organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Anilino-3-(2-hy­dr­oxy­phen­yl)quinazolin-4(3H)-one–tri­phenyl­phosphine oxide (1/1)

aFaculty of Chemistry and Life Science, Xianning University, Xianning 437100, Hubei, People's Republic of China, bInstitute of Medicinal Chemistry, Hubei Medical University, Shiyan 442000, Hubei, People's Republic of China, and cDepartment of Oncology, Renmin Hospital, Hubei Medical University, Shiyan 442000, Hubei, People's Republic of China
*Correspondence e-mail: hlwang15@yahoo.com.cn

(Received 31 August 2010; accepted 1 September 2010; online 8 September 2010)

In the title compound, C20H15N3O2·C18H15OP, the pyrimidinone heterocycle and the fused phenyl ring are inclined at 1.92 (7)°. Only the hy­droxy group is involved in hydrogen bonding, whereas the amino group is shielded from potential acceptors.

Related literature

For the synthesis of the title compound, see: Yang et al. (2008[Yang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 45, 1365-1369.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15N3O2·C18H15OP

  • Mr = 607.62

  • Monoclinic, P 21 /c

  • a = 18.9139 (3) Å

  • b = 10.3201 (2) Å

  • c = 18.2145 (3) Å

  • β = 117.771 (1)°

  • V = 3145.83 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Goöttingen, Germany.]) Tmin = 0.980, Tmax = 0.987

  • 38085 measured reflections

  • 7826 independent reflections

  • 5767 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.134

  • S = 1.01

  • 7826 reflections

  • 412 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.815 (18) 1.862 (19) 2.6436 (15) 160.1 (18)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL .

Supporting information


Comment top

Quinazoline-4(3H)-one derivatives have numerous biological properties. We have recently focused on the synthesis of heterocyclic compounds using an aza-Wittig reaction. We present here the crystal structure of the title compound (Fig. 1), which can be used as a precursor for obtaining bioactive molecules.

In the crystal structure, the pyrimidinone heterocycle and the adjacent benzene ring are not coplanar, but inclined at 1.92 (7) °. Only the hydroxyl group is involved in hydrogen bonding, whereas the amino group is shielded from potential acceptors.

Related literature top

For the synthesis of the title compound, see: Yang et al. (2008).

Experimental top

To a solution of iminophosphorane (1.40 g, 3.0 mmol) in anhydrous THF (10 ml) was added isocyanatobenzene (3 mmol) under nitrogen at room temperature. After reaction, the mixture was allowed to stand for 10 h at 273–278 K, the solvent was removed under reduced pressure and diethyl ether/petroleum ether (1:2 v/v, 20 ml) was added to precipitate triphenylphosphine oxide. After filtration, the solvent was removed to give 1-phenyl- 3-(2-ethoxycarbonylphenyl) carbodiimide, which was used directly without further purification. To a solution of 1-phenyl- 3-(2-ethoxycarbonylphenyl) carbodiimide in THF (15 ml) was added 2-aminophenol (3 mmol). After the reaction mixture was allowed to stand for 0.5 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 2 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound (yield 79%).

Refinement top

All the carbon-bonded hydrogen atoms set to ideal positons with C—H = 0.93Å (aromatic) and 0.96Å (methyl), and Uiso(H) = 1.2UeqC for aromatic and 1.5 UeqC for methyl hydrogen atoms, respectively. H atoms bonded to N and O atoms were found in a difference map and then refined with distance restraints of N—H = 0.85 (2)Å and O—H = 0.90 (2) Å. The displacement parameters were set Uiso(H) = 1.2UeqN or Uiso(H) = 1.5UeqO.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, showing the atom labelling schemeand with displacement ellipsoids drawn at the 50% probability level.
2-Anilino-3-(2-hydroxyphenyl)quinazolin-4(3H)-one– triphenylphosphine oxide (1/1) top
Crystal data top
C20H15N3O2·C18H15OPF(000) = 1272
Mr = 607.62Dx = 1.283 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.9139 (3) ÅCell parameters from 5201 reflections
b = 10.3201 (2) Åθ = 2.3–26.1°
c = 18.2145 (3) ŵ = 0.13 mm1
β = 117.771 (1)°T = 298 K
V = 3145.83 (9) Å3Block, colorless
Z = 40.16 × 0.12 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7826 independent reflections
Radiation source: fine-focus sealed tube5767 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 2525
Tmin = 0.980, Tmax = 0.987k = 1313
38085 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0807P)2]
where P = (Fo2 + 2Fc2)/3
7826 reflections(Δ/σ)max = 0.001
412 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H15N3O2·C18H15OPV = 3145.83 (9) Å3
Mr = 607.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.9139 (3) ŵ = 0.13 mm1
b = 10.3201 (2) ÅT = 298 K
c = 18.2145 (3) Å0.16 × 0.12 × 0.10 mm
β = 117.771 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7826 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
5767 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.987Rint = 0.036
38085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.37 e Å3
7826 reflectionsΔρmin = 0.23 e Å3
412 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32962 (8)0.72741 (14)0.53651 (9)0.0427 (3)
C20.40582 (9)0.67312 (16)0.56734 (10)0.0553 (4)
H20.44660.71940.56440.066*
C30.42037 (10)0.55219 (17)0.60173 (12)0.0648 (5)
H30.47100.51600.62190.078*
C40.35995 (10)0.48339 (18)0.60672 (12)0.0698 (5)
H40.37030.40120.63030.084*
C50.28496 (10)0.53564 (16)0.57706 (11)0.0602 (4)
H50.24500.48910.58150.072*
C60.26804 (8)0.65830 (13)0.54015 (9)0.0438 (3)
C70.31351 (8)0.85644 (13)0.50056 (9)0.0431 (3)
C80.17650 (8)0.81807 (13)0.47432 (9)0.0407 (3)
C90.03094 (8)0.81895 (13)0.43622 (9)0.0426 (3)
C100.03180 (9)0.90485 (15)0.41509 (11)0.0573 (4)
H100.02560.99110.40440.069*
C110.10340 (9)0.86384 (17)0.40972 (12)0.0651 (5)
H110.14510.92250.39530.078*
C120.11359 (9)0.73755 (17)0.42540 (11)0.0588 (4)
H120.16140.71040.42330.071*
C130.05256 (9)0.65174 (16)0.44417 (11)0.0579 (4)
H130.05990.56530.45340.069*
C140.01986 (9)0.69020 (14)0.44979 (10)0.0533 (4)
H140.06070.63030.46250.064*
C150.21124 (8)1.01666 (14)0.42224 (9)0.0435 (3)
C160.22674 (8)1.13421 (14)0.46389 (9)0.0444 (3)
C170.20183 (10)1.24752 (16)0.41711 (11)0.0595 (4)
H170.21151.32730.44390.071*
C180.16332 (11)1.2428 (2)0.33218 (12)0.0701 (5)
H180.14671.31940.30200.084*
C190.14897 (11)1.1270 (2)0.29119 (11)0.0762 (6)
H190.12291.12470.23350.091*
C200.17354 (10)1.01345 (18)0.33622 (10)0.0642 (5)
H200.16480.93450.30870.077*
C210.33743 (8)0.43284 (13)0.30104 (9)0.0433 (3)
C220.32238 (9)0.31200 (15)0.26340 (11)0.0537 (4)
H220.29730.30580.20580.064*
C230.34463 (11)0.20058 (16)0.31131 (13)0.0675 (5)
H230.33500.11990.28580.081*
C240.38093 (11)0.20870 (18)0.39657 (13)0.0674 (5)
H240.39440.13370.42850.081*
C250.39715 (11)0.32773 (18)0.43414 (11)0.0649 (5)
H250.42240.33320.49170.078*
C260.37629 (10)0.43949 (16)0.38725 (10)0.0554 (4)
H260.38830.51980.41340.066*
C270.37978 (8)0.69513 (13)0.28300 (8)0.0409 (3)
C280.43786 (9)0.70114 (15)0.25692 (10)0.0523 (4)
H280.43480.64660.21490.063*
C290.50034 (10)0.78835 (18)0.29339 (11)0.0636 (5)
H290.53880.79290.27530.076*
C300.50577 (10)0.86780 (17)0.35592 (12)0.0649 (5)
H300.54830.92530.38070.078*
C310.44867 (11)0.86288 (16)0.38213 (11)0.0642 (5)
H310.45250.91700.42460.077*
C320.38546 (10)0.77778 (15)0.34559 (10)0.0542 (4)
H320.34640.77580.36300.065*
C330.21504 (8)0.63051 (13)0.24196 (9)0.0435 (3)
C340.19543 (10)0.59243 (16)0.30366 (10)0.0560 (4)
H340.23090.54140.34750.067*
C350.12366 (11)0.62987 (19)0.30023 (12)0.0677 (5)
H350.11110.60400.34170.081*
C360.07094 (11)0.70508 (19)0.23571 (13)0.0703 (5)
H360.02250.72920.23310.084*
C370.08972 (11)0.74456 (19)0.17519 (12)0.0687 (5)
H370.05410.79620.13190.082*
C380.16126 (10)0.70831 (16)0.17799 (10)0.0566 (4)
H380.17350.73620.13670.068*
N10.23328 (6)0.89554 (11)0.46688 (7)0.0402 (3)
N20.19109 (7)0.70555 (11)0.50893 (7)0.0443 (3)
H2A0.2741 (11)1.0768 (17)0.5709 (11)0.066*
N30.10191 (7)0.87046 (12)0.44097 (9)0.0511 (3)
H3A0.0993 (10)0.9481 (17)0.4256 (10)0.061*
O10.36237 (6)0.92844 (10)0.49659 (7)0.0590 (3)
O20.26529 (7)1.14642 (10)0.54705 (7)0.0558 (3)
O30.28491 (6)0.54813 (10)0.14922 (6)0.0496 (3)
P10.30304 (2)0.57484 (3)0.23650 (2)0.03965 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0443 (7)0.0437 (7)0.0428 (7)0.0029 (6)0.0226 (6)0.0082 (6)
C20.0449 (8)0.0609 (10)0.0618 (10)0.0022 (7)0.0263 (7)0.0098 (8)
C30.0482 (9)0.0657 (11)0.0748 (12)0.0127 (8)0.0239 (8)0.0008 (9)
C40.0644 (11)0.0566 (10)0.0835 (13)0.0147 (9)0.0302 (10)0.0152 (9)
C50.0540 (9)0.0507 (9)0.0759 (12)0.0026 (7)0.0303 (8)0.0111 (8)
C60.0442 (8)0.0423 (7)0.0468 (8)0.0011 (6)0.0226 (6)0.0024 (6)
C70.0445 (7)0.0458 (8)0.0445 (8)0.0081 (6)0.0254 (6)0.0107 (6)
C80.0429 (7)0.0388 (7)0.0438 (7)0.0043 (6)0.0232 (6)0.0007 (6)
C90.0388 (7)0.0432 (7)0.0446 (8)0.0023 (6)0.0184 (6)0.0051 (6)
C100.0484 (9)0.0459 (8)0.0730 (11)0.0036 (7)0.0244 (8)0.0139 (7)
C110.0433 (9)0.0594 (10)0.0887 (13)0.0088 (7)0.0275 (9)0.0123 (9)
C120.0394 (8)0.0653 (10)0.0691 (11)0.0025 (7)0.0232 (7)0.0095 (8)
C130.0445 (8)0.0512 (9)0.0728 (11)0.0035 (7)0.0230 (8)0.0146 (8)
C140.0440 (8)0.0436 (8)0.0712 (11)0.0032 (6)0.0259 (8)0.0116 (7)
C150.0447 (7)0.0448 (8)0.0429 (8)0.0083 (6)0.0221 (6)0.0052 (6)
C160.0456 (8)0.0432 (7)0.0483 (8)0.0051 (6)0.0251 (7)0.0046 (6)
C170.0643 (10)0.0459 (9)0.0711 (11)0.0018 (7)0.0339 (9)0.0121 (8)
C180.0636 (11)0.0694 (12)0.0682 (12)0.0042 (9)0.0230 (9)0.0301 (10)
C190.0767 (12)0.0890 (14)0.0466 (10)0.0218 (11)0.0150 (9)0.0193 (10)
C200.0740 (11)0.0667 (11)0.0454 (9)0.0251 (9)0.0225 (8)0.0012 (8)
C210.0419 (7)0.0429 (7)0.0479 (8)0.0008 (6)0.0234 (6)0.0042 (6)
C220.0565 (9)0.0459 (8)0.0599 (10)0.0015 (7)0.0280 (8)0.0011 (7)
C230.0735 (12)0.0426 (9)0.0881 (14)0.0002 (8)0.0390 (10)0.0045 (9)
C240.0691 (11)0.0563 (10)0.0846 (13)0.0125 (9)0.0425 (10)0.0265 (10)
C250.0682 (11)0.0696 (12)0.0579 (10)0.0128 (9)0.0302 (9)0.0193 (9)
C260.0599 (9)0.0532 (9)0.0508 (9)0.0034 (7)0.0239 (8)0.0061 (7)
C270.0444 (7)0.0383 (7)0.0387 (7)0.0001 (6)0.0183 (6)0.0031 (6)
C280.0530 (9)0.0566 (9)0.0520 (9)0.0019 (7)0.0284 (7)0.0006 (7)
C290.0490 (9)0.0720 (11)0.0712 (11)0.0074 (8)0.0290 (8)0.0096 (9)
C300.0546 (10)0.0534 (10)0.0680 (11)0.0139 (8)0.0129 (8)0.0041 (8)
C310.0679 (11)0.0516 (9)0.0640 (11)0.0091 (8)0.0229 (9)0.0147 (8)
C320.0574 (9)0.0522 (9)0.0566 (9)0.0057 (7)0.0296 (8)0.0103 (7)
C330.0464 (8)0.0419 (7)0.0435 (8)0.0069 (6)0.0221 (6)0.0068 (6)
C340.0592 (9)0.0602 (10)0.0554 (9)0.0022 (8)0.0325 (8)0.0006 (7)
C350.0703 (11)0.0755 (12)0.0774 (13)0.0112 (10)0.0512 (10)0.0132 (10)
C360.0534 (10)0.0749 (12)0.0870 (14)0.0026 (9)0.0364 (10)0.0225 (11)
C370.0588 (10)0.0724 (12)0.0669 (11)0.0149 (9)0.0227 (9)0.0037 (9)
C380.0591 (10)0.0599 (10)0.0519 (9)0.0074 (8)0.0268 (8)0.0011 (7)
N10.0435 (6)0.0385 (6)0.0418 (6)0.0074 (5)0.0226 (5)0.0012 (5)
N20.0430 (6)0.0405 (6)0.0512 (7)0.0007 (5)0.0235 (6)0.0052 (5)
N30.0448 (7)0.0408 (7)0.0697 (9)0.0007 (5)0.0283 (6)0.0152 (6)
O10.0520 (6)0.0544 (6)0.0810 (8)0.0122 (5)0.0397 (6)0.0026 (5)
O20.0792 (8)0.0408 (6)0.0485 (6)0.0031 (5)0.0307 (6)0.0003 (5)
O30.0628 (6)0.0483 (6)0.0400 (6)0.0044 (5)0.0258 (5)0.0055 (4)
P10.0454 (2)0.0385 (2)0.0372 (2)0.00294 (15)0.02114 (16)0.00170 (14)
Geometric parameters (Å, º) top
C1—C61.3935 (19)C20—H200.9300
C1—C21.397 (2)C21—C221.387 (2)
C1—C71.452 (2)C21—C261.391 (2)
C2—C31.366 (2)C21—P11.8000 (14)
C2—H20.9300C22—C231.385 (2)
C3—C41.384 (2)C22—H220.9300
C3—H30.9300C23—C241.377 (3)
C4—C51.371 (2)C23—H230.9300
C4—H40.9300C24—C251.370 (3)
C5—C61.399 (2)C24—H240.9300
C5—H50.9300C25—C261.379 (2)
C6—N21.3812 (17)C25—H250.9300
C7—O11.2141 (16)C26—H260.9300
C7—N11.4050 (17)C27—C281.386 (2)
C8—N21.2884 (17)C27—C321.387 (2)
C8—N31.3612 (18)C27—P11.7944 (14)
C8—N11.3952 (16)C28—C291.384 (2)
C9—C101.384 (2)C28—H280.9300
C9—C141.3851 (19)C29—C301.368 (3)
C9—N31.4084 (17)C29—H290.9300
C10—C111.378 (2)C30—C311.370 (3)
C10—H100.9300C30—H300.9300
C11—C121.367 (2)C31—C321.379 (2)
C11—H110.9300C31—H310.9300
C12—C131.366 (2)C32—H320.9300
C12—H120.9300C33—C381.390 (2)
C13—C141.383 (2)C33—C341.394 (2)
C13—H130.9300C33—P11.8067 (15)
C14—H140.9300C34—C351.385 (2)
C15—C201.387 (2)C34—H340.9300
C15—C161.388 (2)C35—C361.373 (3)
C15—N11.4428 (17)C35—H350.9300
C16—O21.3463 (17)C36—C371.368 (3)
C16—C171.393 (2)C36—H360.9300
C17—C181.370 (2)C37—C381.382 (2)
C17—H170.9300C37—H370.9300
C18—C191.368 (3)C38—H380.9300
C18—H180.9300N3—H3A0.843 (17)
C19—C201.381 (2)O2—H2A0.815 (18)
C19—H190.9300O3—P11.4876 (10)
C6—C1—C2120.27 (14)C23—C22—H22119.9
C6—C1—C7119.10 (12)C21—C22—H22119.9
C2—C1—C7120.62 (13)C24—C23—C22120.36 (16)
C3—C2—C1120.03 (15)C24—C23—H23119.8
C3—C2—H2120.0C22—C23—H23119.8
C1—C2—H2120.0C25—C24—C23119.73 (16)
C2—C3—C4120.19 (15)C25—C24—H24120.1
C2—C3—H3119.9C23—C24—H24120.1
C4—C3—H3119.9C24—C25—C26120.52 (17)
C5—C4—C3120.44 (16)C24—C25—H25119.7
C5—C4—H4119.8C26—C25—H25119.7
C3—C4—H4119.8C25—C26—C21120.40 (16)
C4—C5—C6120.55 (15)C25—C26—H26119.8
C4—C5—H5119.7C21—C26—H26119.8
C6—C5—H5119.7C28—C27—C32118.93 (14)
N2—C6—C1122.91 (13)C28—C27—P1117.71 (11)
N2—C6—C5118.60 (13)C32—C27—P1123.30 (11)
C1—C6—C5118.49 (13)C29—C28—C27120.00 (15)
O1—C7—N1119.70 (13)C29—C28—H28120.0
O1—C7—C1125.62 (13)C27—C28—H28120.0
N1—C7—C1114.66 (11)C30—C29—C28120.37 (16)
N2—C8—N3121.17 (12)C30—C29—H29119.8
N2—C8—N1124.40 (12)C28—C29—H29119.8
N3—C8—N1114.44 (12)C29—C30—C31120.15 (15)
C10—C9—C14118.85 (13)C29—C30—H30119.9
C10—C9—N3116.38 (12)C31—C30—H30119.9
C14—C9—N3124.76 (13)C30—C31—C32120.15 (16)
C11—C10—C9120.65 (15)C30—C31—H31119.9
C11—C10—H10119.7C32—C31—H31119.9
C9—C10—H10119.7C31—C32—C27120.38 (15)
C12—C11—C10120.49 (15)C31—C32—H32119.8
C12—C11—H11119.8C27—C32—H32119.8
C10—C11—H11119.8C38—C33—C34118.22 (15)
C13—C12—C11119.05 (15)C38—C33—P1118.08 (11)
C13—C12—H12120.5C34—C33—P1123.54 (12)
C11—C12—H12120.5C35—C34—C33120.56 (17)
C12—C13—C14121.64 (15)C35—C34—H34119.7
C12—C13—H13119.2C33—C34—H34119.7
C14—C13—H13119.2C36—C35—C34120.14 (17)
C13—C14—C9119.27 (14)C36—C35—H35119.9
C13—C14—H14120.4C34—C35—H35119.9
C9—C14—H14120.4C37—C36—C35120.01 (17)
C20—C15—C16120.33 (14)C37—C36—H36120.0
C20—C15—N1118.52 (13)C35—C36—H36120.0
C16—C15—N1121.15 (12)C36—C37—C38120.46 (18)
O2—C16—C15124.23 (13)C36—C37—H37119.8
O2—C16—C17117.46 (14)C38—C37—H37119.8
C15—C16—C17118.31 (14)C37—C38—C33120.59 (16)
C18—C17—C16120.74 (16)C37—C38—H38119.7
C18—C17—H17119.6C33—C38—H38119.7
C16—C17—H17119.6C8—N1—C7121.11 (11)
C19—C18—C17120.90 (16)C8—N1—C15121.18 (11)
C19—C18—H18119.5C7—N1—C15117.69 (11)
C17—C18—H18119.5C8—N2—C6117.65 (12)
C18—C19—C20119.40 (17)C8—N3—C9129.60 (12)
C18—C19—H19120.3C8—N3—H3A114.5 (11)
C20—C19—H19120.3C9—N3—H3A115.5 (11)
C19—C20—C15120.29 (17)C16—O2—H2A112.7 (13)
C19—C20—H20119.9O3—P1—C27111.44 (6)
C15—C20—H20119.9O3—P1—C21112.35 (6)
C22—C21—C26118.76 (14)C27—P1—C21106.76 (6)
C22—C21—P1118.73 (12)O3—P1—C33110.99 (6)
C26—C21—P1122.49 (11)C27—P1—C33108.51 (6)
C23—C22—C21120.18 (16)C21—P1—C33106.55 (7)
C6—C1—C2—C30.4 (2)C28—C27—C32—C311.1 (2)
C7—C1—C2—C3179.35 (14)P1—C27—C32—C31176.10 (12)
C1—C2—C3—C40.5 (3)C38—C33—C34—C351.0 (2)
C2—C3—C4—C50.2 (3)P1—C33—C34—C35174.42 (13)
C3—C4—C5—C61.0 (3)C33—C34—C35—C360.0 (3)
C2—C1—C6—N2178.41 (13)C34—C35—C36—C370.8 (3)
C7—C1—C6—N21.8 (2)C35—C36—C37—C380.6 (3)
C2—C1—C6—C51.6 (2)C36—C37—C38—C330.4 (3)
C7—C1—C6—C5178.21 (14)C34—C33—C38—C371.2 (2)
C4—C5—C6—N2178.11 (15)P1—C33—C38—C37174.44 (13)
C4—C5—C6—C11.9 (2)N2—C8—N1—C72.4 (2)
C6—C1—C7—O1176.98 (14)N3—C8—N1—C7178.00 (12)
C2—C1—C7—O12.8 (2)N2—C8—N1—C15175.68 (13)
C6—C1—C7—N14.37 (18)N3—C8—N1—C153.87 (18)
C2—C1—C7—N1175.84 (12)O1—C7—N1—C8176.54 (12)
C14—C9—C10—C111.7 (3)C1—C7—N1—C84.71 (18)
N3—C9—C10—C11179.32 (15)O1—C7—N1—C155.26 (19)
C9—C10—C11—C120.2 (3)C1—C7—N1—C15173.48 (11)
C10—C11—C12—C131.8 (3)C20—C15—N1—C877.32 (17)
C11—C12—C13—C141.7 (3)C16—C15—N1—C8102.31 (15)
C12—C13—C14—C90.1 (3)C20—C15—N1—C7100.87 (15)
C10—C9—C14—C131.8 (2)C16—C15—N1—C779.50 (16)
N3—C9—C14—C13179.28 (15)N3—C8—N2—C6179.02 (13)
C20—C15—C16—O2177.73 (14)N1—C8—N2—C60.5 (2)
N1—C15—C16—O22.6 (2)C1—C6—N2—C80.8 (2)
C20—C15—C16—C171.5 (2)C5—C6—N2—C8179.21 (14)
N1—C15—C16—C17178.15 (13)N2—C8—N3—C90.7 (2)
O2—C16—C17—C18179.01 (14)N1—C8—N3—C9178.85 (14)
C15—C16—C17—C180.3 (2)C10—C9—N3—C8166.44 (15)
C16—C17—C18—C190.6 (3)C14—C9—N3—C814.6 (3)
C17—C18—C19—C200.2 (3)C28—C27—P1—O331.45 (13)
C18—C19—C20—C151.1 (3)C32—C27—P1—O3151.32 (12)
C16—C15—C20—C191.9 (2)C28—C27—P1—C2191.57 (12)
N1—C15—C20—C19177.73 (14)C32—C27—P1—C2185.66 (14)
C26—C21—C22—C231.1 (2)C28—C27—P1—C33153.95 (11)
P1—C21—C22—C23176.91 (12)C32—C27—P1—C3328.83 (15)
C21—C22—C23—C240.8 (3)C22—C21—P1—O318.40 (14)
C22—C23—C24—C251.9 (3)C26—C21—P1—O3163.67 (11)
C23—C24—C25—C261.0 (3)C22—C21—P1—C27140.85 (12)
C24—C25—C26—C210.9 (3)C26—C21—P1—C2741.22 (14)
C22—C21—C26—C252.0 (2)C22—C21—P1—C33103.34 (12)
P1—C21—C26—C25175.96 (12)C26—C21—P1—C3374.59 (13)
C32—C27—C28—C290.2 (2)C38—C33—P1—O335.40 (14)
P1—C27—C28—C29177.17 (12)C34—C33—P1—O3139.99 (12)
C27—C28—C29—C300.8 (2)C38—C33—P1—C2787.37 (13)
C28—C29—C30—C310.9 (3)C34—C33—P1—C2797.24 (13)
C29—C30—C31—C320.0 (3)C38—C33—P1—C21158.00 (12)
C30—C31—C32—C271.0 (3)C34—C33—P1—C2117.38 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.815 (18)1.862 (19)2.6436 (15)160.1 (18)
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H15N3O2·C18H15OP
Mr607.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)18.9139 (3), 10.3201 (2), 18.2145 (3)
β (°) 117.771 (1)
V3)3145.83 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.980, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
38085, 7826, 5767
Rint0.036
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.134, 1.01
No. of reflections7826
No. of parameters412
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.23

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.815 (18)1.862 (19)2.6436 (15)160.1 (18)
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors are grateful to Hubei Medical University Education Committee (grant No. 2009QJ12) for financial support and acknowledge the Sophisticated Analytical Instrument Facility, Central China Normal University, Wuhan, for the data collection.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Goöttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 45, 1365–1369.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds