organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzyl-N-ethyl-4-methyl­benzene­sulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 24 August 2010; accepted 31 August 2010; online 4 September 2010)

In the title compound, C16H19NO2S, the dihedral angle between the two aromatic rings is 84.78 (7)°. Weak inter­molecular C—H⋯O inter­actions stabilize the crystal structure by the formation of a 16-membered R22(16) ring motif.

Related literature

For biological activity of sulfonamides, see: Maren (1976[Maren, T. H. (1976). Annu. Rev. Pharmacol. Toxicol. 16, 309-327.]); Boyd (1988[Boyd, A. E. (1988). Diabetes, 37, 847-850.]). For a related structure, see: Khan et al. (2010[Khan, I. U., Ahmad, W., Sharif, S., Ali, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1218.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19NO2S

  • Mr = 289.38

  • Monoclinic, P 21 /c

  • a = 8.8144 (3) Å

  • b = 19.7677 (6) Å

  • c = 9.8914 (4) Å

  • β = 117.689 (1)°

  • V = 1526.11 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.41 × 0.25 × 0.19 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.918, Tmax = 0.961

  • 13763 measured reflections

  • 3489 independent reflections

  • 2168 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.125

  • S = 1.02

  • 3489 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯O1i 0.96 2.58 3.354 (3) 138
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Sulfonamides have extensively been reported for their wide variety of pharmacological activities such as antibacterial (Maren, 1976) and diuretic (Boyd, 1988). The present structure is countinous to our previous reported derivative of sulfonamide (Khan et al., 2010).

The two aromatic rings in the title sulfonamide molecule are inclined to each other at an angle of 84.78(0.07)°. The C–H···O type weak intermolecular hydrogen bonding between the C–H of methyl group and oxygen of the SO2 forms the dimers which result in the formation of 16 membered ring motif which can be represented as R22(16) in graph set patterns (Bernstein et al., 1995).

Related literature top

For biological activity of sulfonamides, see: Maren et al. (1976); Boyd (1988). For a related structure, see: Khan et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of N-benzyl-4-methylbenzenesulfonamide (0.5 g, 2.02mmol) and sodium hydride (0.2 g, 8.333 mmol) in N, N dimethylformamide (10 ml) was stirred at room temperature for 30 minutes followed by the addition of ethyl iodide (0.62 ml 2.02mmol) After the consumption of reactants (as monitored by TLC), the contents were poured over crushed ice. The precipitated product was isolated, washed, dried and recrystallized from methanol solution to yield colorless blocks of title compound.

Refinement top

All the C-H H-atoms were positioned geometricaly with C—H = 0.93 Å for aromatic, C—H = 0.96 Å for CH3, C—H = 0.97 Å for CH2 and were refined using a riding model with Uiso(H) = 1.2 Ueq for aromatic and CH2 and with Uiso(H) = 1.5 Ueq for CH3 Carbon atoms. The two reflection (0 2 0 and 1 1 0) were omitted in final refinement as these were obscured by the beam stop.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing with hydrogen bonding shown as dashed lines.
N-Benzyl-N-ethyl-4-methylbenzenesulfonamide top
Crystal data top
C16H19NO2SF(000) = 616
Mr = 289.38Dx = 1.259 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3170 reflections
a = 8.8144 (3) Åθ = 2.5–22.0°
b = 19.7677 (6) ŵ = 0.21 mm1
c = 9.8914 (4) ÅT = 296 K
β = 117.689 (1)°Needle, colorless
V = 1526.11 (9) Å30.41 × 0.25 × 0.19 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3489 independent reflections
Radiation source: fine-focus sealed tube2168 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.918, Tmax = 0.961k = 2524
13763 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.2532P]
where P = (Fo2 + 2Fc2)/3
3489 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H19NO2SV = 1526.11 (9) Å3
Mr = 289.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8144 (3) ŵ = 0.21 mm1
b = 19.7677 (6) ÅT = 296 K
c = 9.8914 (4) Å0.41 × 0.25 × 0.19 mm
β = 117.689 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3489 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2168 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.961Rint = 0.036
13763 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
3489 reflectionsΔρmin = 0.21 e Å3
183 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.70800 (8)0.37535 (3)0.46668 (7)0.0682 (2)
O10.6074 (2)0.39018 (8)0.30736 (18)0.0865 (5)
O20.8768 (2)0.40136 (9)0.5483 (2)0.1020 (6)
N10.7241 (2)0.29352 (8)0.48024 (18)0.0612 (4)
C10.5929 (2)0.40249 (9)0.5623 (2)0.0517 (5)
C20.4177 (3)0.40689 (11)0.4843 (2)0.0692 (6)
H20.36050.39800.38010.083*
C30.3266 (3)0.42449 (12)0.5602 (3)0.0716 (6)
H30.20780.42700.50630.086*
C40.4073 (3)0.43849 (9)0.7140 (2)0.0581 (5)
C50.5832 (3)0.43392 (10)0.7901 (2)0.0618 (5)
H50.64050.44310.89420.074*
C60.6766 (3)0.41622 (10)0.7163 (2)0.0599 (5)
H60.79540.41350.77010.072*
C70.3065 (3)0.45867 (12)0.7953 (3)0.0836 (7)
H7A0.36920.44650.90110.125*
H7B0.19810.43580.75010.125*
H7C0.28800.50670.78670.125*
C80.8382 (3)0.26352 (12)0.6291 (2)0.0743 (6)
H8A0.77100.24900.67850.089*
H8B0.91910.29740.69340.089*
C90.9347 (2)0.20401 (10)0.6128 (2)0.0564 (5)
C101.0400 (3)0.21151 (12)0.5454 (2)0.0667 (6)
H101.05210.25370.50990.080*
C111.1276 (3)0.15629 (14)0.5306 (3)0.0765 (7)
H111.19900.16170.48560.092*
C121.1105 (3)0.09461 (13)0.5810 (3)0.0761 (7)
H121.16920.05780.56970.091*
C131.0084 (3)0.08631 (12)0.6478 (3)0.0735 (6)
H130.99750.04390.68300.088*
C140.9203 (3)0.14070 (12)0.6639 (2)0.0667 (6)
H140.85020.13460.70980.080*
C150.5806 (3)0.25212 (11)0.3735 (2)0.0660 (6)
H15A0.62670.21310.34540.079*
H15B0.51570.27830.28140.079*
C160.4591 (3)0.22731 (13)0.4301 (3)0.0914 (8)
H16A0.36410.20470.34870.137*
H16B0.41780.26500.46480.137*
H16C0.51770.19630.51300.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0794 (4)0.0589 (3)0.0904 (4)0.0003 (3)0.0599 (3)0.0035 (3)
O10.1339 (15)0.0741 (10)0.0837 (11)0.0164 (9)0.0777 (11)0.0182 (8)
O20.0814 (11)0.0933 (13)0.1601 (17)0.0224 (10)0.0802 (12)0.0314 (12)
N10.0701 (11)0.0557 (10)0.0617 (10)0.0093 (8)0.0339 (9)0.0037 (8)
C10.0571 (11)0.0439 (10)0.0604 (12)0.0018 (8)0.0325 (10)0.0018 (9)
C20.0655 (14)0.0854 (16)0.0522 (11)0.0167 (11)0.0236 (11)0.0053 (10)
C30.0549 (12)0.0855 (16)0.0723 (14)0.0125 (11)0.0278 (11)0.0083 (12)
C40.0703 (13)0.0458 (11)0.0710 (13)0.0002 (9)0.0436 (11)0.0032 (9)
C50.0741 (14)0.0562 (12)0.0551 (11)0.0053 (10)0.0300 (11)0.0099 (9)
C60.0533 (11)0.0537 (12)0.0702 (13)0.0035 (9)0.0266 (10)0.0108 (10)
C70.1066 (19)0.0724 (15)0.1055 (18)0.0004 (13)0.0777 (16)0.0079 (13)
C80.0868 (16)0.0822 (16)0.0593 (13)0.0194 (13)0.0386 (12)0.0065 (11)
C90.0559 (11)0.0698 (13)0.0473 (10)0.0052 (10)0.0272 (9)0.0012 (9)
C100.0695 (13)0.0730 (14)0.0675 (13)0.0003 (11)0.0402 (12)0.0072 (11)
C110.0620 (13)0.1046 (19)0.0791 (15)0.0116 (13)0.0465 (12)0.0010 (14)
C120.0651 (14)0.0816 (17)0.0751 (15)0.0202 (12)0.0269 (12)0.0006 (13)
C130.0690 (14)0.0671 (15)0.0748 (15)0.0079 (11)0.0253 (12)0.0121 (11)
C140.0596 (12)0.0867 (16)0.0601 (12)0.0024 (11)0.0332 (11)0.0094 (11)
C150.0831 (15)0.0625 (13)0.0650 (13)0.0064 (11)0.0450 (12)0.0010 (10)
C160.107 (2)0.0864 (18)0.108 (2)0.0098 (15)0.0732 (18)0.0064 (14)
Geometric parameters (Å, º) top
S1—O21.4192 (18)C8—C91.504 (3)
S1—O11.4342 (17)C8—H8A0.9700
S1—N11.6239 (17)C8—H8B0.9700
S1—C11.7614 (18)C9—C141.378 (3)
N1—C151.464 (3)C9—C101.379 (3)
N1—C81.468 (3)C10—C111.384 (3)
C1—C21.372 (3)C10—H100.9300
C1—C61.376 (3)C11—C121.352 (3)
C2—C31.374 (3)C11—H110.9300
C2—H20.9300C12—C131.352 (3)
C3—C41.375 (3)C12—H120.9300
C3—H30.9300C13—C141.378 (3)
C4—C51.376 (3)C13—H130.9300
C4—C71.503 (3)C14—H140.9300
C5—C61.375 (3)C15—C161.503 (3)
C5—H50.9300C15—H15A0.9700
C6—H60.9300C15—H15B0.9700
C7—H7A0.9600C16—H16A0.9600
C7—H7B0.9600C16—H16B0.9600
C7—H7C0.9600C16—H16C0.9600
O2—S1—O1120.04 (11)C9—C8—H8A109.3
O2—S1—N1106.58 (10)N1—C8—H8B109.3
O1—S1—N1106.27 (9)C9—C8—H8B109.3
O2—S1—C1107.28 (10)H8A—C8—H8B108.0
O1—S1—C1108.16 (10)C14—C9—C10118.19 (19)
N1—S1—C1108.01 (9)C14—C9—C8121.22 (18)
C15—N1—C8117.21 (18)C10—C9—C8120.6 (2)
C15—N1—S1118.93 (14)C9—C10—C11120.0 (2)
C8—N1—S1118.57 (14)C9—C10—H10120.0
C2—C1—C6119.62 (18)C11—C10—H10120.0
C2—C1—S1119.75 (15)C12—C11—C10120.6 (2)
C6—C1—S1120.56 (15)C12—C11—H11119.7
C1—C2—C3119.99 (19)C10—C11—H11119.7
C1—C2—H2120.0C11—C12—C13120.2 (2)
C3—C2—H2120.0C11—C12—H12119.9
C2—C3—C4121.5 (2)C13—C12—H12119.9
C2—C3—H3119.3C12—C13—C14120.0 (2)
C4—C3—H3119.3C12—C13—H13120.0
C3—C4—C5117.64 (18)C14—C13—H13120.0
C3—C4—C7121.0 (2)C9—C14—C13120.92 (19)
C5—C4—C7121.4 (2)C9—C14—H14119.5
C6—C5—C4121.76 (19)C13—C14—H14119.5
C6—C5—H5119.1N1—C15—C16116.12 (17)
C4—C5—H5119.1N1—C15—H15A108.3
C5—C6—C1119.52 (19)C16—C15—H15A108.3
C5—C6—H6120.2N1—C15—H15B108.3
C1—C6—H6120.2C16—C15—H15B108.3
C4—C7—H7A109.5H15A—C15—H15B107.4
C4—C7—H7B109.5C15—C16—H16A109.5
H7A—C7—H7B109.5C15—C16—H16B109.5
C4—C7—H7C109.5H16A—C16—H16B109.5
H7A—C7—H7C109.5C15—C16—H16C109.5
H7B—C7—H7C109.5H16A—C16—H16C109.5
N1—C8—C9111.52 (15)H16B—C16—H16C109.5
N1—C8—H8A109.3
O2—S1—N1—C15162.75 (15)C7—C4—C5—C6179.28 (19)
O1—S1—N1—C1533.63 (16)C4—C5—C6—C10.1 (3)
C1—S1—N1—C1582.24 (15)C2—C1—C6—C50.3 (3)
O2—S1—N1—C843.62 (18)S1—C1—C6—C5176.62 (15)
O1—S1—N1—C8172.75 (15)C15—N1—C8—C965.8 (2)
C1—S1—N1—C871.39 (17)S1—N1—C8—C9140.15 (16)
O2—S1—C1—C2156.23 (18)N1—C8—C9—C14120.8 (2)
O1—S1—C1—C225.4 (2)N1—C8—C9—C1058.9 (3)
N1—S1—C1—C289.22 (18)C14—C9—C10—C110.0 (3)
O2—S1—C1—C626.89 (19)C8—C9—C10—C11179.8 (2)
O1—S1—C1—C6157.72 (16)C9—C10—C11—C120.4 (3)
N1—S1—C1—C687.66 (17)C10—C11—C12—C130.6 (4)
C6—C1—C2—C30.4 (3)C11—C12—C13—C140.4 (3)
S1—C1—C2—C3176.47 (17)C10—C9—C14—C130.1 (3)
C1—C2—C3—C40.5 (4)C8—C9—C14—C13179.61 (19)
C2—C3—C4—C50.3 (3)C12—C13—C14—C90.1 (3)
C2—C3—C4—C7179.1 (2)C8—N1—C15—C1657.2 (2)
C3—C4—C5—C60.2 (3)S1—N1—C15—C1696.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···O1i0.962.583.354 (3)138
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H19NO2S
Mr289.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.8144 (3), 19.7677 (6), 9.8914 (4)
β (°) 117.689 (1)
V3)1526.11 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.41 × 0.25 × 0.19
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.918, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
13763, 3489, 2168
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.02
No. of reflections3489
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···O1i0.962.583.354 (3)137.6
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge Higher Education Commission of Pakistan for providing a grant for the project to strengthen the Materials Chemistry Laboratory at GC University Lahore, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoyd, A. E. (1988). Diabetes, 37, 847–850.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, I. U., Ahmad, W., Sharif, S., Ali, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaren, T. H. (1976). Annu. Rev. Pharmacol. Toxicol. 16, 309–327.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds