metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1220-m1221

Poly[[tris­­(N,N-di­methyl­formamide)(μ4-5-nitro­isophthalato)(μ3-5-nitro­isophthalato)dicobalt(II)] N,N-di­methyl­formamide monosolvate]

aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 31 August 2010; accepted 1 September 2010; online 8 September 2010)

In the polymeric title compound, [Co2(C3H7NO)3(C8H3NO6)2]·C3H7NO, one 5-nitro­isophthalate dianion has its two carboxyl­ate groups chelating to one CoII atom while simultaneously coordinating to another metal atom in a μ4-bridging mode. The other 5-nitro­isophthalte dianion has one carboxyl­ate group chelating to a metal atom whereas the other bridges two metal atoms in a μ3-bridging mode. Both metal atoms show an octa­hedral coordination. The polymer adopts a layer motif, with the lattice dimethyl­formamide mol­ecules occupying the space between adjacent layers.

Related literature

For adducts of cobalt 5-nitro­isophthalate, see: Chen et al. (2006[Chen, H.-J., Zhang, J., Feng, W.-L. & Fu, M. (2006). Inorg. Chem. Commun. 9, 300-303.]); Du et al. (2008[Du, M., Zhang, Z.-H., You, Y.-P. & Zhao, X.-J. (2008). CrystEngComm, 10, 306-321.]); Guo et al. (2006[Guo, J.-Y., Zhang, J.-G. & Zhang, T.-L. (2006). Acta Chim. Sin. 64, 1693-1699.]); Liu et al. (2008[Liu, Y., He, Q., Zhang, X., Xue, Z. & Lv, C. (2008). Acta Cryst. E64, m1605-m1606.]); Luo et al. (2003[Luo, J., Hong, M., Wang, R., Cao, R., Han, L., Yuan, D., Lin, Z. & Zhou, Y. (2003). Inorg. Chem. 42, 4486-4488.]); Wang et al. (2008[Wang, Q., Wu, M.-J., Yang, E.-C., Wang, X.-G. & Zhao, X.-J. (2008). J. Coord. Chem. 61, 595-604.], 2009[Wang, H.-D., Li, M.-M. & He, H.-Y. (2009). Acta Cryst. E65, m510.]); Xie et al. (2006[Xie, G., Zeng, M.-H., Chen, S.-P. & Gao, S.-L. (2006). Acta Cryst. E62, m397-m399.]); Ye et al. (2008a[Ye, J.-W., Li, D., Ye, K.-Q., Liu, Y., Zhao, Y.-F. & Zhang, P. (2008a). Z. Anorg. Allg. Chem. 634, 345-351.],b[Ye, J., Wang, J., Wu, Y., Ye, L. & Zhang, P. (2008b). J. Mol. Struct. 873, 35-40.]); Yuan et al. (2009[Yuan, S., Zhang, W.-Y., Shu, K.-X., Liang, Y.-L. & Yan, G.-F. (2009). Z. Krist. New Cryst. Struct. 224, 203-204.]); Zhou et al. (2004[Zhou, Y.-L., He, H.-Y. & Zhu, L.-G. (2004). Chin. J. Inorg. Chem. 20, 576-579.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C3H7NO)3(C8H3NO6)2]·C3H7NO

  • Mr = 828.47

  • Monoclinic, P 21 /c

  • a = 10.0833 (12) Å

  • b = 17.0887 (19) Å

  • c = 21.074 (2) Å

  • β = 92.910 (2)°

  • V = 3626.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.796, Tmax = 1

  • 21143 measured reflections

  • 7876 independent reflections

  • 5128 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.132

  • S = 0.99

  • 7876 reflections

  • 477 parameters

  • 54 restraints

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.001 (2)
Co1—O3i 2.247 (2)
Co1—O4i 2.058 (2)
Co1—O7 2.383 (3)
Co1—O8 2.082 (3)
Co1—O10ii 2.008 (2)
Co2—O2 2.042 (2)
Co2—O7 2.091 (2)
Co2—O9ii 2.082 (2)
Co2—O13 2.139 (3)
Co2—O14 2.100 (2)
Co2—O15 2.063 (2)
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX (Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Cobalt 5-nitroisophthalate forms a number of adducts with neutral ligands (Chen et al., 2006; Du et al., 2008; Guo et al., 2006; Liu et al., 2008; Luo et al., 2003; Wang et al., 2008; Wang et al., 2009; Xie et al., 2006; Ye et al., 2008a; Ye et al., 2008b; Yuan et al., 2009; Zhou et al., 2004). The structure of the parent coordination polymer has not been reported. The attempt to synthesize this compound by using DMF as the solvent gave instead the DMF-coordinated polymer, who crystallizes as a DMF solvate (Scheme I).

In polymeric Co2(DFM)3(C8H3NO6)2.DMF, the 5-nitroisophthalate units show different binding modes. With one dianion, each carboxyl –CO2 fragment chelate to one cobalt(II) atom while simultaneously coordinating to another metal atom, i.e., this dianion functions in a µ4-bridging mode. With the other, one carboxyl fragment chelates to a metal atom whereas the other bridges two metal atoms, the dianion functioning in a µ3-bridging mode. Both metal atoms show octahedral coordination. Of the two indepent metal atoms, one is coordinated by three DMF molecules. The bridging mode exercised by the dianion gives rise to a layer motif (Fig. 1). The lattice DMF molecules occupy the space between adjacent layers.

Related literature top

For adducts of cobalt 5-nitroisophthalate, see: Chen et al. (2006); Du et al. (2008); Guo et al. (2006); Liu et al. (2008); Luo et al. (2003); Wang et al. (2008, 2009); Xie et al. (2006); Ye et al. (2008a,b); Yuan et al. (2009); Zhou et al. (2004).

Experimental top

Cobalt(II) nitrate hexahydrate (0.5 mmol, 0.146 g) and 5-nitroisophthalic acid (0.5 mmol, 0.106 g) were dissolved in DMF (2 ml); triethylamine was allowed to diffuse into the solution. Purple crystals were obtained in 30% yield after one week.

Refinement top

H-atoms were placed in calculated positions [C–H 0.93–0.96 Å, U(H) 1.2–1.5U(C)] and were included in the refinement in the riding model approximation.

For the coordinated and lattice DMF molecules, the C–O distance was restrained to 1.25±0.01 Å, the N–Ccarbonyl distance to 1.35±0.01 and the N–Cmethyl distances to 1.45±0.01 Å; the molecule was restrained to lie on a plane to within 0.01 Å. For the lattice DMF molecule, the anisotropic displacement parameters of the non-H atoms were restrained to be nearly isotropic.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX (Dolomanov et al., 2003) and X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of a portion of the layer structure of Co2(DMF)3(C8H3NO6)2.DMF at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry codes are given in Table 1.
Poly[[tris(N,N-dimethylformamide)(µ4-5-nitroisophthalato)(µ3-5-nitroisophthalato)dicobalt(II)] N,N-dimethylformamide monosolvate] top
Crystal data top
[Co2(C3H7NO)3(C8H3NO6)2]·C3H7NOF(000) = 1704
Mr = 828.47Dx = 1.517 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1014 reflections
a = 10.0833 (12) Åθ = 2.3–26.7°
b = 17.0887 (19) ŵ = 0.99 mm1
c = 21.074 (2) ÅT = 293 K
β = 92.910 (2)°Block, purple
V = 3626.7 (7) Å30.40 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker SMART
diffractometer
7876 independent reflections
Radiation source: fine-focus sealed tube5128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.796, Tmax = 1k = 2120
21143 measured reflectionsl = 2426
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0741P)2 + 0.1674P]
where P = (Fo2 + 2Fc2)/3
7876 reflections(Δ/σ)max = 0.001
477 parametersΔρmax = 0.57 e Å3
54 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Co2(C3H7NO)3(C8H3NO6)2]·C3H7NOV = 3626.7 (7) Å3
Mr = 828.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0833 (12) ŵ = 0.99 mm1
b = 17.0887 (19) ÅT = 293 K
c = 21.074 (2) Å0.40 × 0.30 × 0.30 mm
β = 92.910 (2)°
Data collection top
Bruker SMART
diffractometer
7876 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5128 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 1Rint = 0.036
21143 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04854 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 0.99Δρmax = 0.57 e Å3
7876 reflectionsΔρmin = 0.45 e Å3
477 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.54070 (4)0.62850 (2)0.36883 (2)0.03535 (14)
Co20.75875 (4)0.69413 (2)0.25276 (2)0.03577 (14)
O10.7161 (2)0.61369 (15)0.41609 (12)0.0509 (6)
O20.8391 (2)0.65261 (16)0.33703 (12)0.0536 (7)
O31.3188 (2)0.63449 (18)0.35333 (13)0.0615 (8)
O41.4234 (2)0.60440 (14)0.44350 (11)0.0452 (6)
O51.1571 (3)0.5635 (2)0.63158 (14)0.0841 (10)
O60.9466 (3)0.5792 (2)0.62357 (14)0.0890 (11)
O70.5916 (2)0.62286 (13)0.25975 (14)0.0584 (7)
O80.5266 (3)0.52567 (16)0.31596 (14)0.0641 (8)
O90.3476 (2)0.28716 (13)0.21118 (12)0.0447 (6)
O100.4601 (3)0.24599 (14)0.12880 (13)0.0548 (7)
O110.6418 (4)0.4515 (2)0.00474 (17)0.0982 (12)
O120.7008 (6)0.5587 (3)0.0369 (2)0.160 (2)
O130.8704 (3)0.60593 (15)0.20713 (13)0.0634 (8)
O140.9230 (3)0.76957 (15)0.25177 (13)0.0619 (7)
O150.6900 (3)0.72766 (15)0.16294 (12)0.0599 (7)
O161.0622 (10)0.7746 (4)0.5743 (4)0.236 (4)
N11.0547 (3)0.5774 (2)0.60062 (15)0.0565 (8)
N20.6509 (4)0.4948 (3)0.03991 (19)0.0781 (11)
N31.0517 (3)0.53017 (18)0.20161 (17)0.0715 (11)
N41.1460 (3)0.7832 (2)0.24308 (18)0.0788 (11)
N50.6043 (3)0.82156 (18)0.09718 (13)0.0572 (9)
N60.9621 (7)0.8134 (3)0.4885 (3)0.1170 (18)
C10.8239 (3)0.62893 (19)0.39168 (17)0.0385 (8)
C20.9490 (3)0.61717 (18)0.43297 (16)0.0361 (7)
C31.0713 (3)0.62258 (19)0.40590 (16)0.0390 (8)
H31.07520.63460.36300.047*
C41.1879 (3)0.6102 (2)0.44235 (16)0.0381 (8)
C51.1835 (3)0.5940 (2)0.50582 (16)0.0411 (8)
H51.26120.58510.53050.049*
C61.0611 (3)0.5913 (2)0.53248 (16)0.0399 (8)
C70.9434 (3)0.60096 (19)0.49684 (16)0.0394 (8)
H70.86210.59660.51550.047*
C81.3176 (3)0.6162 (2)0.41043 (18)0.0411 (8)
C90.5582 (3)0.5522 (2)0.2641 (2)0.0454 (9)
C100.5511 (3)0.50093 (19)0.20667 (17)0.0400 (8)
C110.4916 (3)0.42749 (18)0.21119 (16)0.0389 (8)
H110.45620.41270.24930.047*
C120.4843 (3)0.37624 (18)0.16031 (16)0.0374 (7)
C130.5376 (3)0.3984 (2)0.10396 (17)0.0458 (9)
H130.53580.36460.06940.055*
C140.5937 (4)0.4717 (2)0.10006 (18)0.0525 (10)
C150.6007 (4)0.5237 (2)0.15018 (18)0.0509 (9)
H150.63820.57300.14580.061*
C160.4250 (3)0.29629 (19)0.16771 (17)0.0391 (8)
C170.9538 (4)0.5620 (2)0.2306 (2)0.0616 (11)
H170.94740.54990.27340.074*
C181.0674 (8)0.5465 (4)0.1361 (3)0.180 (4)
H18A1.00400.58550.12190.269*
H18B1.05320.49960.11170.269*
H18C1.15560.56560.13060.269*
C191.1493 (5)0.4793 (3)0.2333 (3)0.132 (3)
H19A1.12190.46700.27510.198*
H19B1.23370.50540.23650.198*
H19C1.15690.43190.20920.198*
C201.0260 (4)0.7575 (2)0.2246 (2)0.0653 (11)
H201.01930.72760.18770.078*
C211.1625 (6)0.8289 (5)0.2992 (3)0.167 (4)
H21A1.08660.82240.32440.250*
H21B1.17100.88310.28800.250*
H21C1.24090.81230.32320.250*
C221.2638 (5)0.7666 (4)0.2097 (3)0.123 (2)
H22A1.23990.73910.17110.184*
H22B1.32280.73490.23600.184*
H22C1.30710.81480.19990.184*
C230.6784 (3)0.7969 (2)0.14649 (15)0.0503 (9)
H230.72520.83420.17070.060*
C240.5276 (6)0.7661 (3)0.0572 (2)0.099 (2)
H24A0.54590.71380.07160.149*
H24B0.55200.77130.01390.149*
H24C0.43460.77690.05970.149*
C250.5940 (4)0.9038 (2)0.08090 (19)0.0641 (11)
H25A0.65640.93320.10730.096*
H25B0.50560.92180.08750.096*
H25C0.61320.91080.03710.096*
C260.9403 (11)0.7817 (4)0.5443 (5)0.175 (4)
H260.85890.76730.55960.210*
C271.0928 (11)0.8320 (7)0.4728 (6)0.267 (6)
H27A1.15420.81430.50610.400*
H27B1.10090.88760.46800.400*
H27C1.11230.80660.43370.400*
C280.8669 (10)0.8325 (5)0.4374 (4)0.176 (4)
H28A0.78260.80960.44560.265*
H28B0.89720.81240.39810.265*
H28C0.85770.88840.43440.265*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0234 (2)0.0368 (2)0.0459 (3)0.00044 (18)0.00267 (17)0.0023 (2)
Co20.0301 (2)0.0324 (2)0.0445 (3)0.00062 (18)0.00140 (18)0.00308 (19)
O10.0218 (12)0.0657 (16)0.0653 (17)0.0010 (11)0.0021 (11)0.0089 (13)
O20.0333 (14)0.0776 (18)0.0495 (16)0.0072 (13)0.0015 (11)0.0134 (14)
O30.0308 (14)0.105 (2)0.0496 (17)0.0015 (14)0.0063 (11)0.0135 (15)
O40.0236 (12)0.0602 (15)0.0515 (15)0.0024 (11)0.0001 (10)0.0052 (12)
O50.073 (2)0.128 (3)0.0500 (18)0.019 (2)0.0080 (15)0.0166 (18)
O60.066 (2)0.144 (3)0.059 (2)0.004 (2)0.0244 (16)0.0161 (19)
O70.0414 (15)0.0348 (13)0.098 (2)0.0069 (11)0.0058 (14)0.0051 (13)
O80.075 (2)0.0554 (17)0.0625 (19)0.0133 (15)0.0114 (15)0.0148 (14)
O90.0435 (14)0.0315 (12)0.0598 (16)0.0068 (10)0.0106 (12)0.0034 (11)
O100.0599 (17)0.0379 (14)0.0683 (18)0.0077 (12)0.0183 (13)0.0083 (13)
O110.128 (3)0.104 (3)0.066 (2)0.006 (2)0.035 (2)0.008 (2)
O120.243 (6)0.148 (4)0.096 (3)0.123 (4)0.055 (3)0.006 (3)
O130.0591 (18)0.0579 (16)0.0722 (19)0.0208 (14)0.0057 (14)0.0053 (14)
O140.0412 (15)0.0610 (17)0.085 (2)0.0156 (13)0.0186 (14)0.0011 (15)
O150.080 (2)0.0464 (15)0.0516 (16)0.0092 (14)0.0116 (14)0.0047 (13)
O160.329 (8)0.147 (5)0.223 (6)0.002 (6)0.068 (6)0.057 (5)
N10.054 (2)0.070 (2)0.046 (2)0.0064 (17)0.0045 (17)0.0046 (16)
N20.087 (3)0.089 (3)0.059 (3)0.026 (2)0.013 (2)0.011 (2)
N30.072 (3)0.068 (2)0.077 (3)0.031 (2)0.028 (2)0.009 (2)
N40.045 (2)0.097 (3)0.095 (3)0.014 (2)0.008 (2)0.003 (2)
N50.067 (2)0.0534 (19)0.0494 (19)0.0082 (17)0.0100 (16)0.0036 (15)
N60.134 (5)0.098 (4)0.120 (4)0.012 (3)0.020 (4)0.034 (3)
C10.0256 (17)0.0405 (18)0.049 (2)0.0047 (14)0.0006 (14)0.0002 (16)
C20.0226 (15)0.0384 (17)0.047 (2)0.0009 (13)0.0020 (13)0.0032 (15)
C30.0296 (17)0.0478 (19)0.0393 (19)0.0016 (15)0.0001 (14)0.0044 (15)
C40.0255 (16)0.0474 (19)0.041 (2)0.0011 (14)0.0003 (13)0.0005 (15)
C50.0293 (17)0.0479 (19)0.046 (2)0.0005 (15)0.0047 (14)0.0006 (16)
C60.0349 (18)0.0449 (19)0.0397 (19)0.0038 (15)0.0018 (14)0.0041 (15)
C70.0262 (17)0.0438 (18)0.049 (2)0.0032 (14)0.0089 (14)0.0034 (16)
C80.0228 (17)0.049 (2)0.052 (2)0.0035 (14)0.0025 (15)0.0001 (17)
C90.0286 (18)0.038 (2)0.069 (3)0.0006 (15)0.0030 (17)0.0078 (18)
C100.0320 (18)0.0347 (17)0.053 (2)0.0024 (14)0.0014 (15)0.0011 (16)
C110.0298 (17)0.0367 (18)0.050 (2)0.0007 (14)0.0031 (14)0.0028 (15)
C120.0287 (16)0.0349 (17)0.048 (2)0.0004 (14)0.0018 (14)0.0023 (15)
C130.043 (2)0.047 (2)0.047 (2)0.0009 (17)0.0013 (16)0.0033 (17)
C140.050 (2)0.057 (2)0.051 (2)0.0101 (19)0.0047 (18)0.0104 (19)
C150.049 (2)0.0386 (19)0.065 (3)0.0122 (17)0.0025 (18)0.0105 (18)
C160.0316 (18)0.0357 (18)0.049 (2)0.0005 (14)0.0046 (15)0.0023 (16)
C170.062 (3)0.062 (3)0.061 (3)0.009 (2)0.009 (2)0.006 (2)
C180.281 (11)0.150 (7)0.117 (6)0.123 (7)0.099 (6)0.046 (5)
C190.105 (5)0.165 (6)0.128 (5)0.084 (5)0.029 (4)0.041 (5)
C200.051 (3)0.071 (3)0.073 (3)0.015 (2)0.001 (2)0.007 (2)
C210.084 (5)0.256 (10)0.159 (7)0.058 (6)0.004 (4)0.110 (7)
C220.049 (3)0.177 (7)0.146 (6)0.008 (4)0.026 (3)0.008 (5)
C230.054 (2)0.054 (2)0.043 (2)0.0032 (19)0.0003 (17)0.0010 (18)
C240.136 (5)0.072 (3)0.085 (4)0.001 (3)0.055 (3)0.002 (3)
C250.076 (3)0.059 (3)0.057 (3)0.015 (2)0.005 (2)0.009 (2)
C260.238 (9)0.122 (6)0.169 (7)0.015 (6)0.044 (7)0.062 (6)
C270.241 (10)0.278 (10)0.282 (10)0.034 (8)0.011 (8)0.061 (8)
C280.197 (8)0.158 (6)0.171 (7)0.023 (6)0.014 (6)0.016 (6)
Geometric parameters (Å, º) top
Co1—O12.001 (2)C2—C31.388 (4)
Co1—O3i2.247 (2)C3—C41.387 (4)
Co1—O4i2.058 (2)C3—H30.9300
Co1—O72.383 (3)C4—C51.369 (5)
Co1—C8i2.465 (3)C4—C81.504 (4)
Co1—O82.082 (3)C5—C61.383 (5)
Co1—O10ii2.008 (2)C5—H50.9300
Co2—O22.042 (2)C6—C71.382 (4)
Co2—O72.091 (2)C7—H70.9300
Co2—O9ii2.082 (2)C8—Co1iii2.465 (3)
Co2—O132.139 (3)C9—C101.493 (5)
Co2—O142.100 (2)C10—C151.371 (5)
Co2—O152.063 (2)C10—C111.396 (4)
O1—C11.253 (4)C11—C121.383 (5)
O2—C11.238 (4)C11—H110.9300
O3—C81.244 (4)C12—C131.381 (5)
O3—Co1iii2.247 (2)C12—C161.503 (4)
O4—C81.260 (4)C13—C141.379 (5)
O4—Co1iii2.058 (2)C13—H130.9300
O5—N11.216 (4)C14—C151.379 (5)
O6—N11.215 (4)C15—H150.9300
O7—C91.259 (4)C17—H170.9300
O8—C91.240 (4)C18—H18A0.9600
O9—C161.243 (4)C18—H18B0.9600
O9—Co2iv2.082 (2)C18—H18C0.9600
O10—C161.251 (4)C19—H19A0.9600
O10—Co1iv2.008 (2)C19—H19B0.9600
O11—N21.196 (5)C19—H19C0.9600
O12—N21.206 (5)C20—H200.9300
O13—C171.214 (4)C21—H21A0.9600
O14—C201.229 (4)C21—H21B0.9600
O15—C231.237 (4)C21—H21C0.9600
O16—C261.359 (8)C22—H22A0.9600
N1—C61.460 (5)C22—H22B0.9600
N2—C141.473 (5)C22—H22C0.9600
N3—C171.305 (5)C23—H230.9300
N3—C181.426 (6)C24—H24A0.9600
N3—C191.450 (5)C24—H24B0.9600
N4—C201.326 (5)C24—H24C0.9600
N4—C211.421 (6)C25—H25A0.9600
N4—C221.439 (5)C25—H25B0.9600
N5—C231.318 (4)C25—H25C0.9600
N5—C251.449 (4)C26—H260.9300
N5—C241.463 (5)C27—H27A0.9600
N6—C261.322 (8)C27—H27B0.9600
N6—C271.411 (8)C27—H27C0.9600
N6—C281.444 (7)C28—H28A0.9600
C1—C21.509 (4)C28—H28B0.9600
C2—C71.378 (5)C28—H28C0.9600
O1—Co1—O10ii96.82 (11)O3—C8—C4120.1 (3)
O1—Co1—O4i97.00 (10)O4—C8—C4118.2 (3)
O10ii—Co1—O4i100.24 (10)O3—C8—Co1iii65.20 (18)
O1—Co1—O8101.20 (11)O4—C8—Co1iii56.52 (16)
O10ii—Co1—O8148.98 (12)C4—C8—Co1iii174.2 (3)
O4i—Co1—O8102.36 (11)O8—C9—O7119.8 (4)
O1—Co1—O3i157.87 (10)O8—C9—C10119.8 (3)
O10ii—Co1—O3i87.29 (11)O7—C9—C10120.4 (4)
O4i—Co1—O3i60.88 (9)C15—C10—C11119.5 (3)
O8—Co1—O3i85.42 (12)C15—C10—C9122.2 (3)
O1—Co1—O7104.29 (10)C11—C10—C9118.4 (3)
O10ii—Co1—O793.78 (9)C12—C11—C10121.5 (3)
O4i—Co1—O7152.88 (9)C12—C11—H11119.3
O8—Co1—O757.43 (10)C10—C11—H11119.3
O3i—Co1—O797.09 (9)C13—C12—C11119.0 (3)
O1—Co1—C8i127.71 (11)C13—C12—C16120.9 (3)
O10ii—Co1—C8i94.08 (11)C11—C12—C16120.1 (3)
O4i—Co1—C8i30.72 (10)C14—C13—C12118.6 (3)
O8—Co1—C8i94.58 (11)C14—C13—H13120.7
O3i—Co1—C8i30.16 (10)C12—C13—H13120.7
O7—Co1—C8i125.81 (10)C13—C14—C15123.0 (3)
O2—Co2—O15173.94 (11)C13—C14—N2118.3 (4)
O2—Co2—O9ii97.87 (10)C15—C14—N2118.7 (4)
O15—Co2—O9ii88.15 (10)C10—C15—C14118.3 (3)
O2—Co2—O791.26 (11)C10—C15—H15120.8
O15—Co2—O789.54 (11)C14—C15—H15120.8
O9ii—Co2—O789.27 (10)O9—C16—O10127.3 (3)
O2—Co2—O1486.77 (11)O9—C16—C12117.3 (3)
O15—Co2—O1492.79 (11)O10—C16—C12115.4 (3)
O9ii—Co2—O1487.47 (10)O13—C17—N3126.3 (4)
O7—Co2—O14175.92 (11)O13—C17—H17116.9
O2—Co2—O1387.22 (11)N3—C17—H17116.9
O15—Co2—O1386.74 (10)N3—C18—H18A109.5
O9ii—Co2—O13174.03 (10)N3—C18—H18B109.5
O7—Co2—O1393.76 (11)H18A—C18—H18B109.5
O14—Co2—O1389.71 (11)N3—C18—H18C109.5
C1—O1—Co1122.2 (2)H18A—C18—H18C109.5
C1—O2—Co2149.4 (2)H18B—C18—H18C109.5
C8—O3—Co1iii84.64 (19)N3—C19—H19A109.5
C8—O4—Co1iii92.8 (2)N3—C19—H19B109.5
C9—O7—Co2141.6 (2)H19A—C19—H19B109.5
C9—O7—Co184.1 (2)N3—C19—H19C109.5
Co2—O7—Co1104.97 (11)H19A—C19—H19C109.5
C9—O8—Co198.6 (2)H19B—C19—H19C109.5
C16—O9—Co2iv136.0 (2)O14—C20—N4126.0 (4)
C16—O10—Co1iv132.0 (2)O14—C20—H20117.0
C17—O13—Co2128.5 (3)N4—C20—H20117.0
C20—O14—Co2126.0 (3)N4—C21—H21A109.5
C23—O15—Co2123.1 (2)N4—C21—H21B109.5
O6—N1—O5123.1 (4)H21A—C21—H21B109.5
O6—N1—C6118.2 (3)N4—C21—H21C109.5
O5—N1—C6118.7 (3)H21A—C21—H21C109.5
O11—N2—O12122.3 (4)H21B—C21—H21C109.5
O11—N2—C14119.6 (4)N4—C22—H22A109.5
O12—N2—C14118.1 (4)N4—C22—H22B109.5
C17—N3—C18119.7 (4)H22A—C22—H22B109.5
C17—N3—C19123.1 (4)N4—C22—H22C109.5
C18—N3—C19117.2 (4)H22A—C22—H22C109.5
C20—N4—C21119.5 (4)H22B—C22—H22C109.5
C20—N4—C22123.7 (4)O15—C23—N5124.7 (4)
C21—N4—C22116.8 (5)O15—C23—H23117.6
C23—N5—C25121.9 (3)N5—C23—H23117.6
C23—N5—C24120.6 (3)N5—C24—H24A109.5
C25—N5—C24117.5 (3)N5—C24—H24B109.5
C26—N6—C27120.0 (9)H24A—C24—H24B109.5
C26—N6—C28128.5 (9)N5—C24—H24C109.5
C27—N6—C28111.6 (9)H24A—C24—H24C109.5
O2—C1—O1126.9 (3)H24B—C24—H24C109.5
O2—C1—C2116.1 (3)N5—C25—H25A109.5
O1—C1—C2116.9 (3)N5—C25—H25B109.5
C7—C2—C3119.8 (3)H25A—C25—H25B109.5
C7—C2—C1121.0 (3)N5—C25—H25C109.5
C3—C2—C1119.2 (3)H25A—C25—H25C109.5
C4—C3—C2120.5 (3)H25B—C25—H25C109.5
C4—C3—H3119.7N6—C26—O16105.3 (9)
C2—C3—H3119.7N6—C26—H26127.4
C5—C4—C3120.2 (3)O16—C26—H26127.4
C5—C4—C8121.5 (3)N6—C27—H27A109.5
C3—C4—C8118.3 (3)N6—C27—H27B109.5
C4—C5—C6118.5 (3)H27A—C27—H27B109.5
C4—C5—H5120.7N6—C27—H27C109.5
C6—C5—H5120.7H27A—C27—H27C109.5
C7—C6—C5122.4 (3)H27B—C27—H27C109.5
C7—C6—N1118.3 (3)N6—C28—H28A109.5
C5—C6—N1119.3 (3)N6—C28—H28B109.5
C2—C7—C6118.5 (3)H28A—C28—H28B109.5
C2—C7—H7120.7N6—C28—H28C109.5
C6—C7—H7120.7H28A—C28—H28C109.5
O3—C8—O4121.7 (3)H28B—C28—H28C109.5
O10ii—Co1—O1—C172.3 (3)C4—C5—C6—C72.9 (5)
O4i—Co1—O1—C1173.5 (3)C4—C5—C6—N1177.5 (3)
O8—Co1—O1—C182.4 (3)O6—N1—C6—C74.0 (5)
O3i—Co1—O1—C1171.9 (3)O5—N1—C6—C7175.0 (4)
O7—Co1—O1—C123.4 (3)O6—N1—C6—C5176.3 (4)
C8i—Co1—O1—C1172.8 (2)O5—N1—C6—C54.7 (5)
O9ii—Co2—O2—C153.7 (5)C3—C2—C7—C60.7 (5)
O7—Co2—O2—C135.7 (5)C1—C2—C7—C6179.5 (3)
O14—Co2—O2—C1140.7 (5)C5—C6—C7—C22.8 (5)
O13—Co2—O2—C1129.4 (5)N1—C6—C7—C2177.5 (3)
O2—Co2—O7—C959.1 (5)Co1iii—O3—C8—O40.7 (3)
O15—Co2—O7—C9114.8 (5)Co1iii—O3—C8—C4177.4 (3)
O9ii—Co2—O7—C9157.0 (5)Co1iii—O4—C8—O30.7 (4)
O13—Co2—O7—C928.1 (5)Co1iii—O4—C8—C4177.4 (3)
O2—Co2—O7—Co140.41 (11)C5—C4—C8—O3176.8 (3)
O15—Co2—O7—Co1145.60 (11)C3—C4—C8—O32.4 (5)
O9ii—Co2—O7—Co157.44 (10)C5—C4—C8—O41.4 (5)
O13—Co2—O7—Co1127.70 (10)C3—C4—C8—O4179.5 (3)
O1—Co1—O7—C996.0 (2)Co1—O8—C9—O73.2 (4)
O10ii—Co1—O7—C9166.0 (2)Co1—O8—C9—C10174.3 (3)
O4i—Co1—O7—C944.6 (3)Co2—O7—C9—O8103.9 (5)
O8—Co1—O7—C91.7 (2)Co1—O7—C9—O82.8 (3)
O3i—Co1—O7—C978.2 (2)Co2—O7—C9—C1078.5 (5)
C8i—Co1—O7—C968.2 (2)Co1—O7—C9—C10174.8 (3)
O1—Co1—O7—Co246.01 (12)O8—C9—C10—C15171.4 (3)
O10ii—Co1—O7—Co252.01 (12)O7—C9—C10—C1511.1 (5)
O4i—Co1—O7—Co2173.32 (15)O8—C9—C10—C118.6 (5)
O8—Co1—O7—Co2140.32 (15)O7—C9—C10—C11168.9 (3)
O3i—Co1—O7—Co2139.75 (11)C15—C10—C11—C121.5 (5)
C8i—Co1—O7—Co2149.80 (11)C9—C10—C11—C12178.5 (3)
O1—Co1—O8—C9101.7 (2)C10—C11—C12—C130.3 (5)
O10ii—Co1—O8—C922.7 (4)C10—C11—C12—C16177.3 (3)
O4i—Co1—O8—C9158.5 (2)C11—C12—C13—C141.5 (5)
O3i—Co1—O8—C999.7 (2)C16—C12—C13—C14178.5 (3)
O7—Co1—O8—C91.7 (2)C12—C13—C14—C150.9 (6)
C8i—Co1—O8—C9128.4 (2)C12—C13—C14—N2179.7 (3)
O2—Co2—O13—C177.4 (3)O11—N2—C14—C133.7 (7)
O15—Co2—O13—C17172.2 (3)O12—N2—C14—C13179.4 (5)
O7—Co2—O13—C1798.5 (3)O11—N2—C14—C15177.5 (4)
O14—Co2—O13—C1779.4 (3)O12—N2—C14—C150.6 (7)
O2—Co2—O14—C2095.1 (3)C11—C10—C15—C142.0 (5)
O15—Co2—O14—C2078.8 (3)C9—C10—C15—C14178.0 (3)
O9ii—Co2—O14—C20166.9 (3)C13—C14—C15—C100.8 (6)
O13—Co2—O14—C207.9 (3)N2—C14—C15—C10177.9 (4)
O9ii—Co2—O15—C2338.7 (2)Co2iv—O9—C16—O102.3 (6)
O7—Co2—O15—C23128.0 (2)Co2iv—O9—C16—C12177.6 (2)
O14—Co2—O15—C2348.7 (2)C13—C12—C16—O9160.5 (3)
O13—Co2—O15—C23138.2 (2)C11—C12—C16—O922.5 (5)
Co2—O2—C1—O18.8 (8)C13—C12—C16—O1019.6 (5)
Co2—O2—C1—C2171.4 (4)C11—C12—C16—O10157.4 (3)
Co1—O1—C1—O21.7 (5)Co2—O13—C17—N3153.3 (3)
Co1—O1—C1—C2178.5 (2)C18—N3—C17—O130.2 (4)
O2—C1—C2—C7171.4 (3)C19—N3—C17—O13178.7 (3)
O1—C1—C2—C78.7 (5)Co2—O14—C20—N4149.3 (3)
O2—C1—C2—C38.8 (5)C21—N4—C20—O140.2 (3)
O1—C1—C2—C3171.1 (3)C22—N4—C20—O14179.4 (3)
C7—C2—C3—C41.3 (5)Co2—O15—C23—N5161.2 (2)
C1—C2—C3—C4178.5 (3)C25—N5—C23—O15179.4 (3)
C2—C3—C4—C51.3 (5)C24—N5—C23—O150.2 (3)
C2—C3—C4—C8179.6 (3)C27—N6—C26—O160.3 (3)
C3—C4—C5—C60.7 (5)C28—N6—C26—O16179.0 (3)
C8—C4—C5—C6178.4 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co2(C3H7NO)3(C8H3NO6)2]·C3H7NO
Mr828.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.0833 (12), 17.0887 (19), 21.074 (2)
β (°) 92.910 (2)
V3)3626.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.796, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
21143, 7876, 5128
Rint0.036
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.132, 0.99
No. of reflections7876
No. of parameters477
No. of restraints54
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.45

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX (Dolomanov et al., 2003) and X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Co1—O12.001 (2)Co2—O22.042 (2)
Co1—O3i2.247 (2)Co2—O72.091 (2)
Co1—O4i2.058 (2)Co2—O9ii2.082 (2)
Co1—O72.383 (3)Co2—O132.139 (3)
Co1—C8i2.465 (3)Co2—O142.100 (2)
Co1—O82.082 (3)Co2—O152.063 (2)
Co1—O10ii2.008 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank the National Science Foundation of China (No. J0830412) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H.-J., Zhang, J., Feng, W.-L. & Fu, M. (2006). Inorg. Chem. Commun. 9, 300–303.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDu, M., Zhang, Z.-H., You, Y.-P. & Zhao, X.-J. (2008). CrystEngComm, 10, 306–321.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuo, J.-Y., Zhang, J.-G. & Zhang, T.-L. (2006). Acta Chim. Sin. 64, 1693–1699.  CAS Google Scholar
First citationLiu, Y., He, Q., Zhang, X., Xue, Z. & Lv, C. (2008). Acta Cryst. E64, m1605–m1606.  CSD CrossRef IUCr Journals Google Scholar
First citationLuo, J., Hong, M., Wang, R., Cao, R., Han, L., Yuan, D., Lin, Z. & Zhou, Y. (2003). Inorg. Chem. 42, 4486–4488.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-D., Li, M.-M. & He, H.-Y. (2009). Acta Cryst. E65, m510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Q., Wu, M.-J., Yang, E.-C., Wang, X.-G. & Zhao, X.-J. (2008). J. Coord. Chem. 61, 595–604.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, G., Zeng, M.-H., Chen, S.-P. & Gao, S.-L. (2006). Acta Cryst. E62, m397–m399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYe, J.-W., Li, D., Ye, K.-Q., Liu, Y., Zhao, Y.-F. & Zhang, P. (2008a). Z. Anorg. Allg. Chem. 634, 345–351.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, J., Wang, J., Wu, Y., Ye, L. & Zhang, P. (2008b). J. Mol. Struct. 873, 35–40.  Web of Science CSD CrossRef CAS Google Scholar
First citationYuan, S., Zhang, W.-Y., Shu, K.-X., Liang, Y.-L. & Yan, G.-F. (2009). Z. Krist. New Cryst. Struct. 224, 203–204.  CAS Google Scholar
First citationZhou, Y.-L., He, H.-Y. & Zhu, L.-G. (2004). Chin. J. Inorg. Chem. 20, 576–579.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1220-m1221
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds