organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-6-(2,4-di­chloro­phen­yl)-4-oxo-3,5-di­phenyl­cyclo­hex-2-enecarbo­nitrile

aDepartment of Science and Humanities, National College of Engineering, Maruthakulam, Tirunelveli 627 151, India, bDepartment of Physics, University College of Engineering Nagercoil, Anna University of Technology Tirunelveli, Nagercoil 629 004, India, cDepartment of Physics, Kalasalingam University, Anand Nagar, Krishnan Koil 626 190, India, and dDepartment of Organic Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: s_a_bahadur@yahoo.co.in

(Received 31 August 2010; accepted 3 September 2010; online 18 September 2010)

In the title compound, C25H18Cl2N2O, the cyclo­hexene ring has a sofa conformation. All the substituents in the cyclo­hexene ring, except the cyano group (which is axial) occupy equatorial positions. The crystal structure is stabilized through N—H⋯O hydrogen bonds, forming a chain extending along the b axis and through C—H⋯N and C—H⋯Cl inter­actions. It is remarkable that only one of the amino H atoms is involved in hydrogen bonding.

Related literature

For the synthesis of the title compound, see: Rodriguez & Dulcere (1993[Rodriguez, J. & Dulcere, J.-P. (1993). Synthesis, pp. 1176-1205.]).

[Scheme 1]

Experimental

Crystal data
  • C25H18Cl2N2O

  • Mr = 433.31

  • Monoclinic, P 21 /c

  • a = 10.8650 (9) Å

  • b = 14.0010 (3) Å

  • c = 14.3021 (6) Å

  • β = 94.697 (10)°

  • V = 2168.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.21 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 18613 measured reflections

  • 3269 independent reflections

  • 2457 reflections with I > 2σ(I)

  • Rint = 0.041

  • θmax = 23.7°

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.127

  • S = 1.07

  • 3269 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1i 0.86 1.91 2.759 (3) 171
C33—H33⋯N11ii 0.93 2.72 3.402 (4) 131
C52—H52⋯Cl2iii 0.93 2.97 3.897 (3) 174
C54—H54⋯N11iv 0.93 2.72 3.541 (4) 147
Symmetry codes: (i) [-x-1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x-1, -y, -z+2; (iii) -x-1, -y, -z+1; (iv) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL/PC; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Alkenes undergo co-halogenation reactions to afford bifunctional compounds which serve as potential synthons towards the synthesis of various heterocyclic compounds (Rodriguez & Dulcere, 1993). The regio/stereoselectivity of such addition reactions is governed by various factors, one being structural features of the alkene. We were interested in investigating some of the structure features in the title compound, which may alter the regio/stereoselectivity in addition reactions.

The molecular structure of the title compound is shown in Fig. 1. The cyclohexene ring is in a sofa conformation. Two phenyl rings are oriented with a dihedral angle of 54.8 (1)° to each other. Further, the dichlorophenyl rings are making dihedral angles of 66.7 (1)° and 84.3 (1)° with the phenyl rings of C31/C36 and C51/C56 respectively. The crystal structure is stabilized by intermolecular C—H···N, C—H···Cl and classical N—H···O hydrgeon bonds (Tab. 1). The packing diagram of the title compound is shown in Fig. 2.

A chain C(6) motif extending along the b axis of the unit cell is observed through classical N—H···O hydrogen bond (Fig.3). Centrosymmetric ring R22(16) motif is formed around the crystallographic inversion centre through C—H···Cl bond (Fig. 4). Further, another ring R22(18) motif is observed around crystallographic inversion centre through a C—H···N bond (Fig. 5). These ring motifs are connected along c axis of the unit cell through another C—H···N bond [C54—H54···N11(x, -y - 1/2, z - 1/2)].

Related literature top

For the synthesis of the title compound, see: Rodriguez & Dulcere (1993).

Experimental top

A mixture of 1,3-diphenylacetone 5 (1 mmol), 2-[(2,4-dichlorophenyl)methylene]malononitrile (1 mmol), and sodium ethoxide (2 mmol) was ground well in a mortar and pestle at ambient temperature for about 15–30 sec. Then water (50–70 ml) was added to the mixture and the product was filtered and washed with water, dried in vacuo and subjected to flash chromatographic purification employing flash silica gel (230–400 mesh) with petroleum ether-ethyl acetate mixture as eluent. The products were further recrystallized from ethanol-ethyl acetate mixture (1:2 v/v).

Refinement top

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq (parent atom).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. The displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title structure viewed down the a axis. (Cl is shown in green, N in blue, O in red, C in black and H as circle)
[Figure 3] Fig. 3. Chain C(6) motif formed through N—H···O hydrogen bonds. H-bond are drawn as dashed lines. (Cl is shown in green, N in blue, O in red, C in black and H in pink)
[Figure 4] Fig. 4. Ring R22(16) motif formed through C—H···Cl hydrogen bonds. H-bonds are drawn as dashed lines. (Cl is shown in green, N in blue, O in red, C in black and H in pink)
[Figure 5] Fig. 5. Ring R22(18) motif formed through C—H···N hydrogen bonds. H-bonds are drawn as dashed lines. (Cl is shown in green, N in blue, O in red, C in black and H in pink)
2-Amino-6-(2,4-dichlorophenyl)-4-oxo-3,5-diphenylcyclohex-2-enecarbonitrile top
Crystal data top
C25H18Cl2N2OF(000) = 896
Mr = 433.31Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4312 reflections
a = 10.8650 (9) Åθ = 2.1–20.1°
b = 14.0010 (3) ŵ = 0.32 mm1
c = 14.3021 (6) ÅT = 293 K
β = 94.697 (10)°Block, colourless
V = 2168.3 (2) Å30.21 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2457 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 23.7°, θmin = 1.9°
ω scansh = 1212
18613 measured reflectionsk = 1515
3269 independent reflectionsl = 1116
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0688P)2 + 0.6095P]
where P = (Fo2 + 2Fc2)/3
3269 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C25H18Cl2N2OV = 2168.3 (2) Å3
Mr = 433.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8650 (9) ŵ = 0.32 mm1
b = 14.0010 (3) ÅT = 293 K
c = 14.3021 (6) Å0.21 × 0.18 × 0.12 mm
β = 94.697 (10)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2457 reflections with I > 2σ(I)
18613 measured reflectionsRint = 0.041
3269 independent reflectionsθmax = 23.7°
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.07Δρmax = 0.19 e Å3
3269 reflectionsΔρmin = 0.24 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4045 (2)0.02803 (16)0.72770 (17)0.0330 (6)
H10.41710.08730.69180.040*
C110.3249 (3)0.04896 (18)0.8132 (2)0.0431 (7)
N110.2610 (3)0.0631 (2)0.8783 (2)0.0732 (8)
C20.5291 (2)0.00720 (16)0.75371 (18)0.0368 (6)
N20.6097 (2)0.06106 (15)0.76626 (19)0.0593 (7)
H2A0.68200.04680.78250.071*
H2B0.59010.11980.75820.071*
C30.5514 (2)0.10311 (16)0.76488 (18)0.0339 (6)
C310.6736 (2)0.13559 (16)0.79292 (18)0.0349 (6)
C320.7174 (3)0.1068 (2)0.8762 (2)0.0499 (7)
H320.66860.06810.91700.060*
C330.8332 (3)0.1348 (2)0.9000 (2)0.0570 (8)
H330.86220.11390.95590.068*
C340.9040 (3)0.1925 (2)0.8420 (2)0.0529 (8)
H340.98230.21050.85730.064*
C350.8600 (3)0.2245 (2)0.7603 (2)0.0553 (8)
H350.90750.26580.72140.066*
C360.7462 (2)0.19578 (18)0.7358 (2)0.0450 (7)
H360.71790.21730.68000.054*
C40.4589 (2)0.17242 (16)0.74985 (17)0.0341 (6)
O10.47452 (17)0.25760 (11)0.76898 (14)0.0518 (5)
C50.3365 (2)0.14431 (15)0.71259 (17)0.0317 (6)
H50.27500.14110.76650.038*
C510.2942 (2)0.22077 (16)0.64729 (17)0.0326 (6)
C520.3644 (3)0.2437 (2)0.56597 (19)0.0503 (7)
H520.43760.21090.55010.060*
C530.3271 (3)0.3151 (2)0.5073 (2)0.0637 (9)
H530.37590.33050.45290.076*
C540.2196 (3)0.3629 (2)0.5289 (2)0.0623 (9)
H540.19450.41040.48910.075*
C550.1493 (3)0.3410 (2)0.6084 (2)0.0587 (8)
H550.07560.37350.62330.070*
C560.1864 (2)0.27073 (18)0.6676 (2)0.0442 (7)
H560.13760.25690.72240.053*
C60.3415 (2)0.04533 (15)0.66641 (16)0.0304 (6)
H60.39420.05140.60780.037*
C610.2188 (2)0.00592 (16)0.64069 (17)0.0331 (6)
C620.1086 (2)0.02628 (18)0.69160 (19)0.0421 (7)
H620.10910.06890.74140.051*
C630.0019 (3)0.01363 (19)0.6720 (2)0.0495 (7)
H630.07440.00200.70780.059*
C640.0039 (2)0.07653 (18)0.5992 (2)0.0447 (7)
C650.1028 (3)0.09852 (19)0.54492 (19)0.0482 (7)
H650.10120.14070.49480.058*
C660.2121 (2)0.05682 (18)0.56630 (18)0.0408 (6)
Cl10.14075 (7)0.13127 (6)0.57487 (7)0.0697 (3)
Cl20.34352 (8)0.08729 (7)0.49620 (6)0.0767 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0406 (14)0.0178 (12)0.0411 (15)0.0015 (10)0.0056 (12)0.0034 (10)
C110.0529 (17)0.0276 (14)0.0496 (19)0.0052 (12)0.0085 (15)0.0023 (13)
N110.091 (2)0.0676 (19)0.0584 (18)0.0100 (16)0.0111 (17)0.0102 (15)
C20.0385 (14)0.0216 (13)0.0509 (16)0.0003 (11)0.0069 (12)0.0025 (11)
N20.0484 (14)0.0201 (11)0.113 (2)0.0014 (10)0.0288 (14)0.0001 (12)
C30.0390 (14)0.0188 (12)0.0445 (15)0.0007 (10)0.0072 (11)0.0015 (10)
C310.0398 (14)0.0173 (12)0.0481 (16)0.0011 (10)0.0057 (12)0.0014 (11)
C320.0500 (17)0.0442 (16)0.0569 (19)0.0121 (13)0.0128 (14)0.0087 (14)
C330.0554 (18)0.059 (2)0.059 (2)0.0105 (16)0.0200 (15)0.0041 (16)
C340.0399 (15)0.0469 (17)0.073 (2)0.0075 (13)0.0103 (15)0.0120 (15)
C350.0475 (17)0.0484 (18)0.069 (2)0.0146 (14)0.0020 (16)0.0070 (15)
C360.0460 (16)0.0388 (15)0.0505 (17)0.0032 (13)0.0063 (13)0.0033 (13)
C40.0414 (14)0.0208 (13)0.0401 (15)0.0012 (11)0.0043 (11)0.0006 (10)
O10.0584 (12)0.0189 (10)0.0814 (14)0.0015 (8)0.0262 (10)0.0072 (9)
C50.0370 (13)0.0220 (12)0.0352 (14)0.0006 (10)0.0015 (11)0.0004 (10)
C510.0376 (14)0.0218 (12)0.0388 (15)0.0035 (10)0.0065 (12)0.0008 (10)
C520.0589 (17)0.0416 (16)0.0487 (18)0.0059 (14)0.0059 (14)0.0082 (14)
C530.091 (3)0.057 (2)0.0431 (18)0.0098 (19)0.0013 (17)0.0123 (15)
C540.083 (2)0.0398 (17)0.068 (2)0.0021 (17)0.0296 (19)0.0153 (16)
C550.0547 (18)0.0407 (17)0.083 (2)0.0088 (14)0.0164 (17)0.0076 (16)
C560.0407 (15)0.0344 (15)0.0573 (18)0.0007 (12)0.0024 (13)0.0041 (13)
C60.0348 (13)0.0208 (12)0.0354 (14)0.0018 (10)0.0008 (11)0.0017 (10)
C610.0396 (14)0.0224 (12)0.0376 (15)0.0010 (10)0.0054 (11)0.0021 (11)
C620.0411 (15)0.0352 (14)0.0498 (17)0.0036 (12)0.0021 (13)0.0074 (12)
C630.0398 (15)0.0422 (16)0.066 (2)0.0031 (13)0.0035 (14)0.0018 (15)
C640.0464 (17)0.0334 (15)0.0574 (18)0.0070 (12)0.0222 (14)0.0106 (13)
C650.063 (2)0.0375 (15)0.0464 (17)0.0061 (14)0.0205 (15)0.0027 (13)
C660.0467 (15)0.0349 (14)0.0405 (15)0.0003 (12)0.0026 (12)0.0035 (12)
Cl10.0587 (5)0.0600 (5)0.0957 (7)0.0188 (4)0.0390 (4)0.0138 (4)
Cl20.0674 (6)0.0881 (7)0.0720 (6)0.0043 (5)0.0109 (4)0.0438 (5)
Geometric parameters (Å, º) top
C1—C111.469 (4)C5—H50.9800
C1—C21.516 (3)C51—C561.375 (3)
C1—C61.546 (3)C51—C521.375 (4)
C1—H10.9800C52—C531.388 (4)
C11—N111.132 (3)C52—H520.9300
C2—N21.319 (3)C53—C541.358 (5)
C2—C31.376 (3)C53—H530.9300
N2—H2A0.8600C54—C551.353 (5)
N2—H2B0.8600C54—H540.9300
C3—C41.426 (3)C55—C561.380 (4)
C3—C311.489 (3)C55—H550.9300
C31—C361.376 (3)C56—H560.9300
C31—C321.379 (4)C6—C611.516 (3)
C32—C331.387 (4)C6—H60.9800
C32—H320.9300C61—C621.379 (3)
C33—C341.353 (4)C61—C661.386 (3)
C33—H330.9300C62—C631.374 (4)
C34—C351.373 (4)C62—H620.9300
C34—H340.9300C63—C641.365 (4)
C35—C361.371 (4)C63—H630.9300
C35—H350.9300C64—C651.376 (4)
C36—H360.9300C64—Cl11.734 (3)
C4—O11.238 (3)C65—C661.380 (4)
C4—C51.524 (3)C65—H650.9300
C5—C511.517 (3)C66—Cl21.730 (3)
C5—C61.534 (3)
C11—C1—C2109.7 (2)C56—C51—C52117.7 (2)
C11—C1—C6110.3 (2)C56—C51—C5121.7 (2)
C2—C1—C6111.65 (18)C52—C51—C5120.7 (2)
C11—C1—H1108.4C51—C52—C53120.7 (3)
C2—C1—H1108.4C51—C52—H52119.7
C6—C1—H1108.4C53—C52—H52119.7
N11—C11—C1177.9 (3)C54—C53—C52120.4 (3)
N2—C2—C3124.5 (2)C54—C53—H53119.8
N2—C2—C1114.5 (2)C52—C53—H53119.8
C3—C2—C1121.0 (2)C55—C54—C53119.7 (3)
C2—N2—H2A120.0C55—C54—H54120.1
C2—N2—H2B120.0C53—C54—H54120.1
H2A—N2—H2B120.0C54—C55—C56120.2 (3)
C2—C3—C4120.9 (2)C54—C55—H55119.9
C2—C3—C31119.9 (2)C56—C55—H55119.9
C4—C3—C31119.2 (2)C51—C56—C55121.4 (3)
C36—C31—C32118.0 (2)C51—C56—H56119.3
C36—C31—C3120.5 (2)C55—C56—H56119.3
C32—C31—C3121.5 (2)C61—C6—C5115.67 (19)
C31—C32—C33121.0 (3)C61—C6—C1109.56 (18)
C31—C32—H32119.5C5—C6—C1110.94 (18)
C33—C32—H32119.5C61—C6—H6106.7
C34—C33—C32120.0 (3)C5—C6—H6106.7
C34—C33—H33120.0C1—C6—H6106.7
C32—C33—H33120.0C62—C61—C66116.0 (2)
C33—C34—C35119.8 (3)C62—C61—C6122.6 (2)
C33—C34—H34120.1C66—C61—C6121.3 (2)
C35—C34—H34120.1C63—C62—C61122.9 (3)
C36—C35—C34120.4 (3)C63—C62—H62118.5
C36—C35—H35119.8C61—C62—H62118.5
C34—C35—H35119.8C64—C63—C62119.1 (3)
C35—C36—C31120.9 (3)C64—C63—H63120.4
C35—C36—H36119.6C62—C63—H63120.4
C31—C36—H36119.6C63—C64—C65120.6 (2)
O1—C4—C3120.7 (2)C63—C64—Cl1120.4 (2)
O1—C4—C5117.7 (2)C65—C64—Cl1119.0 (2)
C3—C4—C5121.5 (2)C64—C65—C66118.7 (3)
C51—C5—C4110.51 (19)C64—C65—H65120.6
C51—C5—C6111.97 (19)C66—C65—H65120.6
C4—C5—C6112.53 (19)C65—C66—C61122.6 (2)
C51—C5—H5107.2C65—C66—Cl2116.9 (2)
C4—C5—H5107.2C61—C66—Cl2120.5 (2)
C6—C5—H5107.2
C2—C1—C11—N11121 (8)C56—C51—C52—C530.3 (4)
C6—C1—C11—N112 (8)C5—C51—C52—C53178.5 (2)
C11—C1—C2—N287.0 (3)C51—C52—C53—C540.8 (5)
C6—C1—C2—N2150.4 (2)C52—C53—C54—C550.5 (5)
C11—C1—C2—C391.5 (3)C53—C54—C55—C560.1 (5)
C6—C1—C2—C331.1 (3)C52—C51—C56—C550.4 (4)
N2—C2—C3—C4180.0 (3)C5—C51—C56—C55179.2 (2)
C1—C2—C3—C41.7 (4)C54—C55—C56—C510.6 (4)
N2—C2—C3—C310.0 (4)C51—C5—C6—C6163.6 (3)
C1—C2—C3—C31178.4 (2)C4—C5—C6—C61171.2 (2)
C2—C3—C31—C36120.0 (3)C51—C5—C6—C1170.83 (19)
C4—C3—C31—C3659.9 (3)C4—C5—C6—C145.6 (3)
C2—C3—C31—C3260.1 (4)C11—C1—C6—C6158.9 (2)
C4—C3—C31—C32120.0 (3)C2—C1—C6—C61178.81 (19)
C36—C31—C32—C332.4 (4)C11—C1—C6—C570.0 (2)
C3—C31—C32—C33177.7 (3)C2—C1—C6—C552.3 (3)
C31—C32—C33—C341.2 (5)C5—C6—C61—C6231.7 (3)
C32—C33—C34—C351.1 (5)C1—C6—C61—C6294.5 (3)
C33—C34—C35—C362.1 (5)C5—C6—C61—C66151.3 (2)
C34—C35—C36—C310.8 (4)C1—C6—C61—C6682.4 (3)
C32—C31—C36—C351.4 (4)C66—C61—C62—C631.0 (4)
C3—C31—C36—C35178.7 (2)C6—C61—C62—C63176.1 (2)
C2—C3—C4—O1172.7 (2)C61—C62—C63—C640.2 (4)
C31—C3—C4—O17.4 (4)C62—C63—C64—C651.3 (4)
C2—C3—C4—C55.6 (4)C62—C63—C64—Cl1177.9 (2)
C31—C3—C4—C5174.4 (2)C63—C64—C65—C661.0 (4)
O1—C4—C5—C5138.1 (3)Cl1—C64—C65—C66178.2 (2)
C3—C4—C5—C51143.6 (2)C64—C65—C66—C610.4 (4)
O1—C4—C5—C6164.1 (2)C64—C65—C66—Cl2179.7 (2)
C3—C4—C5—C617.7 (3)C62—C61—C66—C651.4 (4)
C4—C5—C51—C56117.1 (3)C6—C61—C66—C65175.8 (2)
C6—C5—C51—C56116.6 (2)C62—C61—C66—Cl2179.4 (2)
C4—C5—C51—C5261.7 (3)C6—C61—C66—Cl23.5 (3)
C6—C5—C51—C5264.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.861.912.759 (3)171
C33—H33···N11ii0.932.723.402 (4)131
C52—H52···Cl2iii0.932.973.897 (3)174
C54—H54···N11iv0.932.723.541 (4)147
Symmetry codes: (i) x1, y+1/2, z+3/2; (ii) x1, y, z+2; (iii) x1, y, z+1; (iv) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC25H18Cl2N2O
Mr433.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.8650 (9), 14.0010 (3), 14.3021 (6)
β (°) 94.697 (10)
V3)2168.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.21 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18613, 3269, 2457
Rint0.041
θmax (°)23.7
(sin θ/λ)max1)0.566
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.127, 1.07
No. of reflections3269
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL/PC (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.861.912.759 (3)171
C33—H33···N11ii0.932.723.402 (4)131
C52—H52···Cl2iii0.932.973.897 (3)174
C54—H54···N11iv0.932.723.541 (4)147
Symmetry codes: (i) x1, y+1/2, z+3/2; (ii) x1, y, z+2; (iii) x1, y, z+1; (iv) x, y1/2, z1/2.
 

Acknowledgements

SAB sincerely thank the Vice Chancellor and Management of Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement. SA thanks the Vice Chancellor of Anna University of Technology, Tirunelveli, for his support and encouragement.

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRodriguez, J. & Dulcere, J.-P. (1993). Synthesis, pp. 1176–1205.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds