metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(9,10-dioxoanthracene-1,5-disul­fonato-κO1)bis­­(1,10-phenanthroline-κ2N,N′)nickel(II)

aKey Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China and College of Chemistry and Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: luckyms@126.com

(Received 19 August 2010; accepted 25 August 2010; online 4 September 2010)

In the mononuclear title complex, [Ni(C14H6O8S2)(C12H8N2)2(H2O)], the NiII atom is in a distorted octa­hedral coordination formed by four N atoms from two chelating 1,10-phenanthroline ligands and by two O atoms, one from a 9,10-dioxoanthracene-1,5-disulfonate ligand and the other from a water mol­ecule. An intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, inter­molecular O—H⋯O hydrogen bonds link the mononuclear complexes into chains extending parallel to [010]. Furthermore, ππ stacking inter­actions [centroid–centroid distance = 3.5696 (6) Å] stabilize the crystal structuure.

Related literature

For the structures and applications of organo­sulfonate-based metal complexes, see: Dai et al. (2006[Dai, P.-X., Guo, J.-H. & Yang, E.-C. (2006). Acta Cryst. E62, m2096-m2098.]); Cui et al. (2007[Cui, Z.-N., Guo, J.-H. & Yang, E.-C. (2007). Chin. J. Struct. Chem. 26, 717-720.]); Zhao et al. (2007[Zhao, J.-P., Hu, B.-W., Liu, F.-C., Hu, X., Zeng, Y.-F. & Bu, X.-H. (2007). CrystEngComm, 9, 902-906.]); Jia et al. (2009[Jia, J., Feng, W., Zhao, H.-K. & Yang, E.-C. (2009). Acta Cryst. E65, m695-m696.]); Chen et al. (2002[Chen, C.-H., Cai, J.-W., Liao, C.-Z., Feng, X.-L., Chen, X.-M. & Ng, S.-W. (2002). Inorg. Chem. 41, 4967-4974.]); Yang et al. (2007[Yang, E.-C., Dai, P.-X., Wang, X.-G., Ding, B. & Zhao, X.-J. (2007). Z. Anorg. Allg. Chem. 633, 615-620.]). For mol­ecular self-assembly by non-covalent inter­actions in crystal engineering, see: Hunter (1993[Hunter, C. A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1584-1586.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C14H6O8S2)(C12H8N2)2(H2O)]

  • Mr = 803.44

  • Triclinic, [P \overline 1]

  • a = 8.8784 (19) Å

  • b = 12.802 (3) Å

  • c = 14.723 (3) Å

  • α = 98.016 (3)°

  • β = 100.520 (3)°

  • γ = 91.380 (2)°

  • V = 1627.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 294 K

  • 0.34 × 0.32 × 0.28 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.774, Tmax = 0.808

  • 8942 measured reflections

  • 5693 independent reflections

  • 4243 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.05

  • 5693 reflections

  • 487 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O3 0.85 1.90 2.704 (3) 156
O9—H9B⋯O5i 0.85 1.97 2.823 (3) 179
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany..]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organosulfonate-based metal complexes with popular nitrogen-containing coligands have recently drawn more attention due to their adjustable coordination ability and interesting applications in optical and catalysis (Cui et al., 2007; Yang et al., 2007). In this regard, arenedisulfonates have rigid spacers and potentially multiple binding sites, showing various coordination modes ranging from terminally monodentate to bridging hexadentate (Chen et al., 2002). Simultaneously, their six oxygen atoms in sulfonate groups can also form H-bonds, which readily result in high-dimensional supramolecular architectures (Hunter, 1993). As part of our investigations on the coordination chemistry of organosulfonate ligands (Dai et al. 2006; Jia et al., 2009; Zhao et al., 2007), herein, we report the crystal structure of a NiII complex with 1,10-phenanthroline and 9,10-dioxo-anthracene-1,5-disulfonate ligands (I).

The mononuclear structure of I was shown in Fig. 1. The unique Ni IIatom in I is six-coordinated by four N atoms from two chelating 1,10-phenanthroline ligands, one monodentate sulfonate O atom from one 9,10-dioxoanthraquinone-1,5-disulfonate anion, and one coordinated water molecule, exhibiting a slightly distorted octahedral coordination geometry (Table 1). Acting as a typically chelating ligand, two 1,10-phenanthroline ligands coordinate to the central NiII atom in an asymmetric modes. In contrast, 9,10-dioxoanthraquinone-1,5-disulfonate binds the NiII ion in a monodentate mode. Additionally, one intramolecular hydrogen bond between the coordinated water molecule and sulfonate group of 9,10-dioxoanthraquinone-1,5-disulfonate was observed (Table 2), which obviously helps to stabilize the mononuclear entity.

In the packing structure of I, one interligand O—H ···O hydrogen bond between the aqua and 9,10-dioxoanthraquinone-1,5-disulfonate link the discrete monoclear structures into a one-dimensional chain (Fig. 2 and Table 2). Furthermore, the neighboring chains are stacked into a two-dimensional layer by π··· π stacking interactions between the pyridine ring of 1,10-phenanthroline and the benzene ring of 9,10-dioxoanthraquinone-1,5-disulfonate. The centroid-centroid distance and the dihedral angle between the two rings are 3.5696 (6) Å and 3.969 (1)°, respectively.

Related literature top

For the structures and applications of organosulfonate-based metal complexes, see: Dai et al. (2006); Cui et al. (2007); Zhao et al. (2007); Jia et al. (2009); Chen et al. (2002); Yang et al. (2007). For molecular self-assembly by non-covalent interactions in crystal engineering, see: Hunter (1993).

Experimental top

The title complex was synthesized by heating a mixture of NiAc2.4H2O (49.77 mg,0.2 mmol), 1,10-phenanthroline (39.64 mg,0.2 mmol), Anthraquinone-1,5-disulfonic acid disodium salt (82.4 mg, 0.2 mmol) and H2O (10 ml) in a 23 ml Teflon-lined autoclave under autogenous pressure at 140¯C for two days. Yellow block-shaped crystals suitable for X-ray analysis were obtained in 40% yield. Anal. Calcd. for: C38H24N4NiO9S2: C, 56.81, H, 3.01, N, 6.97%. Found: C, 56.87; H, 3.01; N, 7.01%.

Refinement top

H atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C – H = 0.93 and O – H = 0.85 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(O)].

Computing details top

Data collection: APEX2 (Bruker 2003); cell refinement: SAINT (Bruker 2001); data reduction: SAINT (Bruker 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with intramolecular hydrogen-bonding interactions. Displacement ellipsoids are drawn at the 30% probability level. Only H atoms involved in hydrogen bonds have been included.
[Figure 2] Fig. 2. two-dimensional supramolecular nework of I formed by hydrogen-bonding and ππ stacking interactions.
Aqua(9,10-dioxoanthracene-1,5-disulfonato-κO1)bis(1,10- phenanthroline-κ2N,N')nickel(II) top
Crystal data top
[Ni(C14H6O8S2)(C12H8N2)2(H2O)]Z = 2
Mr = 803.44F(000) = 824
Triclinic, P1Dx = 1.640 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8784 (19) ÅCell parameters from 2813 reflections
b = 12.802 (3) Åθ = 2.3–25.2°
c = 14.723 (3) ŵ = 0.79 mm1
α = 98.016 (3)°T = 294 K
β = 100.520 (3)°Block, yellow
γ = 91.380 (2)°0.34 × 0.32 × 0.28 mm
V = 1627.1 (6) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5693 independent reflections
Radiation source: fine-focus sealed tube4243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.774, Tmax = 0.808k = 1512
8942 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.3249P]
where P = (Fo2 + 2Fc2)/3
5693 reflections(Δ/σ)max = 0.001
487 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ni(C14H6O8S2)(C12H8N2)2(H2O)]γ = 91.380 (2)°
Mr = 803.44V = 1627.1 (6) Å3
Triclinic, P1Z = 2
a = 8.8784 (19) ÅMo Kα radiation
b = 12.802 (3) ŵ = 0.79 mm1
c = 14.723 (3) ÅT = 294 K
α = 98.016 (3)°0.34 × 0.32 × 0.28 mm
β = 100.520 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5693 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4243 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.808Rint = 0.020
8942 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.05Δρmax = 0.43 e Å3
5693 reflectionsΔρmin = 0.43 e Å3
487 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.51255 (4)0.67299 (3)0.76204 (2)0.03729 (13)
S10.20477 (9)0.73215 (6)0.85480 (5)0.0398 (2)
O10.3705 (2)0.74179 (15)0.85534 (13)0.0405 (5)
O20.1640 (2)0.76635 (16)0.94350 (14)0.0476 (5)
O30.1423 (2)0.62602 (16)0.81432 (15)0.0525 (6)
O40.3113 (3)1.19722 (17)0.55562 (14)0.0599 (7)
O50.4395 (3)1.36031 (18)0.63825 (16)0.0649 (7)
O60.1714 (3)1.33736 (18)0.62472 (18)0.0662 (7)
O70.3099 (3)0.95751 (17)0.92421 (14)0.0589 (7)
O80.0471 (3)1.1338 (2)0.6416 (2)0.0840 (10)
O90.3412 (3)0.56089 (17)0.70180 (16)0.0596 (6)
H9A0.27990.56300.74010.089*
H9B0.37180.50070.68300.089*
N10.6648 (3)0.80251 (18)0.81146 (17)0.0409 (6)
N20.4355 (3)0.7717 (2)0.66457 (17)0.0459 (6)
N30.6219 (3)0.58737 (18)0.86155 (16)0.0373 (6)
N40.6551 (3)0.58717 (18)0.68469 (16)0.0390 (6)
C10.6355 (3)0.8838 (2)0.7615 (2)0.0401 (7)
C20.7799 (4)0.8171 (3)0.8840 (2)0.0510 (8)
H20.80280.76180.91820.061*
C30.8673 (4)0.9109 (3)0.9112 (3)0.0669 (11)
H30.94700.91760.96270.080*
C40.8372 (4)0.9926 (3)0.8631 (3)0.0687 (11)
H40.89401.05630.88220.082*
C50.7204 (4)0.9808 (2)0.7847 (3)0.0516 (9)
C60.6834 (4)1.0610 (3)0.7278 (3)0.0618 (10)
H60.74051.12500.74180.074*
C70.5677 (5)1.0457 (3)0.6545 (3)0.0583 (10)
H70.54541.10000.61900.070*
C80.4773 (4)0.9488 (3)0.6291 (2)0.0501 (9)
C90.3536 (4)0.9285 (3)0.5550 (2)0.0595 (10)
H90.32310.98110.51900.071*
C100.2769 (5)0.8328 (3)0.5347 (2)0.0639 (10)
H100.19620.81880.48400.077*
C110.3212 (4)0.7549 (3)0.5915 (2)0.0551 (9)
H110.26840.68930.57730.066*
C120.5131 (4)0.8670 (2)0.6827 (2)0.0422 (7)
C130.7236 (3)0.5218 (2)0.8298 (2)0.0358 (7)
C140.6111 (4)0.5946 (2)0.9512 (2)0.0462 (8)
H140.54160.63990.97380.055*
C150.7008 (4)0.5364 (3)1.0124 (2)0.0516 (9)
H150.69290.54511.07510.062*
C160.7991 (4)0.4675 (2)0.9804 (2)0.0451 (8)
H160.85680.42731.02060.054*
C170.8134 (3)0.4573 (2)0.8862 (2)0.0408 (7)
C180.9110 (4)0.3856 (2)0.8449 (2)0.0495 (8)
H180.96650.34040.88100.059*
C190.9248 (4)0.3818 (3)0.7543 (2)0.0510 (8)
H190.98930.33430.72930.061*
C200.8404 (3)0.4508 (2)0.6967 (2)0.0418 (7)
C210.8543 (4)0.4540 (3)0.6035 (2)0.0506 (8)
H210.92050.41040.57580.061*
C220.7691 (4)0.5223 (3)0.5541 (2)0.0515 (8)
H220.77750.52580.49260.062*
C230.6699 (4)0.5864 (2)0.5963 (2)0.0459 (8)
H230.61100.63100.56110.055*
C240.7396 (3)0.5191 (2)0.73459 (19)0.0367 (7)
C250.2713 (3)0.9862 (2)0.84869 (19)0.0361 (7)
C260.1617 (3)0.9217 (2)0.77210 (18)0.0316 (6)
C270.1177 (3)0.8148 (2)0.77205 (19)0.0360 (7)
C280.0029 (3)0.7658 (3)0.7013 (2)0.0501 (9)
H280.02680.69560.70120.060*
C290.0685 (4)0.8182 (3)0.6313 (2)0.0580 (10)
H290.14660.78380.58520.070*
C300.0244 (3)0.9214 (2)0.6293 (2)0.0448 (8)
H300.07140.95640.58130.054*
C310.0898 (3)0.9730 (2)0.69854 (19)0.0365 (7)
C320.1328 (3)1.0862 (2)0.6930 (2)0.0409 (7)
C330.2762 (3)1.1352 (2)0.75234 (18)0.0326 (6)
C340.3511 (3)1.2275 (2)0.73629 (19)0.0348 (6)
S20.31237 (9)1.28400 (6)0.62861 (5)0.0406 (2)
C360.4761 (4)1.2716 (2)0.8016 (2)0.0437 (8)
H360.52531.33280.79170.052*
C370.5305 (4)1.2280 (2)0.8810 (2)0.0462 (8)
H370.61331.26070.92450.055*
C380.4619 (3)1.1357 (2)0.8958 (2)0.0409 (7)
H380.49981.10500.94840.049*
C390.3358 (3)1.0890 (2)0.83153 (18)0.0338 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0464 (2)0.0297 (2)0.0329 (2)0.00424 (16)0.00302 (17)0.00803 (16)
S10.0423 (4)0.0375 (4)0.0388 (4)0.0023 (3)0.0022 (3)0.0168 (3)
O10.0382 (12)0.0387 (11)0.0413 (12)0.0021 (9)0.0029 (9)0.0083 (9)
O20.0522 (13)0.0541 (14)0.0403 (12)0.0037 (10)0.0078 (10)0.0211 (10)
O30.0591 (14)0.0380 (12)0.0569 (14)0.0133 (10)0.0046 (11)0.0179 (10)
O40.0929 (18)0.0480 (14)0.0317 (12)0.0215 (12)0.0056 (11)0.0007 (10)
O50.0696 (16)0.0626 (16)0.0610 (15)0.0220 (13)0.0017 (13)0.0266 (13)
O60.0672 (16)0.0620 (16)0.0826 (18)0.0345 (13)0.0226 (13)0.0398 (14)
O70.0852 (17)0.0502 (14)0.0338 (12)0.0166 (12)0.0153 (11)0.0189 (10)
O80.0617 (16)0.0684 (17)0.112 (2)0.0115 (13)0.0398 (15)0.0560 (16)
O90.0673 (16)0.0399 (13)0.0631 (15)0.0023 (11)0.0020 (12)0.0025 (11)
N10.0456 (15)0.0353 (14)0.0424 (15)0.0039 (11)0.0067 (12)0.0098 (11)
N20.0568 (17)0.0450 (16)0.0339 (14)0.0126 (13)0.0004 (12)0.0078 (12)
N30.0424 (14)0.0345 (14)0.0342 (14)0.0002 (11)0.0022 (11)0.0094 (11)
N40.0491 (15)0.0313 (13)0.0349 (14)0.0028 (11)0.0014 (11)0.0107 (11)
C10.0440 (18)0.0347 (17)0.0459 (18)0.0096 (13)0.0160 (14)0.0098 (14)
C20.050 (2)0.0425 (19)0.056 (2)0.0013 (15)0.0033 (16)0.0076 (16)
C30.063 (2)0.053 (2)0.074 (3)0.0076 (18)0.009 (2)0.001 (2)
C40.057 (2)0.043 (2)0.101 (3)0.0075 (17)0.008 (2)0.003 (2)
C50.050 (2)0.0363 (18)0.076 (2)0.0096 (15)0.0291 (18)0.0134 (17)
C60.065 (2)0.040 (2)0.091 (3)0.0085 (17)0.035 (2)0.020 (2)
C70.080 (3)0.039 (2)0.075 (3)0.0194 (18)0.048 (2)0.0287 (18)
C80.064 (2)0.054 (2)0.0438 (19)0.0303 (17)0.0265 (17)0.0215 (16)
C90.082 (3)0.062 (2)0.046 (2)0.033 (2)0.0245 (19)0.0241 (18)
C100.073 (3)0.082 (3)0.0352 (19)0.032 (2)0.0012 (17)0.0129 (19)
C110.072 (2)0.052 (2)0.0368 (18)0.0181 (17)0.0031 (17)0.0065 (15)
C120.0542 (19)0.0375 (17)0.0407 (18)0.0121 (14)0.0183 (15)0.0119 (14)
C130.0379 (16)0.0292 (15)0.0385 (17)0.0043 (12)0.0022 (13)0.0119 (13)
C140.052 (2)0.051 (2)0.0358 (18)0.0010 (15)0.0057 (14)0.0111 (15)
C150.055 (2)0.064 (2)0.0380 (18)0.0036 (17)0.0037 (15)0.0222 (16)
C160.0443 (18)0.0462 (19)0.0455 (19)0.0021 (15)0.0034 (15)0.0257 (15)
C170.0410 (17)0.0363 (17)0.0443 (18)0.0039 (13)0.0013 (14)0.0167 (14)
C180.0481 (19)0.0383 (18)0.061 (2)0.0087 (15)0.0043 (16)0.0209 (16)
C190.0480 (19)0.0457 (19)0.060 (2)0.0142 (15)0.0047 (16)0.0141 (17)
C200.0421 (17)0.0362 (17)0.0460 (19)0.0029 (13)0.0036 (14)0.0081 (14)
C210.057 (2)0.050 (2)0.0433 (19)0.0054 (16)0.0079 (16)0.0026 (16)
C220.067 (2)0.053 (2)0.0340 (17)0.0019 (17)0.0070 (16)0.0054 (15)
C230.060 (2)0.0423 (18)0.0330 (17)0.0031 (15)0.0010 (15)0.0106 (14)
C240.0413 (17)0.0303 (15)0.0359 (16)0.0041 (13)0.0017 (13)0.0083 (13)
C250.0376 (16)0.0366 (16)0.0329 (16)0.0030 (12)0.0010 (12)0.0110 (13)
C260.0288 (14)0.0365 (16)0.0300 (15)0.0019 (12)0.0023 (12)0.0103 (12)
C270.0328 (15)0.0403 (17)0.0346 (16)0.0023 (12)0.0000 (12)0.0135 (13)
C280.0462 (19)0.0463 (19)0.052 (2)0.0137 (15)0.0117 (15)0.0193 (16)
C290.0443 (19)0.067 (2)0.053 (2)0.0188 (16)0.0200 (16)0.0197 (18)
C300.0352 (17)0.055 (2)0.0425 (18)0.0031 (14)0.0078 (14)0.0216 (15)
C310.0312 (15)0.0426 (17)0.0361 (16)0.0005 (12)0.0013 (12)0.0142 (13)
C320.0374 (16)0.0435 (18)0.0420 (17)0.0010 (13)0.0030 (14)0.0207 (14)
C330.0372 (16)0.0306 (15)0.0297 (15)0.0062 (12)0.0031 (12)0.0061 (12)
C340.0412 (17)0.0287 (15)0.0331 (16)0.0018 (12)0.0030 (13)0.0051 (12)
S20.0494 (5)0.0337 (4)0.0392 (4)0.0050 (3)0.0030 (3)0.0133 (3)
C360.056 (2)0.0315 (16)0.0402 (17)0.0077 (14)0.0010 (15)0.0055 (13)
C370.058 (2)0.0389 (18)0.0350 (17)0.0071 (15)0.0050 (15)0.0004 (14)
C380.0498 (18)0.0385 (17)0.0309 (16)0.0007 (14)0.0022 (13)0.0062 (13)
C390.0400 (16)0.0330 (15)0.0281 (15)0.0039 (12)0.0038 (12)0.0068 (12)
Geometric parameters (Å, º) top
Ni1—O92.051 (2)C11—H110.9300
Ni1—N32.066 (2)C13—C171.410 (4)
Ni1—N12.074 (2)C13—C241.431 (4)
Ni1—N22.077 (2)C14—C151.399 (4)
Ni1—N42.086 (3)C14—H140.9300
Ni1—O12.145 (2)C15—C161.354 (5)
S1—O21.431 (2)C15—H150.9300
S1—O31.458 (2)C16—C171.404 (4)
S1—O11.472 (2)C16—H160.9300
S1—C271.804 (3)C17—C181.427 (5)
O4—S21.432 (2)C18—C191.355 (4)
O5—S21.449 (2)C18—H180.9300
O6—S21.436 (2)C19—C201.439 (4)
O7—C251.212 (3)C19—H190.9300
O8—C321.209 (3)C20—C241.400 (4)
O9—H9A0.8501C20—C211.406 (4)
O9—H9B0.8501C21—C221.369 (4)
N1—C21.326 (4)C21—H210.9300
N1—C11.359 (3)C22—C231.388 (5)
N2—C111.326 (4)C22—H220.9300
N2—C121.356 (4)C23—H230.9300
N3—C141.331 (4)C25—C261.484 (4)
N3—C131.349 (4)C25—C391.494 (4)
N4—C231.330 (4)C26—C311.406 (3)
N4—C241.367 (3)C26—C271.414 (4)
C1—C51.404 (4)C27—C281.384 (4)
C1—C121.425 (4)C28—C291.375 (4)
C2—C31.383 (5)C28—H280.9300
C2—H20.9300C29—C301.374 (4)
C3—C41.348 (5)C29—H290.9300
C3—H30.9300C30—C311.381 (4)
C4—C51.392 (5)C30—H300.9300
C4—H40.9300C31—C321.506 (4)
C5—C61.421 (5)C32—C331.477 (4)
C6—C71.335 (5)C33—C391.404 (3)
C6—H60.9300C33—C341.411 (4)
C7—C81.428 (5)C34—C361.380 (4)
C7—H70.9300C34—S21.813 (3)
C8—C91.390 (5)C36—C371.379 (4)
C8—C121.405 (4)C36—H360.9300
C9—C101.355 (5)C37—C381.377 (4)
C9—H90.9300C37—H370.9300
C10—C111.407 (4)C38—C391.389 (4)
C10—H100.9300C38—H380.9300
O9—Ni1—N396.61 (9)C16—C15—C14120.0 (3)
O9—Ni1—N1170.98 (9)C16—C15—H15120.0
N3—Ni1—N192.15 (9)C14—C15—H15120.0
O9—Ni1—N291.57 (10)C15—C16—C17119.5 (3)
N3—Ni1—N2171.08 (10)C15—C16—H16120.2
N1—Ni1—N279.83 (10)C17—C16—H16120.2
O9—Ni1—N487.47 (10)C16—C17—C13117.0 (3)
N3—Ni1—N480.16 (9)C16—C17—C18124.2 (3)
N1—Ni1—N496.19 (10)C13—C17—C18118.9 (3)
N2—Ni1—N496.71 (9)C19—C18—C17121.7 (3)
O9—Ni1—O190.17 (9)C19—C18—H18119.2
N3—Ni1—O191.38 (9)C17—C18—H18119.2
N1—Ni1—O187.44 (9)C18—C19—C20120.4 (3)
N2—Ni1—O192.15 (9)C18—C19—H19119.8
N4—Ni1—O1170.88 (8)C20—C19—H19119.8
O2—S1—O3112.60 (13)C24—C20—C21117.7 (3)
O2—S1—O1113.95 (12)C24—C20—C19119.0 (3)
O3—S1—O1110.91 (13)C21—C20—C19123.3 (3)
O2—S1—C27109.11 (13)C22—C21—C20119.1 (3)
O3—S1—C27104.16 (13)C22—C21—H21120.5
O1—S1—C27105.37 (12)C20—C21—H21120.5
S1—O1—Ni1133.04 (12)C21—C22—C23119.7 (3)
Ni1—O9—H9A105.1C21—C22—H22120.1
Ni1—O9—H9B114.9C23—C22—H22120.1
H9A—O9—H9B117.0N4—C23—C22123.1 (3)
C2—N1—C1117.4 (3)N4—C23—H23118.5
C2—N1—Ni1129.7 (2)C22—C23—H23118.5
C1—N1—Ni1112.88 (19)N4—C24—C20122.7 (3)
C11—N2—C12117.8 (3)N4—C24—C13116.9 (3)
C11—N2—Ni1129.2 (2)C20—C24—C13120.4 (3)
C12—N2—Ni1112.95 (19)O7—C25—C26121.8 (2)
C14—N3—C13118.3 (3)O7—C25—C39119.5 (2)
C14—N3—Ni1128.4 (2)C26—C25—C39118.7 (2)
C13—N3—Ni1113.18 (18)C31—C26—C27118.5 (2)
C23—N4—C24117.6 (3)C31—C26—C25117.3 (2)
C23—N4—Ni1130.2 (2)C27—C26—C25124.1 (2)
C24—N4—Ni1112.18 (19)C28—C27—C26118.9 (2)
N1—C1—C5122.7 (3)C28—C27—S1115.7 (2)
N1—C1—C12117.1 (3)C26—C27—S1125.4 (2)
C5—C1—C12120.2 (3)C29—C28—C27121.7 (3)
N1—C2—C3122.9 (3)C29—C28—H28119.1
N1—C2—H2118.5C27—C28—H28119.1
C3—C2—H2118.5C30—C29—C28120.0 (3)
C4—C3—C2120.0 (3)C30—C29—H29120.0
C4—C3—H3120.0C28—C29—H29120.0
C2—C3—H3120.0C29—C30—C31120.0 (3)
C3—C4—C5119.6 (3)C29—C30—H30120.0
C3—C4—H4120.2C31—C30—H30120.0
C5—C4—H4120.2C30—C31—C26120.9 (3)
C4—C5—C1117.3 (3)C30—C31—C32117.6 (2)
C4—C5—C6123.7 (3)C26—C31—C32121.5 (2)
C1—C5—C6118.9 (3)O8—C32—C33122.7 (3)
C7—C6—C5120.9 (3)O8—C32—C31118.8 (3)
C7—C6—H6119.5C33—C32—C31118.5 (2)
C5—C6—H6119.5C39—C33—C34119.0 (2)
C6—C7—C8122.0 (3)C39—C33—C32117.1 (2)
C6—C7—H7119.0C34—C33—C32123.8 (2)
C8—C7—H7119.0C36—C34—C33118.5 (2)
C9—C8—C12116.6 (3)C36—C34—S2116.2 (2)
C9—C8—C7125.0 (3)C33—C34—S2124.8 (2)
C12—C8—C7118.5 (3)O4—S2—O6115.06 (15)
C10—C9—C8120.7 (3)O4—S2—O5113.50 (16)
C10—C9—H9119.7O6—S2—O5109.79 (15)
C8—C9—H9119.7O4—S2—C34105.34 (13)
C9—C10—C11119.1 (3)O6—S2—C34108.66 (14)
C9—C10—H10120.5O5—S2—C34103.64 (13)
C11—C10—H10120.5C37—C36—C34122.2 (3)
N2—C11—C10122.3 (3)C37—C36—H36118.9
N2—C11—H11118.8C34—C36—H36118.9
C10—C11—H11118.8C38—C37—C36119.8 (3)
N2—C12—C8123.4 (3)C38—C37—H37120.1
N2—C12—C1117.1 (2)C36—C37—H37120.1
C8—C12—C1119.5 (3)C37—C38—C39119.6 (3)
N3—C13—C17122.9 (3)C37—C38—H38120.2
N3—C13—C24117.5 (2)C39—C38—H38120.2
C17—C13—C24119.5 (3)C38—C39—C33120.8 (2)
N3—C14—C15122.1 (3)C38—C39—C25117.1 (2)
N3—C14—H14118.9C33—C39—C25122.0 (2)
C15—C14—H14118.9
O2—S1—O1—Ni1162.23 (13)C13—N3—C14—C150.3 (4)
O3—S1—O1—Ni133.92 (19)Ni1—N3—C14—C15175.3 (2)
C27—S1—O1—Ni178.20 (17)N3—C14—C15—C162.1 (5)
O9—Ni1—O1—S116.47 (16)C14—C15—C16—C171.8 (5)
N3—Ni1—O1—S1113.08 (16)C15—C16—C17—C130.7 (4)
N1—Ni1—O1—S1154.83 (16)C15—C16—C17—C18178.7 (3)
N2—Ni1—O1—S175.11 (16)N3—C13—C17—C163.3 (4)
N4—Ni1—O1—S191.4 (5)C24—C13—C17—C16176.5 (3)
O9—Ni1—N1—C2163.0 (6)N3—C13—C17—C18176.2 (3)
N3—Ni1—N1—C23.1 (3)C24—C13—C17—C184.0 (4)
N2—Ni1—N1—C2179.2 (3)C16—C17—C18—C19177.4 (3)
N4—Ni1—N1—C283.4 (3)C13—C17—C18—C193.2 (4)
O1—Ni1—N1—C288.2 (3)C17—C18—C19—C200.0 (5)
O9—Ni1—N1—C115.1 (7)C18—C19—C20—C242.3 (5)
N3—Ni1—N1—C1178.8 (2)C18—C19—C20—C21177.3 (3)
N2—Ni1—N1—C12.8 (2)C24—C20—C21—C220.4 (5)
N4—Ni1—N1—C198.5 (2)C19—C20—C21—C22179.9 (3)
O1—Ni1—N1—C189.9 (2)C20—C21—C22—C230.5 (5)
O9—Ni1—N2—C113.0 (3)C24—N4—C23—C221.7 (4)
N3—Ni1—N2—C11153.5 (6)Ni1—N4—C23—C22178.6 (2)
N1—Ni1—N2—C11179.8 (3)C21—C22—C23—N41.6 (5)
N4—Ni1—N2—C1184.6 (3)C23—N4—C24—C200.7 (4)
O1—Ni1—N2—C1193.2 (3)Ni1—N4—C24—C20178.1 (2)
O9—Ni1—N2—C12174.7 (2)C23—N4—C24—C13179.3 (2)
N3—Ni1—N2—C1228.8 (7)Ni1—N4—C24—C133.2 (3)
N1—Ni1—N2—C122.6 (2)C21—C20—C24—N40.4 (4)
N4—Ni1—N2—C1297.7 (2)C19—C20—C24—N4180.0 (3)
O1—Ni1—N2—C1284.4 (2)C21—C20—C24—C13178.2 (3)
O9—Ni1—N3—C1499.1 (3)C19—C20—C24—C131.4 (4)
N1—Ni1—N3—C1478.7 (3)N3—C13—C24—N42.9 (4)
N2—Ni1—N3—C14104.6 (7)C17—C13—C24—N4176.9 (2)
N4—Ni1—N3—C14174.6 (3)N3—C13—C24—C20178.4 (3)
O1—Ni1—N3—C148.8 (2)C17—C13—C24—C201.8 (4)
O9—Ni1—N3—C1385.70 (19)O7—C25—C26—C31161.8 (3)
N1—Ni1—N3—C1396.47 (19)C39—C25—C26—C3118.4 (4)
N2—Ni1—N3—C1370.6 (7)O7—C25—C26—C2713.5 (5)
N4—Ni1—N3—C130.56 (18)C39—C25—C26—C27166.2 (3)
O1—Ni1—N3—C13176.04 (18)C31—C26—C27—C281.8 (4)
O9—Ni1—N4—C2381.9 (3)C25—C26—C27—C28173.5 (3)
N3—Ni1—N4—C23179.1 (3)C31—C26—C27—S1175.3 (2)
N1—Ni1—N4—C2389.8 (3)C25—C26—C27—S19.4 (4)
N2—Ni1—N4—C239.4 (3)O2—S1—C27—C28111.8 (3)
O1—Ni1—N4—C23157.1 (4)O3—S1—C27—C288.6 (3)
O9—Ni1—N4—C2495.10 (19)O1—S1—C27—C28125.4 (2)
N3—Ni1—N4—C242.06 (18)O2—S1—C27—C2671.0 (3)
N1—Ni1—N4—C2493.17 (19)O3—S1—C27—C26168.6 (3)
N2—Ni1—N4—C24173.62 (18)O1—S1—C27—C2651.8 (3)
O1—Ni1—N4—C2420.0 (6)C26—C27—C28—C290.3 (5)
C2—N1—C1—C50.8 (5)S1—C27—C28—C29177.1 (3)
Ni1—N1—C1—C5177.5 (2)C27—C28—C29—C301.2 (6)
C2—N1—C1—C12179.1 (3)C28—C29—C30—C311.1 (5)
Ni1—N1—C1—C122.6 (3)C29—C30—C31—C260.4 (5)
C1—N1—C2—C31.3 (5)C29—C30—C31—C32179.7 (3)
Ni1—N1—C2—C3176.7 (3)C27—C26—C31—C301.9 (4)
N1—C2—C3—C40.1 (6)C25—C26—C31—C30173.7 (3)
C2—C3—C4—C51.7 (6)C27—C26—C31—C32178.9 (3)
C3—C4—C5—C12.1 (6)C25—C26—C31—C325.5 (4)
C3—C4—C5—C6177.9 (4)C30—C31—C32—O815.4 (5)
N1—C1—C5—C40.9 (5)C26—C31—C32—O8163.9 (3)
C12—C1—C5—C4179.2 (3)C30—C31—C32—C33166.1 (3)
N1—C1—C5—C6179.1 (3)C26—C31—C32—C3314.7 (4)
C12—C1—C5—C60.8 (5)O8—C32—C33—C39157.1 (3)
C4—C5—C6—C7178.5 (4)C31—C32—C33—C3921.4 (4)
C1—C5—C6—C71.5 (5)O8—C32—C33—C3419.8 (5)
C5—C6—C7—C80.8 (5)C31—C32—C33—C34161.8 (3)
C6—C7—C8—C9178.6 (3)C39—C33—C34—C363.0 (4)
C6—C7—C8—C120.6 (5)C32—C33—C34—C36173.8 (3)
C12—C8—C9—C102.4 (5)C39—C33—C34—S2168.3 (2)
C7—C8—C9—C10178.3 (3)C32—C33—C34—S214.9 (4)
C8—C9—C10—C111.9 (5)C36—C34—S2—O4124.0 (3)
C12—N2—C11—C101.5 (5)C33—C34—S2—O447.4 (3)
Ni1—N2—C11—C10176.1 (2)C36—C34—S2—O6112.2 (3)
C9—C10—C11—N20.1 (6)C33—C34—S2—O676.3 (3)
C11—N2—C12—C80.9 (5)C36—C34—S2—O54.5 (3)
Ni1—N2—C12—C8177.1 (2)C33—C34—S2—O5166.9 (3)
C11—N2—C12—C1180.0 (3)C33—C34—C36—C370.6 (5)
Ni1—N2—C12—C12.0 (3)S2—C34—C36—C37171.4 (3)
C9—C8—C12—N21.0 (5)C34—C36—C37—C381.8 (5)
C7—C8—C12—N2179.7 (3)C36—C37—C38—C391.7 (5)
C9—C8—C12—C1178.0 (3)C37—C38—C39—C330.7 (5)
C7—C8—C12—C11.3 (4)C37—C38—C39—C25176.9 (3)
N1—C1—C12—N20.4 (4)C34—C33—C39—C383.1 (4)
C5—C1—C12—N2179.7 (3)C32—C33—C39—C38173.9 (3)
N1—C1—C12—C8179.5 (3)C34—C33—C39—C25174.4 (3)
C5—C1—C12—C80.6 (5)C32—C33—C39—C258.5 (4)
C14—N3—C13—C173.1 (4)O7—C25—C39—C3813.8 (4)
Ni1—N3—C13—C17178.8 (2)C26—C25—C39—C38166.0 (3)
C14—N3—C13—C24176.8 (2)O7—C25—C39—C33168.6 (3)
Ni1—N3—C13—C241.0 (3)C26—C25—C39—C3311.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O30.851.902.704 (3)156
O9—H9B···O5i0.851.972.823 (3)179
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ni(C14H6O8S2)(C12H8N2)2(H2O)]
Mr803.44
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.8784 (19), 12.802 (3), 14.723 (3)
α, β, γ (°)98.016 (3), 100.520 (3), 91.380 (2)
V3)1627.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.34 × 0.32 × 0.28
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.774, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
8942, 5693, 4243
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.05
No. of reflections5693
No. of parameters487
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.43

Computer programs: APEX2 (Bruker 2003), SAINT (Bruker 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O30.851.902.704 (3)156
O9—H9B···O5i0.851.972.823 (3)179
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from Tianjin University.

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany..  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C.-H., Cai, J.-W., Liao, C.-Z., Feng, X.-L., Chen, X.-M. & Ng, S.-W. (2002). Inorg. Chem. 41, 4967–4974.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCui, Z.-N., Guo, J.-H. & Yang, E.-C. (2007). Chin. J. Struct. Chem. 26, 717–720.  CAS Google Scholar
First citationDai, P.-X., Guo, J.-H. & Yang, E.-C. (2006). Acta Cryst. E62, m2096–m2098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, C. A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1584–1586.  CrossRef Web of Science Google Scholar
First citationJia, J., Feng, W., Zhao, H.-K. & Yang, E.-C. (2009). Acta Cryst. E65, m695–m696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, E.-C., Dai, P.-X., Wang, X.-G., Ding, B. & Zhao, X.-J. (2007). Z. Anorg. Allg. Chem. 633, 615–620.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, J.-P., Hu, B.-W., Liu, F.-C., Hu, X., Zeng, Y.-F. & Bu, X.-H. (2007). CrystEngComm, 9, 902–906.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds