organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-nitro­phenol monohydrate

aDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: htanak@omu.edu.tr

(Received 28 August 2010; accepted 2 September 2010; online 11 September 2010)

The title compound, C6H6N2O3·H2O, crystallizes with two formula units in the asymmetric unit. The mol­ecules are essentially planar with the nitro groups twisted slightly out of the ring planes [maximum deviations from the ring plane of 0.13 (2) and 0.22 (2) Å in the two mol­ecules]. The respective O—N—C—C torsion angles are 6.0 (4) and 12.5 (4)°. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O, C—H⋯O, O—H⋯O and O—H⋯N inter­actions into a three-dimensional network.

Related literature

For the use of nitro­aromatics as inter­mediates in explosives, dyestuffs, pesticides and organic synthesis, see: Yan et al. (2006[Yan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. (THEOCHEM), 764, 141-148.]). For the occurrence of nitro­aromatics in industrial wastes and as direct pollutants in the environment, see: Yan et al. (2006[Yan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. (THEOCHEM), 764, 141-148.]); Soojhawon et al. (2005[Soojhawon, I., Lokhande, P. D., Kodam, K. M. & Gawai, K. R. (2005). Enz. Microb. Technol. 37, 527-533.]). For related structures, see: Tanak et al. (2010[Tanak, H., Macit, M., Yavuz, M. & Işık, Ş. (2009). Acta Cryst. E65, o3056-o3057.]); Bi et al. (2009[Bi, S., Wu, Y.-Z., Zhou, Y.-X., Tang, J.-G. & Guo, C. (2009). Acta Cryst. E65, o1378.]); Garden et al. (2004[Garden, S. J., da Cunha, F. R., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o12-o14.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N2O3·H2O

  • Mr = 172.14

  • Monoclinic, P 21 /n

  • a = 7.539 (5) Å

  • b = 21.436 (5) Å

  • c = 9.714 (5) Å

  • β = 99.328 (5)°

  • V = 1549.1 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.62 × 0.30 × 0.05 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.578, Tmax = 0.892

  • 8719 measured reflections

  • 3031 independent reflections

  • 1598 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.116

  • S = 0.98

  • 3031 reflections

  • 242 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H4⋯O2i 0.89 (5) 2.51 (5) 3.382 (3) 165 (4)
N2—H5⋯O3ii 0.89 (5) 2.47 (5) 3.317 (3) 159 (4)
N4—H10⋯O4iii 0.92 (5) 2.18 (5) 3.062 (3) 159 (4)
N4—H11⋯O6iv 0.88 (5) 2.28 (5) 3.064 (3) 147 (4)
O7—H13⋯N2ii 0.89 (5) 2.00 (5) 2.877 (4) 172 (5)
O7—H14⋯O8v 0.78 (5) 2.43 (5) 3.166 (4) 158 (5)
O8—H15⋯O2vi 0.80 (5) 2.55 (5) 3.102 (3) 127 (4)
O8—H15⋯O5vi 0.80 (5) 2.35 (5) 3.038 (3) 144 (5)
O8—H16⋯N4iv 0.96 (5) 1.88 (5) 2.821 (4) 164 (4)
C6—H6⋯O1i 0.93 2.47 3.304 (4) 150
C12—H12⋯O4iii 0.93 2.54 3.254 (4) 133
O3—H1⋯O8 0.82 1.85 2.657 (3) 169
O6—H7⋯O7 0.82 1.81 2.619 (4) 168
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nitroaromatics are widely used either as materials or as intermediates in explosives, dyestuffs, pesticides and organic synthesis (Yan et al., 2006). Nitroaromatics occur as industrial wastes and direct pollutants in the environment, and are relatively soluble in water and detectable in rivers, ponds and soil (Yan et al., 2006; Soojhawon et al., 2005).

There is two independent molecules in the asymmetric unit of the title compound (I, Fig. 1). The bond lengths and angles in (I) have normal values, and are comparable with those in the related structures (Tanak et al., 2010; Bi et al., 2009; Garden et al., 2004). The aromatic ring systems are almost planar with the maximum deviation, 0.13 (2) Å for atom O1 in the ring system C1—C6 and -0.22 (2) Å for atom O4 in the ring system C7—C12.

In the crystal structure, the molecules are linked by intermolecular N—H···O, C—H···O, O—H···O and O—H···N interactions (see Table I) into a three-dimensional network.

Related literature top

For the use of nitroaromatics as intermediates in explosives, dyestuffs, pesticides and organic synthesis, see: Yan et al. (2006). For the occurrence of nitroaromatics in industrial wastes and as direct pollutants in the environment, see: Yan et al. (2006); Soojhawon et al. (2005). For related structures, see: Tanak et al. (2010); Bi et al. (2009); Garden et al. (2004).

Experimental top

The commercially available compound (Acros organics) was recrystallized from ethanol.

Refinement top

C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The position of the H4, H5, H10, H11, H13, H14, H15 and H16 atoms were obtained from a difference map and these atoms were freely refined. The H atoms of the hydroxyl groups were refined using a riding model with O-H = 0.82Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 50% probability diplacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound.
2-Amino-4-nitrophenol monohydrate top
Crystal data top
C6H6N2O3·H2OF(000) = 720
Mr = 172.14Dx = 1.476 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 7016 reflections
a = 7.539 (5) Åθ = 1.9–27.3°
b = 21.436 (5) ŵ = 0.13 mm1
c = 9.714 (5) ÅT = 296 K
β = 99.328 (5)°Prism, yellow
V = 1549.1 (13) Å30.62 × 0.30 × 0.05 mm
Z = 8
Data collection top
Stoe IPDS II
diffractometer
3031 independent reflections
Radiation source: fine-focus sealed tube1598 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 1.9°
rotation method scansh = 79
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2626
Tmin = 0.578, Tmax = 0.892l = 1111
8719 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0426P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3031 reflectionsΔρmax = 0.17 e Å3
242 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (11)
Crystal data top
C6H6N2O3·H2OV = 1549.1 (13) Å3
Mr = 172.14Z = 8
Monoclinic, P21/nMo Kα radiation
a = 7.539 (5) ŵ = 0.13 mm1
b = 21.436 (5) ÅT = 296 K
c = 9.714 (5) Å0.62 × 0.30 × 0.05 mm
β = 99.328 (5)°
Data collection top
Stoe IPDS II
diffractometer
3031 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1598 reflections with I > 2σ(I)
Tmin = 0.578, Tmax = 0.892Rint = 0.069
8719 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.17 e Å3
3031 reflectionsΔρmin = 0.21 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.6819 (3)0.50238 (8)0.1354 (2)0.0700 (6)
H10.70780.47270.18820.105*
C110.4215 (3)0.62410 (11)0.4251 (3)0.0524 (7)
O60.3203 (3)0.52487 (8)0.3513 (2)0.0738 (6)
H70.26340.50610.28490.111*
C40.7466 (3)0.55594 (11)0.2003 (3)0.0525 (7)
C50.7094 (3)0.61040 (11)0.1216 (3)0.0521 (6)
C120.4337 (3)0.68701 (11)0.4013 (3)0.0534 (7)
H120.49500.71290.46990.064*
O80.7879 (3)0.39992 (9)0.2795 (3)0.0796 (7)
C20.9053 (4)0.61399 (12)0.3917 (3)0.0581 (7)
H20.97020.61580.48160.070*
C100.3296 (3)0.58634 (11)0.3190 (3)0.0540 (7)
N40.4880 (4)0.59777 (11)0.5561 (3)0.0661 (7)
N20.6190 (4)0.60576 (11)0.0165 (3)0.0656 (7)
C10.8706 (4)0.66709 (11)0.3123 (3)0.0543 (7)
C60.7737 (4)0.66635 (11)0.1799 (3)0.0567 (7)
H60.75150.70330.12990.068*
O11.0411 (4)0.72657 (11)0.4830 (3)0.0981 (8)
C30.8408 (4)0.55795 (12)0.3337 (3)0.0580 (7)
H30.86120.52140.38530.070*
N30.3654 (4)0.77812 (11)0.2558 (3)0.0690 (7)
N10.9413 (4)0.72598 (12)0.3708 (3)0.0744 (8)
C90.2545 (4)0.61152 (12)0.1923 (3)0.0612 (7)
H90.19660.58580.12190.073*
C80.2650 (4)0.67473 (12)0.1700 (3)0.0614 (7)
H80.21260.69220.08560.074*
C70.3544 (4)0.71151 (11)0.2748 (3)0.0540 (7)
O50.4692 (4)0.80874 (9)0.3407 (3)0.0955 (8)
O40.2702 (3)0.80249 (9)0.1563 (3)0.0911 (8)
O20.9015 (4)0.77391 (10)0.3045 (3)0.1136 (10)
O70.1271 (4)0.45374 (12)0.1652 (4)0.1135 (11)
H110.513 (6)0.558 (2)0.552 (5)0.170*
H50.544 (7)0.574 (2)0.025 (5)0.170*
H100.584 (7)0.620 (2)0.603 (5)0.170*
H40.564 (7)0.641 (2)0.048 (5)0.170*
H150.808 (7)0.368 (2)0.243 (6)0.170*
H160.686 (7)0.394 (2)0.327 (5)0.170*
H130.201 (7)0.432 (2)0.122 (6)0.170*
H140.055 (7)0.431 (2)0.188 (6)0.170*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0838 (15)0.0491 (10)0.0692 (13)0.0074 (9)0.0118 (11)0.0001 (10)
C110.0552 (17)0.0446 (14)0.0573 (18)0.0031 (11)0.0091 (13)0.0025 (13)
O60.0843 (16)0.0441 (10)0.0885 (15)0.0017 (9)0.0006 (11)0.0001 (10)
C40.0559 (17)0.0441 (14)0.0555 (18)0.0012 (12)0.0031 (13)0.0018 (14)
C50.0512 (16)0.0507 (14)0.0534 (17)0.0033 (12)0.0056 (13)0.0005 (14)
C120.0575 (18)0.0436 (14)0.0573 (18)0.0006 (11)0.0038 (13)0.0024 (13)
O80.0979 (19)0.0521 (11)0.0887 (18)0.0038 (11)0.0145 (13)0.0065 (11)
C20.0568 (17)0.0612 (17)0.0530 (17)0.0036 (13)0.0011 (13)0.0075 (15)
C100.0549 (18)0.0402 (13)0.068 (2)0.0042 (11)0.0126 (14)0.0023 (14)
N40.0814 (19)0.0477 (12)0.0641 (17)0.0015 (12)0.0041 (13)0.0101 (13)
N20.0727 (18)0.0609 (14)0.0581 (16)0.0057 (12)0.0050 (13)0.0039 (13)
C10.0514 (16)0.0478 (14)0.064 (2)0.0011 (12)0.0099 (14)0.0135 (14)
C60.0570 (17)0.0458 (14)0.068 (2)0.0048 (12)0.0128 (15)0.0029 (15)
O10.0942 (18)0.0970 (17)0.0998 (19)0.0290 (13)0.0057 (15)0.0430 (16)
C30.0661 (19)0.0492 (14)0.0557 (19)0.0042 (12)0.0007 (14)0.0026 (13)
N30.0799 (19)0.0529 (14)0.0747 (19)0.0083 (13)0.0136 (15)0.0146 (15)
N10.0694 (19)0.0599 (17)0.096 (2)0.0080 (13)0.0205 (17)0.0282 (17)
C90.0613 (18)0.0606 (16)0.0597 (18)0.0016 (13)0.0039 (14)0.0047 (15)
C80.0599 (19)0.0641 (17)0.0594 (19)0.0103 (14)0.0075 (14)0.0096 (15)
C70.0526 (17)0.0459 (13)0.0635 (19)0.0067 (12)0.0097 (14)0.0088 (14)
O50.122 (2)0.0524 (12)0.104 (2)0.0134 (12)0.0068 (16)0.0133 (13)
O40.1057 (19)0.0673 (13)0.0949 (18)0.0214 (12)0.0002 (14)0.0300 (13)
O20.137 (2)0.0485 (13)0.149 (3)0.0033 (13)0.0030 (19)0.0150 (15)
O70.105 (2)0.0883 (18)0.156 (3)0.0325 (14)0.0474 (18)0.0539 (18)
Geometric parameters (Å, º) top
O3—C41.361 (3)N4—H110.88 (5)
O3—H10.8200N4—H100.92 (5)
C11—C121.374 (3)N2—H50.89 (5)
C11—C101.402 (4)N2—H40.89 (5)
C11—N41.408 (4)C1—C61.372 (4)
O6—C101.359 (3)C1—N11.450 (3)
O6—H70.8200C6—H60.9300
C4—C31.374 (4)O1—N11.219 (4)
C4—C51.398 (3)C3—H30.9300
C5—C61.380 (3)N3—O41.223 (3)
C5—N21.406 (4)N3—O51.230 (3)
C12—C71.380 (4)N3—C71.444 (3)
C12—H120.9300N1—O21.224 (3)
O8—H150.80 (5)C9—C81.377 (4)
O8—H160.96 (5)C9—H90.9300
C2—C11.376 (4)C8—C71.374 (4)
C2—C31.382 (4)C8—H80.9300
C2—H20.9300O7—H130.89 (5)
C10—C91.378 (4)O7—H140.78 (5)
C4—O3—H1109.5H5—N2—H4112 (4)
C12—C11—C10118.8 (2)C6—C1—C2122.7 (2)
C12—C11—N4121.5 (3)C6—C1—N1118.9 (3)
C10—C11—N4119.6 (2)C2—C1—N1118.4 (3)
C10—O6—H7109.5C1—C6—C5119.5 (2)
O3—C4—C3123.7 (2)C1—C6—H6120.2
O3—C4—C5115.2 (2)C5—C6—H6120.2
C3—C4—C5121.1 (2)C4—C3—C2120.4 (3)
C6—C5—C4118.4 (2)C4—C3—H3119.8
C6—C5—N2122.5 (2)C2—C3—H3119.8
C4—C5—N2119.0 (2)O4—N3—O5122.0 (2)
C11—C12—C7119.5 (3)O4—N3—C7119.0 (3)
C11—C12—H12120.3O5—N3—C7119.1 (3)
C7—C12—H12120.3O1—N1—O2121.6 (3)
H15—O8—H16109 (4)O1—N1—C1119.6 (3)
C1—C2—C3117.9 (2)O2—N1—C1118.7 (3)
C1—C2—H2121.1C8—C9—C10120.0 (3)
C3—C2—H2121.1C8—C9—H9120.0
O6—C10—C9123.9 (3)C10—C9—H9120.0
O6—C10—C11115.3 (2)C7—C8—C9118.8 (3)
C9—C10—C11120.9 (2)C7—C8—H8120.6
C11—N4—H11113 (3)C9—C8—H8120.6
C11—N4—H10112 (3)C8—C7—C12122.0 (2)
H11—N4—H10112 (4)C8—C7—N3120.3 (3)
C5—N2—H5110 (3)C12—C7—N3117.7 (3)
C5—N2—H4113 (3)H13—O7—H14109 (5)
O3—C4—C5—C6178.9 (2)C5—C4—C3—C21.8 (4)
C3—C4—C5—C61.6 (4)C1—C2—C3—C40.6 (4)
O3—C4—C5—N23.1 (4)C6—C1—N1—O1173.4 (3)
C3—C4—C5—N2177.4 (3)C2—C1—N1—O16.0 (4)
C10—C11—C12—C70.6 (4)C6—C1—N1—O25.2 (4)
N4—C11—C12—C7175.0 (2)C2—C1—N1—O2175.4 (3)
C12—C11—C10—O6178.8 (2)O6—C10—C9—C8177.8 (2)
N4—C11—C10—O63.2 (4)C11—C10—C9—C81.7 (4)
C12—C11—C10—C90.8 (4)C10—C9—C8—C71.3 (4)
N4—C11—C10—C9176.4 (3)C9—C8—C7—C120.0 (4)
C3—C2—C1—C60.8 (4)C9—C8—C7—N3179.0 (2)
C3—C2—C1—N1178.6 (2)C11—C12—C7—C81.0 (4)
C2—C1—C6—C50.9 (4)C11—C12—C7—N3178.0 (2)
N1—C1—C6—C5178.4 (2)O4—N3—C7—C812.1 (4)
C4—C5—C6—C10.3 (4)O5—N3—C7—C8168.4 (3)
N2—C5—C6—C1175.9 (3)O4—N3—C7—C12166.9 (3)
O3—C4—C3—C2178.7 (2)O5—N3—C7—C1212.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H4···O2i0.89 (5)2.51 (5)3.382 (3)165 (4)
N2—H5···O3ii0.89 (5)2.47 (5)3.317 (3)159 (4)
N4—H10···O4iii0.92 (5)2.18 (5)3.062 (3)159 (4)
N4—H11···O6iv0.88 (5)2.28 (5)3.064 (3)147 (4)
O7—H13···N2ii0.89 (5)2.00 (5)2.877 (4)172 (5)
O7—H14···O8v0.78 (5)2.43 (5)3.166 (4)158 (5)
O8—H15···O2vi0.80 (5)2.55 (5)3.102 (3)127 (4)
O8—H15···O5vi0.80 (5)2.35 (5)3.038 (3)144 (5)
O8—H16···N4iv0.96 (5)1.88 (5)2.821 (4)164 (4)
C6—H6···O1i0.932.473.304 (4)150
C12—H12···O4iii0.932.543.254 (4)133
O3—H1···O80.821.852.657 (3)169
O6—H7···O70.821.812.619 (4)168
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y+1, z; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H6N2O3·H2O
Mr172.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.539 (5), 21.436 (5), 9.714 (5)
β (°) 99.328 (5)
V3)1549.1 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.62 × 0.30 × 0.05
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.578, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
8719, 3031, 1598
Rint0.069
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.116, 0.98
No. of reflections3031
No. of parameters242
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.21

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H4···O2i0.89 (5)2.51 (5)3.382 (3)165 (4)
N2—H5···O3ii0.89 (5)2.47 (5)3.317 (3)159 (4)
N4—H10···O4iii0.92 (5)2.18 (5)3.062 (3)159 (4)
N4—H11···O6iv0.88 (5)2.28 (5)3.064 (3)147 (4)
O7—H13···N2ii0.89 (5)2.00 (5)2.877 (4)172 (5)
O7—H14···O8v0.78 (5)2.43 (5)3.166 (4)158 (5)
O8—H15···O2vi0.80 (5)2.55 (5)3.102 (3)127 (4)
O8—H15···O5vi0.80 (5)2.35 (5)3.038 (3)144 (5)
O8—H16···N4iv0.96 (5)1.88 (5)2.821 (4)164 (4)
C6—H6···O1i0.932.473.304 (4)150.0
C12—H12···O4iii0.932.543.254 (4)133.3
O3—H1···O80.821.852.657 (3)168.8
O6—H7···O70.821.812.619 (4)168.3
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y+1, z; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationBi, S., Wu, Y.-Z., Zhou, Y.-X., Tang, J.-G. & Guo, C. (2009). Acta Cryst. E65, o1378.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGarden, S. J., da Cunha, F. R., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o12–o14.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoojhawon, I., Lokhande, P. D., Kodam, K. M. & Gawai, K. R. (2005). Enz. Microb. Technol. 37, 527–533.  Web of Science CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTanak, H., Macit, M., Yavuz, M. & Işık, Ş. (2009). Acta Cryst. E65, o3056–o3057.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. (THEOCHEM), 764, 141–148.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds