organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro-N-(2-methyl­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 25 August 2010; accepted 31 August 2010; online 11 September 2010)

In the title compound, C13H11Cl2NO2S, the methyl-substituted aromatic ring is disordered over two positions [occupancy ratio 0.705 (5):0.295 (5)]. The dihedral angles between the two aromatic rings are 74.9 (1) and 71.0 (3)° in the two disorder components. The crystal structure features centrosymmetric dimers linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006[Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600-606.]). For our studies of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1692.], 2010a[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010a). Acta Cryst. E66, o1520.],b[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010b). Private communication (refcode CCDC 740692). CCDC, Union Road, Cambridge, England.]); For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11Cl2NO2S

  • Mr = 316.19

  • Monoclinic, P 21 /c

  • a = 8.106 (1) Å

  • b = 14.854 (2) Å

  • c = 11.772 (1) Å

  • β = 97.34 (1)°

  • V = 1405.8 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.52 mm−1

  • T = 299 K

  • 0.35 × 0.25 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.248, Tmax = 0.339

  • 5256 measured reflections

  • 2501 independent reflections

  • 2205 reflections with I > 2σ(I)

  • Rint = 0.033

  • 3 standard reflections every 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.098

  • S = 1.04

  • 2501 reflections

  • 240 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (2) 2.13 (2) 2.936 (2) 159 (2)
Symmetry code: (i) -x, -y+1, -z.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4.Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2008; Gowda et al. 2010a,b), the structure of 2,4-dichloro-N-(2-methylphenyl)-benzenesulfonamide (I) has been determined (Fig. 1). The methylsubstituted anilino ring is disordered. The conformations of the N—C bonds in the C—SO2—NH—C segment have gauche torsions with respect to the SO bonds in one of the disordered components.

The molecule is twisted at the S atom with the C1—SO2—NH—C7 torsion angles of -85.1 (3)° and -47.2 (5)° in the major and minor components, respectively, compared to the values of 55.1 (3)° (molecule 1) and -48.3 (3)° (molecule 2) in 2,4-dichloro-N-(phenyl)-benzenesulfonamide (II) (Gowda et al., 2010b), -60.2 (2)° in 2,4-dichloro-N- (3-methylphenyl)benzenesulfonamide (III)(Gowda et al., 2010a) and 72.0 (2)° in N-(2-methylphenyl)-benzenesulfonamide (IV) (Gowda et al., 2008).

The sulfonyl benzene and the aniline benzene rings in (I) are tilted relative to each other by 74.9 (1)° and 71.0 (3)° in the two components, compared to the values of 80.5 (2)° in molecule 1 and 64.9 (1)° in molecule 2 of (II), 68.6 (1)° in (III) and 61.5 (1)° in (IV).

The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal structure, the pairs of intermolecular N–H···O hydrogen bonds (Table 1) link the molecules through inversion-related dimers into infinite chains running parallel to the c-axis. Part of the crystal structure is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Savitha & Gowda (2006). For our studies of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2008, 2010a,b); For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of 1,3-dichlorobenzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dichlorobenzenesulfonylchloride was treated with o-toluidine in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dichloro-N-(2-methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006).

Prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and its coordinates were refined with the N—H distance restrained to 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Atoms C7–C12 of the phenyl ring and C13 of the methyl group are disordered and were refined using a split model. The corresponding site-occupation factors were refined so that their sum was unity [0.705 (5) and 0.295 (5)]. The corresponding bond distances in the disordered groups were restrained to be equal.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level. Only the major occupied component is shown.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
2,4-Dichloro-N-(2-methylphenyl)benzenesulfonamide top
Crystal data top
C13H11Cl2NO2SF(000) = 648
Mr = 316.19Dx = 1.494 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.106 (1) Åθ = 4.6–16.5°
b = 14.854 (2) ŵ = 5.52 mm1
c = 11.772 (1) ÅT = 299 K
β = 97.34 (1)°Prism, colourless
V = 1405.8 (3) Å30.35 × 0.25 × 0.25 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2205 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 67.0°, θmin = 4.8°
ω/2θ scansh = 09
Absorption correction: multi-scan
(North et al., 1968)
k = 1717
Tmin = 0.248, Tmax = 0.339l = 1413
5256 measured reflections3 standard reflections every 120 min
2501 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.4627P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.005
2501 reflectionsΔρmax = 0.44 e Å3
240 parametersΔρmin = 0.38 e Å3
8 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (3)
Crystal data top
C13H11Cl2NO2SV = 1405.8 (3) Å3
Mr = 316.19Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.106 (1) ŵ = 5.52 mm1
b = 14.854 (2) ÅT = 299 K
c = 11.772 (1) Å0.35 × 0.25 × 0.25 mm
β = 97.34 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2205 reflections with I > 2σ(I)
Absorption correction: multi-scan
(North et al., 1968)
Rint = 0.033
Tmin = 0.248, Tmax = 0.3393 standard reflections every 120 min
5256 measured reflections intensity decay: 1.0%
2501 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0398 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.44 e Å3
2501 reflectionsΔρmin = 0.38 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1368 (2)0.33703 (12)0.20574 (15)0.0386 (4)
C20.2961 (3)0.36013 (12)0.18389 (16)0.0404 (4)
C30.4340 (3)0.31932 (15)0.24250 (19)0.0502 (5)
H30.54030.33420.22690.060*
C40.4113 (3)0.25585 (15)0.3250 (2)0.0533 (5)
C50.2555 (3)0.23232 (14)0.34875 (19)0.0520 (5)
H50.24300.18990.40510.062*
C60.1183 (3)0.27211 (13)0.28857 (17)0.0450 (5)
H60.01240.25560.30320.054*
C7A0.1071 (5)0.5236 (2)0.2565 (3)0.0446 (8)0.705 (5)
C8A0.0002 (5)0.5685 (2)0.3379 (4)0.0532 (9)0.705 (5)
C9A0.072 (2)0.6089 (7)0.4284 (7)0.071 (3)0.705 (5)
H9A0.00610.64480.48070.085*0.705 (5)
C10A0.2337 (8)0.5970 (3)0.4412 (4)0.0903 (16)0.705 (5)
H10A0.27500.61870.50610.108*0.705 (5)
C11A0.3369 (8)0.5525 (4)0.3577 (6)0.0851 (17)0.705 (5)
H11A0.44950.54690.36440.102*0.705 (5)
C12A0.2749 (7)0.5167 (3)0.2651 (5)0.0608 (12)0.705 (5)
H12A0.34550.48770.20810.073*0.705 (5)
C13A0.1816 (13)0.5795 (9)0.3311 (9)0.074 (3)0.705 (5)
H13A0.19670.61100.26190.088*0.705 (5)
H13B0.23310.52140.33090.088*0.705 (5)
H13C0.23160.61340.39600.088*0.705 (5)
N10.0460 (2)0.49066 (12)0.15829 (14)0.0462 (4)
H1N0.003 (3)0.5230 (16)0.1141 (19)0.055*
O10.1805 (2)0.34262 (12)0.17683 (16)0.0629 (4)
O20.0363 (2)0.37672 (10)0.01067 (12)0.0560 (4)
Cl10.32844 (7)0.44230 (4)0.08450 (4)0.05248 (18)
Cl20.58543 (10)0.20713 (6)0.40131 (8)0.0887 (3)
S10.04615 (6)0.38428 (3)0.13094 (4)0.04322 (17)
C7B0.0109 (13)0.5386 (5)0.2733 (7)0.043 (2)0.295 (5)
C8B0.1310 (11)0.5537 (5)0.3435 (6)0.055 (2)0.295 (5)
C9B0.080 (4)0.5925 (14)0.4520 (14)0.052 (4)0.295 (5)
H9B0.15190.59190.50730.062*0.295 (5)
C10B0.0727 (13)0.6305 (6)0.4773 (8)0.068 (3)0.295 (5)
H10B0.09640.66530.54290.082*0.295 (5)
C11B0.1903 (13)0.6177 (7)0.4071 (10)0.074 (3)0.295 (5)
H11B0.29740.63980.42740.088*0.295 (5)
C12B0.151 (3)0.5715 (16)0.3043 (19)0.054 (4)0.295 (5)
H12B0.23170.56240.25610.064*0.295 (5)
C13B0.3078 (15)0.5262 (10)0.3116 (11)0.067 (4)0.295 (5)
H13D0.31320.46230.29890.081*0.295 (5)
H13E0.35320.55690.24290.081*0.295 (5)
H13F0.37090.54150.37250.081*0.295 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0406 (10)0.0357 (9)0.0390 (9)0.0031 (8)0.0029 (7)0.0023 (7)
C20.0429 (11)0.0354 (9)0.0432 (10)0.0030 (8)0.0065 (8)0.0020 (8)
C30.0395 (11)0.0490 (12)0.0620 (13)0.0002 (9)0.0059 (9)0.0007 (10)
C40.0516 (13)0.0457 (11)0.0600 (12)0.0073 (10)0.0036 (10)0.0029 (10)
C50.0623 (14)0.0420 (10)0.0511 (11)0.0001 (10)0.0051 (10)0.0077 (9)
C60.0460 (11)0.0422 (10)0.0474 (11)0.0066 (9)0.0082 (8)0.0013 (8)
C7A0.050 (2)0.0363 (16)0.0468 (19)0.0050 (15)0.0028 (16)0.0013 (13)
C8A0.060 (3)0.0448 (18)0.053 (2)0.0001 (16)0.0025 (18)0.0001 (16)
C9A0.111 (5)0.051 (5)0.050 (4)0.003 (3)0.012 (4)0.002 (4)
C10A0.110 (4)0.084 (3)0.085 (3)0.007 (3)0.043 (3)0.020 (2)
C11A0.071 (3)0.084 (4)0.109 (5)0.005 (3)0.047 (3)0.022 (3)
C12A0.056 (3)0.053 (2)0.074 (4)0.0074 (18)0.013 (2)0.007 (2)
C13A0.059 (4)0.080 (5)0.077 (7)0.011 (3)0.006 (4)0.019 (4)
N10.0526 (11)0.0438 (9)0.0424 (9)0.0006 (8)0.0069 (7)0.0035 (7)
O10.0401 (9)0.0595 (9)0.0888 (12)0.0069 (7)0.0073 (8)0.0146 (8)
O20.0650 (11)0.0557 (9)0.0431 (8)0.0070 (7)0.0094 (7)0.0048 (6)
Cl10.0507 (3)0.0533 (3)0.0544 (3)0.0078 (2)0.0107 (2)0.0094 (2)
Cl20.0639 (4)0.0861 (5)0.1097 (6)0.0179 (4)0.0134 (4)0.0310 (4)
S10.0373 (3)0.0435 (3)0.0472 (3)0.00531 (19)0.00115 (19)0.00201 (19)
C7B0.062 (7)0.032 (4)0.033 (4)0.002 (4)0.001 (4)0.008 (3)
C8B0.068 (6)0.045 (4)0.054 (5)0.007 (4)0.017 (4)0.002 (3)
C9B0.091 (10)0.035 (7)0.033 (6)0.004 (6)0.022 (6)0.007 (5)
C10B0.093 (7)0.053 (5)0.057 (5)0.004 (5)0.004 (5)0.020 (4)
C11B0.064 (6)0.075 (6)0.076 (6)0.003 (5)0.014 (5)0.030 (5)
C12B0.065 (11)0.046 (6)0.047 (7)0.006 (6)0.004 (7)0.014 (5)
C13B0.048 (8)0.088 (10)0.069 (10)0.002 (6)0.021 (6)0.021 (7)
Geometric parameters (Å, º) top
C1—C21.391 (3)C12A—H12A0.9300
C1—C61.393 (3)C13A—H13A0.9600
C1—S11.770 (2)C13A—H13B0.9600
C2—C31.377 (3)C13A—H13C0.9600
C2—Cl11.7337 (19)N1—C7B1.524 (9)
C3—C41.382 (3)N1—S11.6125 (18)
C3—H30.9300N1—H1N0.844 (17)
C4—C51.373 (3)O1—S11.4183 (17)
C4—Cl21.732 (2)O2—S11.4326 (15)
C5—C61.373 (3)C7B—C8B1.374 (11)
C5—H50.9300C7B—C12B1.402 (17)
C6—H60.9300C8B—C9B1.415 (16)
C7A—C12A1.381 (7)C8B—C13B1.492 (13)
C7A—C8A1.381 (5)C9B—C10B1.36 (3)
C7A—N11.403 (4)C9B—H9B0.9300
C8A—C9A1.413 (11)C10B—C11B1.352 (15)
C8A—C13A1.492 (11)C10B—H10B0.9300
C9A—C10A1.350 (15)C11B—C12B1.393 (16)
C9A—H9A0.9300C11B—H11B0.9300
C10A—C11A1.375 (8)C12B—H12B0.9300
C10A—H10A0.9300C13B—H13D0.9600
C11A—C12A1.366 (7)C13B—H13E0.9600
C11A—H11A0.9300C13B—H13F0.9600
C2—C1—C6119.02 (18)C8A—C13A—H13C109.5
C2—C1—S1123.26 (14)H13A—C13A—H13C109.5
C6—C1—S1117.69 (15)H13B—C13A—H13C109.5
C3—C2—C1120.80 (19)C7A—N1—C7B31.8 (3)
C3—C2—Cl1117.70 (16)C7A—N1—S1121.00 (19)
C1—C2—Cl1121.49 (15)C7B—N1—S1129.1 (3)
C2—C3—C4118.6 (2)C7A—N1—H1N123.6 (17)
C2—C3—H3120.7C7B—N1—H1N103.4 (17)
C4—C3—H3120.7S1—N1—H1N115.0 (17)
C5—C4—C3121.7 (2)O1—S1—O2118.99 (10)
C5—C4—Cl2119.84 (18)O1—S1—N1109.42 (11)
C3—C4—Cl2118.43 (18)O2—S1—N1105.99 (9)
C4—C5—C6119.4 (2)O1—S1—C1105.83 (10)
C4—C5—H5120.3O2—S1—C1108.16 (10)
C6—C5—H5120.3N1—S1—C1108.06 (9)
C5—C6—C1120.5 (2)C8B—C7B—C12B119.8 (13)
C5—C6—H6119.8C8B—C7B—N1123.0 (9)
C1—C6—H6119.8C12B—C7B—N1117.1 (11)
C12A—C7A—C8A121.6 (4)C7B—C8B—C9B117.4 (14)
C12A—C7A—N1119.3 (4)C7B—C8B—C13B122.4 (9)
C8A—C7A—N1118.9 (4)C9B—C8B—C13B120.1 (14)
C7A—C8A—C9A116.3 (7)C10B—C9B—C8B121.5 (16)
C7A—C8A—C13A123.6 (5)C10B—C9B—H9B119.2
C9A—C8A—C13A120.0 (7)C8B—C9B—H9B119.2
C10A—C9A—C8A122.0 (8)C11B—C10B—C9B120.1 (10)
C10A—C9A—H9A119.0C11B—C10B—H10B120.0
C8A—C9A—H9A119.0C9B—C10B—H10B120.0
C9A—C10A—C11A119.6 (5)C10B—C11B—C12B119.9 (13)
C9A—C10A—H10A120.2C10B—C11B—H11B120.1
C11A—C10A—H10A120.2C12B—C11B—H11B120.1
C12A—C11A—C10A120.4 (6)C11B—C12B—C7B120.1 (18)
C12A—C11A—H11A119.8C11B—C12B—H12B120.0
C10A—C11A—H11A119.8C7B—C12B—H12B120.0
C11A—C12A—C7A119.7 (6)C8B—C13B—H13D109.5
C11A—C12A—H12A120.1C8B—C13B—H13E109.5
C7A—C12A—H12A120.1H13D—C13B—H13E109.5
C8A—C13A—H13A109.5C8B—C13B—H13F109.5
C8A—C13A—H13B109.5H13D—C13B—H13F109.5
H13A—C13A—H13B109.5H13E—C13B—H13F109.5
C6—C1—C2—C30.4 (3)C7A—N1—S1—O129.7 (3)
S1—C1—C2—C3178.13 (16)C7B—N1—S1—O167.6 (5)
C6—C1—C2—Cl1178.41 (15)C7A—N1—S1—O2159.2 (2)
S1—C1—C2—Cl13.1 (2)C7B—N1—S1—O2162.9 (5)
C1—C2—C3—C41.0 (3)C7A—N1—S1—C185.1 (2)
Cl1—C2—C3—C4177.79 (16)C7B—N1—S1—C147.2 (5)
C2—C3—C4—C50.5 (3)C2—C1—S1—O1179.13 (16)
C2—C3—C4—Cl2178.15 (17)C6—C1—S1—O10.62 (18)
C3—C4—C5—C60.6 (3)C2—C1—S1—O250.59 (18)
Cl2—C4—C5—C6179.28 (17)C6—C1—S1—O2127.93 (15)
C4—C5—C6—C11.3 (3)C2—C1—S1—N163.73 (18)
C2—C1—C6—C50.8 (3)C6—C1—S1—N1117.75 (16)
S1—C1—C6—C5179.39 (16)C7A—N1—C7B—C8B1.1 (5)
C12A—C7A—C8A—C9A1.7 (7)S1—N1—C7B—C8B86.0 (8)
N1—C7A—C8A—C9A173.1 (5)C7A—N1—C7B—C12B176.0 (15)
C12A—C7A—C8A—C13A178.6 (8)S1—N1—C7B—C12B96.9 (13)
N1—C7A—C8A—C13A3.8 (8)C12B—C7B—C8B—C9B7.9 (19)
C7A—C8A—C9A—C10A6.4 (11)N1—C7B—C8B—C9B175.0 (12)
C13A—C8A—C9A—C10A176.6 (9)C12B—C7B—C8B—C13B175.7 (15)
C8A—C9A—C10A—C11A7.2 (13)N1—C7B—C8B—C13B1.4 (12)
C9A—C10A—C11A—C12A3.2 (11)C7B—C8B—C9B—C10B14 (3)
C10A—C11A—C12A—C7A1.3 (9)C13B—C8B—C9B—C10B170.0 (16)
C8A—C7A—C12A—C11A2.0 (7)C8B—C9B—C10B—C11B12 (3)
N1—C7A—C12A—C11A176.8 (5)C9B—C10B—C11B—C12B5 (2)
C12A—C7A—N1—C7B177.2 (8)C10B—C11B—C12B—C7B0 (3)
C8A—C7A—N1—C7B2.3 (5)C8B—C7B—C12B—C11B1 (2)
C12A—C7A—N1—S167.5 (4)N1—C7B—C12B—C11B178.6 (13)
C8A—C7A—N1—S1117.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.84 (2)2.13 (2)2.936 (2)159 (2)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H11Cl2NO2S
Mr316.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)8.106 (1), 14.854 (2), 11.772 (1)
β (°) 97.34 (1)
V3)1405.8 (3)
Z4
Radiation typeCu Kα
µ (mm1)5.52
Crystal size (mm)0.35 × 0.25 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionMulti-scan
(North et al., 1968)
Tmin, Tmax0.248, 0.339
No. of measured, independent and
observed [I > 2σ(I)] reflections
5256, 2501, 2205
Rint0.033
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.098, 1.04
No. of reflections2501
No. of parameters240
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.38

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.844 (17)2.133 (18)2.936 (2)159 (2)
Symmetry code: (i) x, y+1, z.
 

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010a). Acta Cryst. E66, o1520.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010b). Private communication (refcode CCDC 740692). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4.Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds