organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Sulfanyl­­idene-1,2-di­hydro­pyridine-3-carbohydrazide

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 24 August 2010; accepted 1 September 2010; online 8 September 2010)

All non-H atoms of the title compound, C6H7N3OS, which exists in the thione form, lie in a common plane (r.m.s. of non-H atoms = 0.08 Å). The amino group of the –NH–NH2 substituent forms an intra­molecular hydrogen bond to the S atom. The terminal –NH2 group is pyramidally coordinated; it forms a weak N—H⋯O and a weak N—H⋯S hydrogen bond. Furthermore, the N atom is an acceptor for a C—H⋯N contact. The amino group of the ring is a hydrogen-bond donor to the carbonyl O atom of an adjacent mol­ecule, this inter­action giving rise to a linear chain motif running along the b axis.

Related literature

For the synthesis of 3-mercaptonicotinoylhydrazide from 3-mercaptonicotinic acid, see: Katz et al. (1958[Katz, L., Cohen, M. S. & Schröder, W. (1958). US Patent 282487.]). For the synthesis of 2-(3,5-di-tert-butyl-4-hydroxybenzylsulfanyl)nicotinic acid, see: Mansor et al. (2008[Mansor, S., Yehye, W. A., Ariffin, A., Rahman, N. A. & Ng, S. W. (2008). Acta Cryst. E64, o1778.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N3OS

  • Mr = 169.21

  • Triclinic, [P \overline 1]

  • a = 7.1952 (2) Å

  • b = 7.4279 (2) Å

  • c = 7.7492 (2) Å

  • α = 88.205 (2)°

  • β = 64.201 (2)°

  • γ = 72.072 (2)°

  • V = 352.22 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 123 K

  • 0.35 × 0.05 × 0.01 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.874, Tmax = 0.996

  • 3311 measured reflections

  • 1619 independent reflections

  • 1391 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.090

  • S = 1.08

  • 1619 reflections

  • 128 parameters

  • 7 restraints

  • All H-atom parameters refined

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 (1) 1.95 (2) 2.751 (2) 152 (2)
N2—H2⋯S1 0.89 (1) 2.24 (2) 3.007 (2) 145 (2)
N3—H3⋯O1ii 0.88 (2) 2.36 (3) 3.214 (2) 166 (3)
N3—H4⋯S1iii 0.88 (3) 2.85 (3) 3.4173 (18) 124 (2)
C2—H2A⋯N3iv 0.94 (1) 2.69 (2) 3.323 (4) 125 (2)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+2, -z+1; (iii) x, y+1, z; (iv) x+1, y-1, z-1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

3-Mercaptonicotinylcarbohydrazide is mentioned in the chemical (patent) literature in the context of its synthesis from 3-mercaptonicotinic acid (Katz et al., 1958). This compound was the surprise product of the reaction between ethyl 2-(3,5-di-tert-butyl-4-hydroxybenzylsulfanyl)nicotinate and hydrazine. The compound exists in the thione form. The molecule of pryidyl-2(1H)-thione-3-carbohydrazide (Scheme I, Fig. 1) is planar (r.m.s. of non-H atoms 0.08 Å). In the six-membered ring, the two carbon–carbon double bonds are regarded as being localized. The amino –NH– group of the –NH–NH2 substituent forms an intramolecular hydrogen bond to the double-bond sulfur atom. The terminal –NH2 group is pyramidally coordinated; it does not engage in hydrogen bonding. The amino –NH– group of the ring is hydrogen-bond donor to the double-bond oxygen atom an adjacent molecule, this interaction giving rise to a linear chain motif running along the b-axis of the triclinic unit cell (Fig. 2).

Related literature top

For the synthesis of 3-mercaptonicotinoylhydrazide from 3-mercaptonicotinic acid, see: Katz et al. (1958).

For related literature, see: Mansor et al. (2008); Westrip (2009).

Experimental top

The synthesis of colorless 2-(3,5-di-tert-butyl-4-hydroxybenzylsulfanyl)nicotinic acid was described earlier (Mansor et al., 2008); the acid was first converted to the ethyl ester. The ester (0.80 g, 2 mmol) was dissolved in ethanol (15 ml) and to this was added hydrazine hydrate (0.20 ml, 4 mmol). The mixture was heated for 24 h. The solvent was removed to give a brown gummy solid; this was recrystallized from hexane to afford orange plate-like crystals.

Refinement top

All H-atoms were located in a difference Fourier map, and were refined isotropically with distance restraints of C–H 0.95±0.01 Å and N–H 0.88±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C6H7N3OS at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded chain structure.
2-Sulfanylidene-1,2-dihydropyridine-3-carbohydrazide top
Crystal data top
C6H7N3OSZ = 2
Mr = 169.21F(000) = 176
Triclinic, P1Dx = 1.595 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1952 (2) ÅCell parameters from 1745 reflections
b = 7.4279 (2) Åθ = 2.9–28.3°
c = 7.7492 (2) ŵ = 0.40 mm1
α = 88.205 (2)°T = 123 K
β = 64.201 (2)°Plate, orange
γ = 72.072 (2)°0.35 × 0.05 × 0.01 mm
V = 352.22 (2) Å3
Data collection top
Bruker SMART APEX
diffractometer
1619 independent reflections
Radiation source: fine-focus sealed tube1391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.874, Tmax = 0.996k = 99
3311 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.3308P]
where P = (Fo2 + 2Fc2)/3
1619 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.67 e Å3
7 restraintsΔρmin = 0.19 e Å3
Crystal data top
C6H7N3OSγ = 72.072 (2)°
Mr = 169.21V = 352.22 (2) Å3
Triclinic, P1Z = 2
a = 7.1952 (2) ÅMo Kα radiation
b = 7.4279 (2) ŵ = 0.40 mm1
c = 7.7492 (2) ÅT = 123 K
α = 88.205 (2)°0.35 × 0.05 × 0.01 mm
β = 64.201 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1619 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1391 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.996Rint = 0.015
3311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0347 restraints
wR(F2) = 0.090All H-atom parameters refined
S = 1.08Δρmax = 0.67 e Å3
1619 reflectionsΔρmin = 0.19 e Å3
128 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58477 (8)0.32161 (7)0.76922 (7)0.02102 (15)
O10.7744 (2)0.81569 (18)0.44198 (19)0.0210 (3)
N10.8505 (3)0.1589 (2)0.4153 (2)0.0165 (3)
N20.5443 (3)0.7318 (2)0.7129 (2)0.0191 (3)
N30.4375 (3)0.9211 (2)0.8063 (2)0.0218 (4)
C11.0002 (3)0.1308 (3)0.2289 (3)0.0182 (4)
C21.0636 (3)0.2790 (3)0.1432 (3)0.0199 (4)
C30.9635 (3)0.4575 (3)0.2526 (3)0.0181 (4)
C40.8069 (3)0.4870 (2)0.4421 (3)0.0147 (4)
C50.7505 (3)0.3285 (2)0.5345 (3)0.0148 (4)
C60.7070 (3)0.6906 (2)0.5353 (3)0.0160 (4)
H10.805 (4)0.064 (3)0.466 (3)0.036 (7)*
H20.505 (4)0.638 (3)0.776 (3)0.039 (7)*
H30.404 (4)0.991 (3)0.724 (3)0.036 (7)*
H40.533 (3)0.956 (4)0.827 (4)0.032 (7)*
H1A1.059 (3)0.0051 (17)0.165 (3)0.020 (5)*
H2A1.171 (3)0.260 (3)0.0141 (17)0.027 (6)*
H3A1.002 (4)0.565 (2)0.199 (3)0.021 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0251 (3)0.0148 (2)0.0172 (2)0.00847 (18)0.00306 (19)0.00297 (16)
O10.0259 (7)0.0123 (6)0.0214 (7)0.0081 (5)0.0063 (6)0.0033 (5)
N10.0190 (8)0.0107 (7)0.0189 (8)0.0055 (6)0.0072 (6)0.0025 (6)
N20.0210 (8)0.0102 (7)0.0194 (8)0.0041 (6)0.0039 (7)0.0003 (6)
N30.0250 (9)0.0114 (7)0.0216 (8)0.0023 (6)0.0061 (7)0.0017 (6)
C10.0199 (9)0.0125 (8)0.0192 (9)0.0020 (7)0.0080 (8)0.0016 (7)
C20.0196 (9)0.0176 (9)0.0161 (9)0.0041 (7)0.0036 (7)0.0011 (7)
C30.0208 (9)0.0138 (8)0.0200 (9)0.0065 (7)0.0090 (8)0.0047 (7)
C40.0155 (8)0.0110 (8)0.0171 (8)0.0034 (7)0.0075 (7)0.0016 (6)
C50.0143 (8)0.0137 (8)0.0160 (8)0.0041 (7)0.0067 (7)0.0016 (7)
C60.0163 (8)0.0125 (8)0.0199 (9)0.0041 (7)0.0091 (7)0.0023 (7)
Geometric parameters (Å, º) top
S1—C51.696 (2)N3—H40.88 (1)
O1—C61.246 (2)C1—C21.365 (3)
N1—C11.348 (2)C1—H1A0.95 (1)
N1—C51.376 (2)C2—C31.395 (3)
N1—H10.88 (1)C2—H2A0.94 (1)
N2—C61.327 (2)C3—C41.380 (3)
N2—N31.416 (2)C3—H3A0.95 (1)
N2—H20.89 (1)C4—C51.433 (2)
N3—H30.88 (1)C4—C61.507 (2)
C1—N1—C5125.85 (15)C3—C2—H2A121.7 (14)
C1—N1—H1118.5 (17)C4—C3—C2122.34 (17)
C5—N1—H1115.6 (17)C4—C3—H3A116.8 (14)
C6—N2—N3121.63 (15)C2—C3—H3A120.9 (14)
C6—N2—H2119.0 (17)C3—C4—C5119.45 (16)
N3—N2—H2119.3 (17)C3—C4—C6115.35 (15)
N2—N3—H3106.3 (17)C5—C4—C6125.20 (16)
N2—N3—H4107.0 (17)N1—C5—C4114.58 (15)
H3—N3—H4109 (2)N1—C5—S1116.57 (13)
N1—C1—C2119.76 (16)C4—C5—S1128.82 (14)
N1—C1—H1A116.8 (14)O1—C6—N2121.97 (16)
C2—C1—H1A123.4 (14)O1—C6—C4119.33 (16)
C1—C2—C3117.83 (17)N2—C6—C4118.66 (15)
C1—C2—H2A120.5 (14)
C5—N1—C1—C20.3 (3)C3—C4—C5—S1173.23 (15)
N1—C1—C2—C32.1 (3)C6—C4—C5—S17.1 (3)
C1—C2—C3—C40.7 (3)N3—N2—C6—O10.2 (3)
C2—C3—C4—C53.0 (3)N3—N2—C6—C4177.57 (17)
C2—C3—C4—C6176.77 (17)C3—C4—C6—O12.5 (3)
C1—N1—C5—C43.8 (3)C5—C4—C6—O1177.77 (17)
C1—N1—C5—S1174.60 (15)C3—C4—C6—N2175.28 (17)
C3—C4—C5—N14.9 (3)C5—C4—C6—N24.4 (3)
C6—C4—C5—N1174.76 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (1)1.95 (2)2.751 (2)152 (2)
N2—H2···S10.89 (1)2.24 (2)3.007 (2)145 (2)
N3—H3···O1ii0.88 (2)2.36 (3)3.214 (2)166 (3)
N3—H4···S1iii0.88 (3)2.85 (3)3.4173 (18)124 (2)
C2—H2A···N3iv0.94 (1)2.69 (2)3.323 (4)125 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z+1; (iii) x, y+1, z; (iv) x+1, y1, z1.

Experimental details

Crystal data
Chemical formulaC6H7N3OS
Mr169.21
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)7.1952 (2), 7.4279 (2), 7.7492 (2)
α, β, γ (°)88.205 (2), 64.201 (2), 72.072 (2)
V3)352.22 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.35 × 0.05 × 0.01
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.874, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
3311, 1619, 1391
Rint0.015
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.08
No. of reflections1619
No. of parameters128
No. of restraints7
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.67, 0.19

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
S1—C51.696 (2)C1—C21.365 (3)
O1—C61.246 (2)C2—C31.395 (3)
N1—C11.348 (2)C3—C41.380 (3)
N1—C51.376 (2)C4—C51.433 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (1)1.95 (2)2.751 (2)152 (2)
N2—H2···S10.89 (1)2.24 (2)3.007 (2)145 (2)
N3—H3···O1ii0.88 (2)2.36 (3)3.214 (2)166 (3)
N3—H4···S1iii0.88 (3)2.85 (3)3.4173 (18)124 (2)
C2—H2A···N3iv0.94 (1)2.69 (2)3.323 (4)125 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z+1; (iii) x, y+1, z; (iv) x+1, y1, z1.
 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKatz, L., Cohen, M. S. & Schröder, W. (1958). US Patent 282487.  Google Scholar
First citationMansor, S., Yehye, W. A., Ariffin, A., Rahman, N. A. & Ng, S. W. (2008). Acta Cryst. E64, o1778.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds