrated in Fig.1. The Mn atom is located in an octahedral enviroment containing two N from two bipy ligand, four O from two chelating carboxyl. The Mn—O bond lengths are in the range 2.1281 (13) - 2.2011 (12) Å, and the Mn—N bond lengths are 2.269 (2) and 2.278 (2) Å.

Along the a axis, each Mn(II) center is double-bridged by two pair of bi-monodentate carboxyl, and forming a double-stranded chain. Along the b axis, the bidentate ligand 4,4'-bipyridine bridge the Mn atom in a straight mode. As a result, the whole molecule features a two-dimensional structure constructed of oblong grids with the side length 11.634 and 5.075 Å, as shown in Fig.2.

Related literature top

In order to study the relationship between the manganese ion and the biological coordination agent, the role of manganese ion in the active sites and the structure of the active sites in the manganese enzymes, small molecule complexes are often applied to modeling the structure and the properties of reaction in the active centers, see Shi, et al. (2000). The characterization of metal complexes containing monocarboxylic acids has demonstrated the versatility of the carboxylate group as an innersphere ligand, see: Mehrotra & Bohra (1983).

Experimental top

The reaction of dinitrobenzoic acid 0.636 g(3 mmol) and NaOH 0.12 g(3 mmol) in the molar ratio of 1:1 in an aqueous-alcohol(3:1) solution(40 ml) at room temperature for 30 minutes produced a colorless solution, to which MnCl2.6H2O 0.198 g(1 mmol) and 4,4'-bipyridine 0.156 g(1 mmol) was added to produced a yellowy solution. The reaction solution was kept at room temperature after stirring for an hour. Yellowy crystals were obtained after a few days, which were washed with water and ethanol for several times and then dried in air.

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity. Symmetry codes: (A) -x+1/2, y, -z+1/2; (B) -x+3/2, y, -z+1/2; (C) x, y+1, z;(D) x, y-1, z.
[Figure 2] Fig. 2. The two-dimensional structure of the title compound, constructed of oblong grids. Only the carboxyl group of the benzoic acid is shown for clarity.
poly[bis(µ2-4,4'-bipyridyl)tetrakis(µ2-3,5- dinitrobenzoato)dimanganese(II)] top
Crystal data top
[Mn2(C7H3N2O6)4(C10H8N2)2]F(000) = 1284
Mr = 633.35Dx = 1.706 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 5503 reflections
a = 10.0873 (6) Åθ = 1.9–25.0°
b = 11.6336 (6) ŵ = 0.62 mm1
c = 21.2191 (12) ÅT = 293 K
β = 98.075 (3)°Prism, yellow
V = 2465.41 (14) Å30.82 × 0.45 × 0.35 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
4334 independent reflections
Radiation source: fine-focus sealed tube4149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
h = 129
Tmin = 0.779, Tmax = 1.000k = 1313
14626 measured reflectionsl = 2325
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0435P)2 + 1.780P]
where P = (Fo2 + 2Fc2)/3
4334 reflections(Δ/σ)max < 0.001
393 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Mn2(C7H3N2O6)4(C10H8N2)2]V = 2465.41 (14) Å3
Mr = 633.35Z = 4
Monoclinic, P2/nMo Kα radiation
a = 10.0873 (6) ŵ = 0.62 mm1
b = 11.6336 (6) ÅT = 293 K
c = 21.2191 (12) Å0.82 × 0.45 × 0.35 mm
β = 98.075 (3)°
Data collection top
Rigaku Mercury
diffractometer
4334 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
4149 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 1.000Rint = 0.018
14626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.01Δρmax = 0.31 e Å3
4334 reflectionsΔρmin = 0.37 e Å3
393 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.25000.19545 (3)0.25000.01900 (11)
Mn20.75000.24424 (3)0.25000.02079 (11)
O10.39680 (12)0.20294 (11)0.33670 (6)0.0285 (3)
O20.59377 (14)0.24937 (13)0.30771 (7)0.0376 (3)
O30.60065 (13)0.24451 (12)0.16375 (6)0.0317 (3)
C130.51107 (17)0.24788 (14)0.34545 (8)0.0228 (4)
N40.75001.04904 (18)0.25000.0289 (5)
O40.39999 (13)0.19047 (13)0.18644 (6)0.0378 (3)
C30.25000.2403 (2)0.25000.0233 (5)
C90.75000.6807 (2)0.25000.0266 (5)
N30.75000.43988 (18)0.25000.0292 (5)
C100.75000.8084 (2)0.25000.0265 (5)
N10.25000.00037 (17)0.25000.0256 (4)
O110.1529 (2)0.04745 (19)0.06614 (9)0.0772 (7)
C150.48226 (19)0.28563 (16)0.45950 (9)0.0295 (4)
H150.40920.23610.45480.035*
N80.1882 (2)0.02270 (18)0.01070 (9)0.0527 (5)
C260.33672 (19)0.09265 (16)0.06677 (9)0.0302 (4)
H260.28750.06860.09830.036*
C20.30203 (19)0.17792 (15)0.30368 (9)0.0294 (4)
H20.33570.21580.34110.035*
C210.44557 (17)0.16499 (15)0.08170 (8)0.0237 (4)
N20.25000.60873 (17)0.25000.0247 (4)
C140.55181 (18)0.30668 (15)0.40903 (8)0.0255 (4)
C40.25000.3681 (2)0.25000.0235 (5)
N50.4524 (2)0.31431 (18)0.57173 (8)0.0447 (5)
C10.30335 (19)0.05938 (15)0.30107 (9)0.0290 (4)
H10.34330.01920.33660.035*
O50.3718 (3)0.2385 (3)0.56666 (10)0.1090 (11)
C200.48563 (17)0.20357 (14)0.15039 (8)0.0228 (4)
C190.66089 (18)0.38110 (16)0.41675 (9)0.0315 (4)
H190.71010.39420.38350.038*
C110.6523 (2)0.87052 (17)0.27427 (11)0.0407 (5)
H110.58440.83250.29130.049*
C60.22428 (19)0.54874 (15)0.30084 (8)0.0276 (4)
H60.20670.58900.33660.033*
C80.8668 (2)0.61846 (17)0.26293 (12)0.0434 (5)
H80.94850.65630.27180.052*
C160.52304 (19)0.33937 (17)0.51722 (9)0.0318 (4)
O120.1347 (2)0.0599 (2)0.03319 (10)0.0937 (9)
C50.22266 (18)0.42997 (15)0.30270 (8)0.0269 (4)
H50.20350.39180.33890.032*
C170.6271 (2)0.41653 (17)0.52608 (9)0.0345 (4)
H170.65070.45420.56470.041*
O100.5122 (2)0.1732 (2)0.13269 (8)0.0763 (7)
O60.48179 (19)0.36920 (17)0.62041 (7)0.0610 (5)
N70.54582 (19)0.20781 (19)0.07935 (8)0.0457 (5)
C70.8626 (2)0.49998 (17)0.26272 (12)0.0436 (5)
H70.94280.46000.27200.052*
C220.51562 (18)0.20179 (16)0.03395 (9)0.0288 (4)
H220.58930.25000.04320.035*
C230.47448 (19)0.16581 (17)0.02799 (8)0.0307 (4)
C240.36823 (19)0.09225 (17)0.04444 (9)0.0326 (4)
H240.34280.06820.08620.039*
O90.6350 (2)0.2753 (3)0.06612 (9)0.0986 (9)
C120.6554 (2)0.98865 (17)0.27332 (11)0.0409 (5)
H120.58811.02850.28980.049*
N60.8062 (2)0.51773 (19)0.48328 (11)0.0562 (6)
C250.30197 (19)0.05647 (17)0.00456 (9)0.0326 (4)
C180.69470 (19)0.43534 (17)0.47508 (10)0.0356 (5)
O70.8276 (2)0.5696 (2)0.53379 (11)0.0904 (8)
O80.8707 (2)0.5303 (2)0.43984 (12)0.0902 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0216 (2)0.01424 (19)0.02138 (19)0.0000.00381 (14)0.000
Mn20.0215 (2)0.01626 (19)0.0247 (2)0.0000.00365 (14)0.000
O10.0259 (7)0.0332 (7)0.0253 (6)0.0066 (5)0.0001 (5)0.0004 (5)
O20.0320 (7)0.0491 (9)0.0339 (7)0.0046 (6)0.0124 (6)0.0083 (6)
O30.0273 (7)0.0408 (8)0.0261 (7)0.0089 (6)0.0006 (5)0.0002 (6)
C130.0231 (9)0.0201 (8)0.0246 (9)0.0025 (7)0.0009 (7)0.0027 (7)
N40.0333 (12)0.0192 (10)0.0350 (12)0.0000.0079 (9)0.000
O40.0292 (7)0.0581 (9)0.0283 (7)0.0048 (6)0.0117 (6)0.0079 (6)
C30.0243 (13)0.0157 (12)0.0301 (13)0.0000.0041 (10)0.000
C90.0300 (13)0.0201 (12)0.0301 (13)0.0000.0059 (11)0.000
N30.0265 (11)0.0195 (10)0.0409 (13)0.0000.0028 (9)0.000
C100.0298 (13)0.0194 (12)0.0294 (13)0.0000.0009 (11)0.000
N10.0272 (11)0.0172 (10)0.0329 (11)0.0000.0061 (9)0.000
O110.0918 (15)0.0888 (15)0.0484 (11)0.0533 (12)0.0010 (10)0.0245 (10)
C150.0276 (9)0.0302 (9)0.0296 (10)0.0000 (8)0.0004 (8)0.0021 (8)
N80.0582 (13)0.0540 (12)0.0446 (11)0.0287 (10)0.0026 (9)0.0110 (9)
C260.0309 (10)0.0306 (10)0.0297 (10)0.0051 (8)0.0065 (8)0.0023 (8)
C20.0355 (10)0.0211 (9)0.0300 (10)0.0026 (8)0.0003 (8)0.0011 (7)
C210.0229 (8)0.0238 (8)0.0244 (9)0.0023 (7)0.0031 (7)0.0018 (7)
N20.0307 (11)0.0168 (10)0.0261 (11)0.0000.0021 (9)0.000
C140.0241 (9)0.0228 (9)0.0283 (9)0.0039 (7)0.0006 (7)0.0017 (7)
C40.0230 (12)0.0170 (12)0.0294 (13)0.0000.0001 (10)0.000
N50.0488 (11)0.0559 (12)0.0288 (9)0.0035 (10)0.0029 (8)0.0019 (8)
C10.0344 (10)0.0207 (9)0.0314 (10)0.0010 (8)0.0032 (8)0.0046 (7)
O50.129 (2)0.155 (2)0.0501 (12)0.092 (2)0.0402 (13)0.0271 (14)
C200.0235 (9)0.0208 (8)0.0242 (9)0.0028 (7)0.0037 (7)0.0009 (7)
C190.0258 (9)0.0296 (10)0.0387 (10)0.0010 (8)0.0029 (8)0.0025 (8)
C110.0405 (11)0.0227 (10)0.0640 (14)0.0020 (9)0.0255 (10)0.0008 (9)
C60.0373 (10)0.0213 (9)0.0244 (9)0.0011 (7)0.0053 (7)0.0016 (7)
C80.0258 (10)0.0238 (10)0.0782 (16)0.0040 (8)0.0008 (10)0.0016 (10)
C160.0331 (10)0.0334 (10)0.0279 (10)0.0075 (8)0.0006 (8)0.0004 (8)
O120.1066 (17)0.1188 (19)0.0565 (12)0.0850 (16)0.0147 (11)0.0096 (12)
C50.0331 (10)0.0217 (9)0.0259 (9)0.0005 (7)0.0041 (7)0.0034 (7)
C170.0354 (11)0.0319 (10)0.0329 (10)0.0088 (8)0.0072 (8)0.0091 (8)
O100.0802 (13)0.1256 (19)0.0245 (9)0.0335 (13)0.0120 (8)0.0062 (10)
O60.0786 (12)0.0728 (12)0.0314 (8)0.0081 (10)0.0075 (8)0.0120 (8)
N70.0422 (11)0.0696 (13)0.0261 (9)0.0103 (10)0.0076 (8)0.0012 (9)
C70.0258 (10)0.0231 (10)0.0790 (16)0.0016 (8)0.0033 (10)0.0001 (10)
C220.0249 (9)0.0332 (10)0.0280 (9)0.0032 (7)0.0029 (7)0.0015 (7)
C230.0305 (10)0.0385 (10)0.0236 (9)0.0000 (8)0.0056 (7)0.0013 (8)
C240.0359 (10)0.0350 (10)0.0254 (9)0.0022 (8)0.0005 (8)0.0059 (8)
O90.0972 (17)0.160 (2)0.0429 (11)0.0870 (17)0.0259 (11)0.0133 (12)
C120.0427 (12)0.0220 (10)0.0631 (14)0.0029 (9)0.0251 (10)0.0008 (9)
N60.0444 (11)0.0505 (12)0.0721 (15)0.0161 (10)0.0029 (11)0.0210 (11)
C250.0321 (10)0.0300 (10)0.0347 (10)0.0075 (8)0.0018 (8)0.0055 (8)
C180.0273 (10)0.0277 (10)0.0487 (12)0.0003 (8)0.0053 (9)0.0079 (9)
O70.0861 (15)0.0873 (16)0.0976 (17)0.0454 (13)0.0123 (13)0.0546 (14)
O80.0725 (14)0.1070 (18)0.0951 (16)0.0562 (13)0.0260 (12)0.0321 (14)
Geometric parameters (Å, º) top
Mn1—O4i2.1644 (13)C26—H260.9300
Mn1—O42.1644 (13)C2—C11.380 (3)
Mn1—O12.1954 (12)C2—H20.9300
Mn1—O1i2.1954 (12)C21—C221.382 (3)
Mn1—N12.269 (2)C21—C201.524 (2)
Mn1—N2ii2.278 (2)N2—C61.340 (2)
Mn2—O2iii2.1281 (13)N2—C6i1.340 (2)
Mn2—O22.1281 (13)N2—Mn1iv2.278 (2)
Mn2—O32.2011 (12)C14—C191.391 (3)
Mn2—O3iii2.2011 (12)C4—C5i1.390 (2)
Mn2—N4iv2.271 (2)C4—C51.390 (2)
Mn2—N32.276 (2)N5—O51.194 (3)
O1—C131.255 (2)N5—O61.215 (2)
O2—C131.235 (2)N5—C161.470 (3)
O3—C201.249 (2)C1—H10.9300
C13—C141.517 (2)C19—C181.388 (3)
N4—C121.335 (2)C19—H190.9300
N4—C12iii1.335 (2)C11—C121.375 (3)
N4—Mn2ii2.271 (2)C11—H110.9300
O4—C201.241 (2)C6—C51.382 (3)
C3—C21.390 (2)C6—H60.9300
C3—C2i1.390 (2)C8—C71.379 (3)
C3—C41.487 (3)C8—H80.9300
C9—C8iii1.377 (2)C16—C171.374 (3)
C9—C81.377 (2)C5—H50.9300
C9—C101.485 (3)C17—C181.375 (3)
N3—C71.329 (2)C17—H170.9300
N3—C7iii1.329 (2)O10—N71.205 (2)
C10—C11iii1.379 (2)N7—O91.198 (3)
C10—C111.379 (2)N7—C231.471 (2)
N1—C1i1.335 (2)C7—H70.9300
N1—C11.335 (2)C22—C231.386 (3)
O11—N81.215 (3)C22—H220.9300
C15—C141.382 (3)C23—C241.378 (3)
C15—C161.385 (3)C24—C251.377 (3)
C15—H150.9300C24—H240.9300
N8—O121.219 (3)C12—H120.9300
N8—C251.472 (3)N6—O81.209 (3)
C26—C251.383 (3)N6—O71.223 (3)
C26—C211.384 (3)N6—C181.470 (3)
O4i—Mn1—O4176.93 (8)C22—C21—C20121.03 (16)
O4i—Mn1—O185.82 (5)C26—C21—C20119.53 (16)
O4—Mn1—O194.30 (5)C6—N2—C6i117.2 (2)
O4i—Mn1—O1i94.30 (5)C6—N2—Mn1iv121.38 (10)
O4—Mn1—O1i85.82 (5)C6i—N2—Mn1iv121.38 (10)
O1—Mn1—O1i175.45 (7)C15—C14—C19119.86 (17)
O4i—Mn1—N188.47 (4)C15—C14—C13120.37 (16)
O4—Mn1—N188.47 (4)C19—C14—C13119.76 (16)
O1—Mn1—N192.27 (3)C5i—C4—C5117.6 (2)
O1i—Mn1—N192.27 (3)C5i—C4—C3121.18 (11)
O4i—Mn1—N2ii91.53 (4)C5—C4—C3121.18 (11)
O4—Mn1—N2ii91.53 (4)O5—N5—O6123.1 (2)
O1—Mn1—N2ii87.73 (3)O5—N5—C16118.33 (18)
O1i—Mn1—N2ii87.73 (3)O6—N5—C16118.5 (2)
N1—Mn1—N2ii180.0N1—C1—C2123.20 (17)
O2iii—Mn2—O2176.79 (8)N1—C1—H1118.4
O2iii—Mn2—O389.84 (5)C2—C1—H1118.4
O2—Mn2—O390.16 (5)O4—C20—O3127.70 (17)
O2iii—Mn2—O3iii90.16 (5)O4—C20—C21116.05 (15)
O2—Mn2—O3iii89.84 (5)O3—C20—C21116.25 (15)
O3—Mn2—O3iii179.83 (7)C18—C19—C14118.62 (18)
O2iii—Mn2—N4iv91.61 (4)C18—C19—H19120.7
O2—Mn2—N4iv91.61 (4)C14—C19—H19120.7
O3—Mn2—N4iv90.08 (4)C12—C11—C10120.00 (19)
O3iii—Mn2—N4iv90.08 (4)C12—C11—H11120.0
O2iii—Mn2—N388.39 (4)C10—C11—H11120.0
O2—Mn2—N388.39 (4)N2—C6—C5123.22 (17)
O3—Mn2—N389.92 (4)N2—C6—H6118.4
O3iii—Mn2—N389.92 (4)C5—C6—H6118.4
N4iv—Mn2—N3180.0C9—C8—C7120.00 (19)
C13—O1—Mn1129.61 (11)C9—C8—H8120.0
C13—O2—Mn2174.27 (14)C7—C8—H8120.0
C20—O3—Mn2133.90 (12)C17—C16—C15122.84 (18)
O2—C13—O1126.85 (16)C17—C16—N5117.85 (17)
O2—C13—C14116.55 (16)C15—C16—N5119.31 (18)
O1—C13—C14116.60 (15)C6—C5—C4119.34 (17)
C12—N4—C12iii116.5 (2)C6—C5—H5120.3
C12—N4—Mn2ii121.75 (11)C4—C5—H5120.3
C12iii—N4—Mn2ii121.75 (11)C16—C17—C18116.74 (17)
C20—O4—Mn1171.41 (14)C16—C17—H17121.6
C2—C3—C2i117.1 (2)C18—C17—H17121.6
C2—C3—C4121.47 (11)O9—N7—O10122.9 (2)
C2i—C3—C4121.47 (11)O9—N7—C23118.28 (18)
C8iii—C9—C8116.5 (2)O10—N7—C23118.85 (19)
C8iii—C9—C10121.73 (12)N3—C7—C8123.49 (19)
C8—C9—C10121.73 (12)N3—C7—H7118.3
C7—N3—C7iii116.5 (2)C8—C7—H7118.3
C7—N3—Mn2121.75 (12)C21—C22—C23119.06 (17)
C7iii—N3—Mn2121.75 (12)C21—C22—H22120.5
C11iii—C10—C11116.8 (2)C23—C22—H22120.5
C11iii—C10—C9121.62 (12)C24—C23—C22123.12 (17)
C11—C10—C9121.62 (12)C24—C23—N7117.57 (17)
C1i—N1—C1117.3 (2)C22—C23—N7119.31 (17)
C1i—N1—Mn1121.37 (11)C25—C24—C23116.06 (17)
C1—N1—Mn1121.37 (11)C25—C24—H24122.0
C14—C15—C16119.02 (18)C23—C24—H24122.0
C14—C15—H15120.5N4—C12—C11123.38 (19)
C16—C15—H15120.5N4—C12—H12118.3
O11—N8—O12123.7 (2)C11—C12—H12118.3
O11—N8—C25118.4 (2)O8—N6—O7124.1 (2)
O12—N8—C25117.96 (19)O8—N6—C18118.3 (2)
C25—C26—C21119.33 (17)O7—N6—C18117.6 (2)
C25—C26—H26120.3C24—C25—C26122.95 (18)
C21—C26—H26120.3C24—C25—N8117.98 (18)
C1—C2—C3119.56 (17)C26—C25—N8119.07 (18)
C1—C2—H2120.2C17—C18—C19122.84 (18)
C3—C2—H2120.2C17—C18—N6117.80 (18)
C22—C21—C26119.44 (17)C19—C18—N6119.35 (19)
C4—C3—C2—C1178.24 (13)C10—C9—C8—C7179.75 (18)
C2—C3—C4—C539.28 (13)C8—C9—C10—C11iii39.15 (17)
C2i—C3—C4—C5140.72 (13)C8—C9—C10—C11140.85 (17)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y+1, z; (iii) x+3/2, y, z+1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[Mn2(C7H3N2O6)4(C10H8N2)2]
Mr633.35
Crystal system, space groupMonoclinic, P2/n
Temperature (K)293
a, b, c (Å)10.0873 (6), 11.6336 (6), 21.2191 (12)
β (°) 98.075 (3)
V3)2465.41 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.82 × 0.45 × 0.35
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.779, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14626, 4334, 4149
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.01
No. of reflections4334
No. of parameters393
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.37

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors would like to thank Fujian Provincial Science and Technology Innovation Foundation under Grant No 2007F3038 for financial support.

References

First citationMehrotra, R. C. & Bohra, R. (1983). Metal Carboxylates. London: Academic Press.  Google Scholar
First citationRigaku (2000). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Z., Zhang, L. R., Gao, S., Yang, G., Hua, J., Gao, L. & Feng, S. (2000). Inorg. Chem. 39, 1990–1993.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds