organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2597-o2598

(+)-Methyl 3β-acet­­oxy-13-carb­­oxy-19-hy­dr­oxy-11-oxo-C-norolean-18-en-30-oate γ-lactone

aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at

(Received 6 September 2010; accepted 14 September 2010; online 18 September 2010)

The title compound, C33H46O7, is an unusual oxydation product of the therapeutic agent glycyrrhetinic acid that has, in comparison to the latter, a distinctly altered triterpene structure with one five- and four six-membered carbocycles complemented by a γ-lactone ring with a spiro-junction and a ring double bond. The junction between the five-membered ring C, a cyclo­penta­none ring, and the six-membered ring D, previously in question, was found to be cis, confirming earlier structure assignments based solely on chemical transformations. In the solid state, the compound exhibits five intra- and four inter­molecular C—H⋯O inter­actions with H⋯O distances less than or equal to 2.70 Å and C—H⋯O greater than 100°.

Related literature

For the synthesis and structure elucidation of the title compound by chemical methods, see: Brownlie & Spring (1956[Brownlie, G. & Spring, F. S. (1956). J. Chem. Soc. pp. 1949-1953.]); Jeger et al. (1944[Jeger, O., Norymberski, J. & Ruzicka, L. (1944). Helv. Chim. Acta, 27, 1532-1543.]). For overviews of the therapeutic aspects of the parent compounds glycyrrhetinic acid and glycyrrhizin, see: Asl & Hosseinzadeh (2008[Asl, M. N. & Hosseinzadeh, H. (2008). Phytother. Res. 22, 709-724.]); Baran et al. (1974[Baran, J. S., Langford, D. D., Liang, C. & Pitzele, B. S. (1974). J. Med. Chem. 17, 184-191.]); Kitagawa (2002[Kitagawa, I. (2002). Pure Appl. Chem. 74, 1189-1198.]). For recent research on the synthesis of new derivatives of glycyrrhetinic acid and their medicinal potency, see: Classen-Houben et al. (2009[Classen-Houben, D., Schuster, D., Da Cunha, T., Odermatt, A., Wolber, G., Jordis, U. & Kueenburg, B. (2009). J. Steroid Biochem. Mol. Biol. 113, 248-252.]); Beseda et al. (2010[Beseda, I., Czollner, L., Shah, P. S., Khunt, R., Gaware, R., Kosma, P., Stanetty, C., del Ruiz-Ruiz, M. C., Amer, H., Mereiter, K., Da Cunha, T., Odermatt, A., Classen-Houben, D. & Jordis, U. (2010). Bioorg. Med. Chem. 18, 433-454.]); Amer et al. (2010[Amer, H., Mereiter, K., Stanetty, C., Hofinger, A., Czollner, L., Beseda, I., Jordis, U., Kueenburg, B., Classen-Houben, D. & Kosma, P. (2010). Tetrahedron, 66, 4390-4402.]).

[Scheme 1]

Experimental

Crystal data
  • C33H46O7

  • Mr = 554.70

  • Orthorhombic, P 21 21 21

  • a = 7.6310 (4) Å

  • b = 16.7922 (9) Å

  • c = 22.3822 (13) Å

  • V = 2868.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.56 × 0.44 × 0.32 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.88, Tmax = 0.97

  • 41398 measured reflections

  • 4654 independent reflections

  • 4540 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.05

  • 4654 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O5 0.99 2.58 3.1121 (14) 114
C9—H9⋯O6 1.00 2.43 3.1601 (13) 129
C23—H23A⋯O1 0.98 2.49 2.9084 (15) 106
C25—H25A⋯O2 0.98 2.60 3.2898 (16) 127
C27—H27B⋯O6 0.98 2.49 3.0454 (16) 116
C1—H1A⋯O5i 0.99 2.63 3.4839 (15) 145
C5—H5⋯O5ii 1.00 2.64 3.5313 (14) 149
C7—H7B⋯O2iii 0.99 2.59 3.1743 (15) 118
C7—H7B⋯O5ii 0.99 2.70 3.5497 (15) 145
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT, SADABS and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Glycyrrhetinic acid (18β-glycyrrhetinic acid, GA), a pentacyclic triterpenoid, is the aglycone of glycyrrhizin, the main sweet tasting compound from liquorice root that is in use as flavoring and sweetener in candies and food (Kitagawa, 2002). This compound has a long record as therapeutic agent with antiinflammatory, antiulcer, antiallergic, and other activity by being active towards 11β-hydroxysteroid dehydrogenases and consequently modulating the steroid hormone cortisol (Baran et al., 1974; Asl & Hosseinzadeh, 2008). With these features glycyrrhetinic acid is of ongoing interest for creating new derivatives aimed at improving or diversifying its therapeutical profile.

In context with corresponding research (Classen-Houben et al., 2009; Beseda et al., 2010; Amer et al., 2010) we came across the title compound, (I), which was of interest because it is an unusual derivative of glycyrrhetinic acid. Obtained initially by the Nobel laureate Ruzicka and his group (Jeger et al., 1944), it was later on synthesized from methyl glycyrrhetate acetate, C33H50O5, in a one-step reaction by oxydation with SeO2 under introduction of two more oxygen atoms, elimination of four hydrogen atoms, rearrangement of one ring, and generation of an additional unsaturated γ-lactone ring (Brownlie & Spring, 1956). The assignment of a structural formula to this compound was as yet based on combustion analysis, derivatizations, chemical tests for funtional groups and stereochemical considerations but not on present day methods like NMR spectroscopy. Therefore the structural formula of (I) was partly open to question and it was considered worth to secure it by X-ray crystallography.

The result of the present work is shown in Figures 1 and 2. In order to facilitate the discussion, a comparison of the molecular structure of (I) with the parent compound 18β-glycyrrhetinic acid (GA) is given in Fig. 3. This figure includes also the chiralities of the nine asymmetric carbon atoms in (I), which prove that the assignment of Brownlie & Spring (1956) is correct, which is of relevance for carbon C13 (crystallographic atom numbering). In both compounds, (I) and GA, are the six membered rings A and B adopting the usual chair conformation and having a trans-link. On transition from GA to (I), the cyclohex-2-enone ring C is oxydatively cleaved between C11 and C12 and transforms into a cyclopentanone ring, whereas the former sixth ring carbon, C12, is utilized to generate a new γ-lactone ring with a new double bond between C18 and C19. By this transformation the carbon C13, initially of sp2-type, becomes sp3-type and chiral with S-configuration, as proven by X-ray diffraction. Hence, the junction between rings C and D in (I) is of a cis-type. Compared with GA the introduction of the new γ-lactone ring and the double bond C18—C19 in (I) changes the conformation of rings D and E drastically, namely from chair and chair in GA to twist-boat and twisted half-chair in (I). Therefore the shape of the molecule in (I) is singificantly altered in comparison to GA and ordinary derivatives thereof (Beseda et al., 2010). Bond lengths and angles in (I), listed below are largely normal except for the two most congested carbon atoms C13 and C14 (both sp3), which show two notably elongated bonds (C13—C14 = 1.5910 (15) Å, C14—C8 = 1.6026 (15) Å) and two unusually large bond angles (C11—C13—C18 = 119.9 (1) ° and C8—C14—C15 = 115.4 (1) °). The double bond C18—C19 shared by rings E and F measures 1.3299 (15) Å. A packing diagram of (I) is shown in Fig. 4. Apart from five intramolecular C—H···O interactions there are only four intermolecular C—H···O interactions with H···O 2.70 Å and C—H···O > 100° (Table 1) and the molecules are therefore held together mainly by van der Waals interactions.

Related literature top

For the synthesis and structure elucidation of the title compound by chemical methods, see: Brownlie & Spring (1956); Jeger et al. (1944). For overviews on therapeutic aspects of the parent compounds glycyrrhetinic acid and glycyrrhizin, see: Asl & Hosseinzadeh (2008); Baran et al. (1974); Kitagawa (2002). For recent research on the synthesis of new derivatives of glycyrrhetinic acid and their medicinal potency, see: Classen-Houben et al. (2009); Beseda et al. (2010); Amer et al. (2010).

Experimental top

The title compound was synthesized similar to the method of Brownlie & Spring (1956). To a solution of methyl glycyrrhetate acetate (500 mg, 0.98 mmol) in glacial acetic acid (30 ml) was added selenium dioxide (500 mg, 4.51 mmol) and the mixture stirred at 120 °C oil bath temperature. After 24 h the solvent was removed under vacuum, the residue diluted with water (100 ml) and extracted with dichloromethane (3 × 40 ml). The combined organic phase was washed with brine (10 ml) and dried over MgSO4. The drying agent was removed by filtration, and the filtrate transferred to a round-bottom flask. The solution was evaporated to a constant weight with a rotary evaporator to leave 180 mg (36%) of pale-yellow material. An analytical sample was obtained by recrystallization from ethanol and melted at 291–292 °C. 1H NMR (200 MHz, CDCl3): δ 4.46 (m,1H), 3.72 (s, 3H), 3.07 (s, 1H), 2.60 (m, 1H), 2.04 (s, 3H), 2.18–0.80 (m, 19H),1.42 (s, 3H), 1.182 (s, 3H), 1.15 (s, 6H), 1.09 (s, 3H), 0.88 (s, 3H). 13C NMR (50 MHz, CDCl3): δ 203.8, 174.6, 174.3, 170.7, 151.4, 119.1, 80.3, 67.6, 65.5, 55.1, 52.7, 48.3,43.2, 42.3, 37.7, 36.6, 36.3, 35.6, 35.1, 33.9, 32.6, 31.2, 30.6, 28.0, 26.7,26.6, 23.2, 23.0, 21.2, 21.0, 18.8, 17.1, 16.3.

Refinement top

All H atoms were placed in calculated positions and thereafter treated as riding. A torsional parameter was refined for each methyl group. Uiso(H) = 1.2Ueq(Cnon-methyl) and Uiso(H) = 1.5Ueq(Cmethyl) were used. Prior to final refinement the 3554 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT, SADABS and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of (I) in a side-view showing the conformation of the rings more clearly. Hydrogen atoms omitted for clarity.
[Figure 3] Fig. 3. Molecular structure of (I) (top) in comparison with the parent compound glycyrrhetinic acid (bottom) in its DMSO solvate (Beseda et al., 2010). Hydrogen atoms omitted for clarity, ring designation in large italics (only for bottom molecule), configuration of the asymmetric carbon atoms green (I), blue arrows indicate the C=C double bonds. Atom numeration in (I) follows a widely accepted designation in glycyrrhetinic acid.
[Figure 4] Fig. 4. Packing diagram of (I) in a view down the a axis. Hydrogen atoms omitted for clarity.
(+)-Methyl 3β-acetoxy-13-carboxy-19-hydroxy-11-oxo-C-norolean-18-en-30-oate γ-lactone top
Crystal data top
C33H46O7Dx = 1.285 Mg m3
Mr = 554.70Melting point: 565 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9893 reflections
a = 7.6310 (4) Åθ = 2.6–30.5°
b = 16.7922 (9) ŵ = 0.09 mm1
c = 22.3822 (13) ÅT = 100 K
V = 2868.1 (3) Å3Prism, colourless
Z = 40.56 × 0.44 × 0.32 mm
F(000) = 1200
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4654 independent reflections
Radiation source: fine-focus sealed tube4540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.88, Tmax = 0.97k = 2322
41398 measured reflectionsl = 3031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.3708P]
where P = (Fo2 + 2Fc2)/3
4654 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C33H46O7V = 2868.1 (3) Å3
Mr = 554.70Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.6310 (4) ŵ = 0.09 mm1
b = 16.7922 (9) ÅT = 100 K
c = 22.3822 (13) Å0.56 × 0.44 × 0.32 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4654 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4540 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 0.97Rint = 0.026
41398 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
4654 reflectionsΔρmin = 0.19 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58647 (12)0.36304 (5)0.59280 (3)0.01542 (16)
O20.21014 (12)0.38578 (6)0.30563 (4)0.02061 (18)
O30.07765 (16)0.16391 (6)0.05217 (4)0.0278 (2)
O40.02940 (13)0.20027 (5)0.14712 (4)0.02104 (18)
O50.49099 (13)0.23786 (5)0.60940 (4)0.02102 (18)
O60.51640 (14)0.21478 (5)0.28433 (4)0.02095 (19)
O70.38773 (12)0.22126 (5)0.19472 (4)0.01530 (16)
C10.38579 (15)0.34494 (7)0.43805 (5)0.01347 (19)
H1A0.26240.34730.42450.016*
H1B0.43370.29230.42670.016*
C20.39189 (15)0.35369 (7)0.50625 (5)0.0144 (2)
H2A0.33750.40490.51800.017*
H2B0.32420.31000.52500.017*
C30.57997 (15)0.35113 (7)0.52821 (5)0.01303 (19)
H30.62940.29740.51900.016*
C40.70187 (15)0.41476 (6)0.50091 (5)0.01278 (19)
C50.68261 (15)0.40901 (6)0.43176 (5)0.01175 (19)
H50.72670.35460.42170.014*
C60.80504 (16)0.46575 (7)0.39755 (5)0.0160 (2)
H6A0.92280.46470.41610.019*
H6B0.75940.52080.40050.019*
C70.82026 (15)0.44215 (7)0.33124 (5)0.0155 (2)
H7A0.89550.48120.31030.019*
H7B0.87690.38930.32820.019*
C80.64014 (15)0.43912 (6)0.30072 (5)0.01179 (18)
C90.51682 (14)0.38750 (6)0.34039 (4)0.01017 (18)
H90.57570.33430.34200.012*
C100.49178 (14)0.41083 (6)0.40651 (5)0.01149 (18)
C110.36470 (15)0.37522 (6)0.29852 (5)0.01211 (19)
C120.46147 (16)0.25521 (6)0.24456 (5)0.0144 (2)
C130.45088 (15)0.34696 (6)0.23907 (5)0.01111 (18)
C140.63502 (14)0.39140 (6)0.23874 (5)0.01162 (18)
C150.64754 (15)0.44362 (7)0.18159 (5)0.0145 (2)
H15A0.74070.48370.18810.017*
H15B0.68640.40900.14830.017*
C160.48210 (16)0.48775 (7)0.16123 (5)0.0156 (2)
H16A0.51000.51910.12500.019*
H16B0.44640.52560.19290.019*
C170.32639 (15)0.43173 (6)0.14723 (5)0.01265 (19)
C180.35306 (14)0.35531 (6)0.18125 (5)0.01168 (19)
C190.32842 (15)0.28331 (6)0.15797 (5)0.01295 (19)
C200.27038 (16)0.26123 (7)0.09642 (5)0.0144 (2)
C210.20702 (17)0.33903 (7)0.06549 (5)0.0171 (2)
H21A0.20510.33090.02170.021*
H21B0.08590.35100.07860.021*
C220.32516 (17)0.41004 (7)0.08013 (5)0.0157 (2)
H22A0.28510.45680.05690.019*
H22B0.44630.39760.06740.019*
C230.89158 (16)0.39174 (7)0.51797 (5)0.0168 (2)
H23A0.89660.37860.56060.025*
H23B0.97010.43660.50970.025*
H23C0.92830.34540.49440.025*
C240.66240 (17)0.49816 (7)0.52613 (5)0.0168 (2)
H24A0.68840.49910.56900.025*
H24B0.53840.51080.51980.025*
H24C0.73530.53770.50560.025*
C250.39079 (17)0.48996 (7)0.41380 (5)0.0171 (2)
H25A0.30270.49450.38210.026*
H25B0.47290.53470.41100.026*
H25C0.33270.49090.45280.026*
C260.57387 (17)0.52513 (6)0.29370 (5)0.0169 (2)
H26A0.59420.55450.33090.025*
H26B0.44820.52460.28480.025*
H26C0.63700.55110.26100.025*
C270.78590 (16)0.33104 (7)0.23470 (5)0.0165 (2)
H27A0.77130.29830.19880.025*
H27B0.78490.29680.27020.025*
H27C0.89780.35960.23260.025*
C280.15441 (17)0.47305 (7)0.16436 (6)0.0181 (2)
H28A0.15140.48160.20770.027*
H28B0.05520.43950.15250.027*
H28C0.14670.52450.14380.027*
C290.11726 (16)0.20249 (7)0.09537 (5)0.0166 (2)
C300.42425 (19)0.22355 (8)0.06203 (6)0.0219 (2)
H30A0.46670.17670.08380.033*
H30B0.51930.26250.05830.033*
H30C0.38470.20750.02220.033*
C310.54224 (16)0.30102 (7)0.62791 (5)0.0152 (2)
C320.5655 (2)0.32204 (8)0.69276 (5)0.0236 (3)
H32A0.56820.27320.71670.035*
H32B0.46750.35550.70590.035*
H32C0.67580.35110.69800.035*
C330.11701 (18)0.14577 (8)0.14807 (7)0.0252 (3)
H33A0.17600.14900.18690.038*
H33B0.07460.09140.14160.038*
H33C0.19980.16000.11630.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0208 (4)0.0152 (3)0.0103 (3)0.0016 (3)0.0006 (3)0.0002 (3)
O20.0112 (4)0.0337 (5)0.0169 (4)0.0005 (4)0.0006 (3)0.0015 (4)
O30.0385 (6)0.0258 (5)0.0192 (4)0.0091 (5)0.0060 (4)0.0045 (3)
O40.0193 (4)0.0213 (4)0.0225 (4)0.0068 (4)0.0010 (4)0.0053 (3)
O50.0262 (5)0.0170 (4)0.0199 (4)0.0032 (4)0.0017 (4)0.0010 (3)
O60.0302 (5)0.0131 (4)0.0195 (4)0.0009 (4)0.0085 (4)0.0036 (3)
O70.0206 (4)0.0104 (3)0.0149 (3)0.0002 (3)0.0048 (3)0.0009 (3)
C10.0123 (4)0.0160 (5)0.0121 (4)0.0032 (4)0.0002 (4)0.0012 (4)
C20.0129 (5)0.0186 (5)0.0118 (4)0.0017 (4)0.0004 (4)0.0005 (4)
C30.0150 (5)0.0141 (4)0.0100 (4)0.0010 (4)0.0005 (4)0.0011 (4)
C40.0131 (4)0.0135 (4)0.0117 (4)0.0007 (4)0.0003 (4)0.0024 (4)
C50.0106 (4)0.0136 (4)0.0111 (4)0.0010 (4)0.0003 (4)0.0015 (3)
C60.0156 (5)0.0194 (5)0.0131 (5)0.0073 (4)0.0004 (4)0.0013 (4)
C70.0117 (4)0.0210 (5)0.0137 (4)0.0047 (4)0.0007 (4)0.0005 (4)
C80.0115 (4)0.0116 (4)0.0122 (4)0.0015 (4)0.0016 (4)0.0008 (3)
C90.0094 (4)0.0107 (4)0.0105 (4)0.0008 (4)0.0005 (3)0.0003 (3)
C100.0108 (4)0.0126 (4)0.0110 (4)0.0000 (4)0.0006 (4)0.0003 (4)
C110.0119 (4)0.0129 (4)0.0116 (4)0.0014 (4)0.0002 (4)0.0020 (3)
C120.0163 (5)0.0116 (4)0.0154 (5)0.0012 (4)0.0020 (4)0.0004 (4)
C130.0122 (4)0.0101 (4)0.0110 (4)0.0009 (4)0.0010 (4)0.0015 (3)
C140.0100 (4)0.0128 (4)0.0121 (4)0.0005 (4)0.0008 (4)0.0002 (3)
C150.0142 (5)0.0162 (5)0.0133 (4)0.0020 (4)0.0018 (4)0.0023 (4)
C160.0176 (5)0.0133 (4)0.0160 (5)0.0027 (4)0.0023 (4)0.0038 (4)
C170.0130 (4)0.0124 (4)0.0126 (4)0.0005 (4)0.0005 (4)0.0028 (3)
C180.0111 (4)0.0126 (4)0.0113 (4)0.0000 (4)0.0001 (4)0.0017 (3)
C190.0142 (5)0.0124 (4)0.0122 (4)0.0004 (4)0.0013 (4)0.0020 (3)
C200.0165 (5)0.0143 (4)0.0123 (4)0.0001 (4)0.0011 (4)0.0006 (4)
C210.0215 (5)0.0161 (5)0.0138 (4)0.0008 (4)0.0046 (4)0.0021 (4)
C220.0194 (5)0.0156 (5)0.0120 (4)0.0010 (4)0.0011 (4)0.0032 (4)
C230.0138 (5)0.0213 (5)0.0153 (5)0.0000 (4)0.0023 (4)0.0027 (4)
C240.0218 (5)0.0138 (5)0.0149 (4)0.0021 (4)0.0002 (4)0.0037 (4)
C250.0190 (5)0.0161 (5)0.0162 (5)0.0052 (4)0.0020 (4)0.0001 (4)
C260.0235 (6)0.0110 (4)0.0162 (5)0.0004 (4)0.0024 (4)0.0007 (4)
C270.0136 (5)0.0188 (5)0.0171 (5)0.0047 (4)0.0013 (4)0.0020 (4)
C280.0169 (5)0.0171 (5)0.0202 (5)0.0051 (4)0.0010 (4)0.0026 (4)
C290.0194 (5)0.0136 (4)0.0169 (5)0.0005 (4)0.0046 (4)0.0005 (4)
C300.0234 (6)0.0229 (6)0.0194 (5)0.0027 (5)0.0034 (5)0.0034 (4)
C310.0146 (5)0.0167 (5)0.0144 (5)0.0019 (4)0.0008 (4)0.0022 (4)
C320.0364 (7)0.0214 (5)0.0130 (5)0.0019 (5)0.0025 (5)0.0018 (4)
C330.0185 (5)0.0212 (5)0.0359 (7)0.0065 (5)0.0001 (5)0.0029 (5)
Geometric parameters (Å, º) top
O1—C311.3475 (13)C15—H15B0.9900
O1—C31.4603 (12)C16—C171.5476 (16)
O2—C111.2033 (15)C16—H16A0.9900
O3—C291.2025 (15)C16—H16B0.9900
O4—C291.3389 (15)C17—C181.5059 (14)
O4—C331.4444 (15)C17—C281.5332 (16)
O5—C311.2039 (15)C17—C221.5455 (15)
O6—C121.1953 (14)C18—C191.3299 (15)
O7—C121.3735 (13)C19—C201.4939 (15)
O7—C191.4024 (13)C20—C291.5293 (17)
C1—C21.5342 (15)C20—C301.5400 (17)
C1—C101.5416 (15)C20—C211.5554 (16)
C1—H1A0.9900C21—C221.5304 (17)
C1—H1B0.9900C21—H21A0.9900
C2—C31.5177 (16)C21—H21B0.9900
C2—H2A0.9900C22—H22A0.9900
C2—H2B0.9900C22—H22B0.9900
C3—C41.5428 (16)C23—H23A0.9800
C3—H31.0000C23—H23B0.9800
C4—C241.5397 (15)C23—H23C0.9800
C4—C231.5463 (16)C24—H24A0.9800
C4—C51.5575 (14)C24—H24B0.9800
C5—C61.5385 (15)C24—H24C0.9800
C5—C101.5624 (15)C25—H25A0.9800
C5—H51.0000C25—H25B0.9800
C6—C71.5407 (15)C25—H25C0.9800
C6—H6A0.9900C26—H26A0.9800
C6—H6B0.9900C26—H26B0.9800
C7—C81.5356 (16)C26—H26C0.9800
C7—H7A0.9900C27—H27A0.9800
C7—H7B0.9900C27—H27B0.9800
C8—C261.5382 (15)C27—H27C0.9800
C8—C91.5573 (14)C28—H28A0.9800
C8—C141.6026 (15)C28—H28B0.9800
C9—C111.5061 (15)C28—H28C0.9800
C9—C101.5429 (14)C30—H30A0.9800
C9—H91.0000C30—H30B0.9800
C10—C251.5448 (15)C30—H30C0.9800
C11—C131.5582 (15)C31—C321.5044 (16)
C12—C131.5478 (15)C32—H32A0.9800
C13—C181.5006 (14)C32—H32B0.9800
C13—C141.5910 (15)C32—H32C0.9800
C14—C271.5366 (15)C33—H33A0.9800
C14—C151.5538 (15)C33—H33B0.9800
C15—C161.5332 (16)C33—H33C0.9800
C15—H15A0.9900
C31—O1—C3117.58 (9)H16A—C16—H16B107.7
C29—O4—C33114.68 (10)C18—C17—C28112.02 (9)
C12—O7—C19107.47 (8)C18—C17—C22106.94 (8)
C2—C1—C10111.77 (9)C28—C17—C22110.15 (9)
C2—C1—H1A109.3C18—C17—C16108.17 (9)
C10—C1—H1A109.3C28—C17—C16109.36 (9)
C2—C1—H1B109.3C22—C17—C16110.15 (9)
C10—C1—H1B109.3C19—C18—C13108.86 (9)
H1A—C1—H1B107.9C19—C18—C17123.89 (9)
C3—C2—C1110.38 (9)C13—C18—C17125.65 (9)
C3—C2—H2A109.6C18—C19—O7113.59 (9)
C1—C2—H2A109.6C18—C19—C20128.96 (10)
C3—C2—H2B109.6O7—C19—C20116.88 (9)
C1—C2—H2B109.6C19—C20—C29113.62 (9)
H2A—C2—H2B108.1C19—C20—C30109.68 (10)
O1—C3—C2110.42 (9)C29—C20—C30108.05 (10)
O1—C3—C4106.08 (8)C19—C20—C21107.11 (9)
C2—C3—C4114.98 (9)C29—C20—C21107.30 (9)
O1—C3—H3108.4C30—C20—C21111.08 (10)
C2—C3—H3108.4C22—C21—C20112.09 (10)
C4—C3—H3108.4C22—C21—H21A109.2
C24—C4—C3111.51 (9)C20—C21—H21A109.2
C24—C4—C23108.66 (9)C22—C21—H21B109.2
C3—C4—C23107.07 (9)C20—C21—H21B109.2
C24—C4—C5113.72 (9)H21A—C21—H21B107.9
C3—C4—C5107.09 (9)C21—C22—C17113.28 (9)
C23—C4—C5108.56 (9)C21—C22—H22A108.9
C6—C5—C4113.51 (9)C17—C22—H22A108.9
C6—C5—C10111.95 (9)C21—C22—H22B108.9
C4—C5—C10116.50 (9)C17—C22—H22B108.9
C6—C5—H5104.4H22A—C22—H22B107.7
C4—C5—H5104.4C4—C23—H23A109.5
C10—C5—H5104.4C4—C23—H23B109.5
C5—C6—C7111.47 (9)H23A—C23—H23B109.5
C5—C6—H6A109.3C4—C23—H23C109.5
C7—C6—H6A109.3H23A—C23—H23C109.5
C5—C6—H6B109.3H23B—C23—H23C109.5
C7—C6—H6B109.3C4—C24—H24A109.5
H6A—C6—H6B108.0C4—C24—H24B109.5
C8—C7—C6111.68 (9)H24A—C24—H24B109.5
C8—C7—H7A109.3C4—C24—H24C109.5
C6—C7—H7A109.3H24A—C24—H24C109.5
C8—C7—H7B109.3H24B—C24—H24C109.5
C6—C7—H7B109.3C10—C25—H25A109.5
H7A—C7—H7B107.9C10—C25—H25B109.5
C7—C8—C26107.97 (9)H25A—C25—H25B109.5
C7—C8—C9107.80 (8)C10—C25—H25C109.5
C26—C8—C9112.47 (9)H25A—C25—H25C109.5
C7—C8—C14115.05 (9)H25B—C25—H25C109.5
C26—C8—C14111.90 (9)C8—C26—H26A109.5
C9—C8—C14101.56 (8)C8—C26—H26B109.5
C11—C9—C10122.43 (9)H26A—C26—H26B109.5
C11—C9—C8100.79 (8)C8—C26—H26C109.5
C10—C9—C8118.71 (9)H26A—C26—H26C109.5
C11—C9—H9104.3H26B—C26—H26C109.5
C10—C9—H9104.3C14—C27—H27A109.5
C8—C9—H9104.3C14—C27—H27B109.5
C1—C10—C9108.78 (8)H27A—C27—H27B109.5
C1—C10—C25107.90 (9)C14—C27—H27C109.5
C9—C10—C25112.43 (9)H27A—C27—H27C109.5
C1—C10—C5108.02 (8)H27B—C27—H27C109.5
C9—C10—C5103.10 (8)C17—C28—H28A109.5
C25—C10—C5116.33 (9)C17—C28—H28B109.5
O2—C11—C9130.77 (10)H28A—C28—H28B109.5
O2—C11—C13124.86 (10)C17—C28—H28C109.5
C9—C11—C13104.34 (9)H28A—C28—H28C109.5
O6—C12—O7120.85 (10)H28B—C28—H28C109.5
O6—C12—C13130.00 (10)O3—C29—O4123.70 (12)
O7—C12—C13109.11 (9)O3—C29—C20123.50 (11)
C18—C13—C12100.80 (9)O4—C29—C20112.78 (9)
C18—C13—C11119.87 (9)C20—C30—H30A109.5
C12—C13—C11104.91 (8)C20—C30—H30B109.5
C18—C13—C14113.05 (8)H30A—C30—H30B109.5
C12—C13—C14114.91 (9)C20—C30—H30C109.5
C11—C13—C14103.52 (8)H30A—C30—H30C109.5
C27—C14—C15106.12 (9)H30B—C30—H30C109.5
C27—C14—C13110.65 (9)O5—C31—O1124.17 (10)
C15—C14—C13108.83 (8)O5—C31—C32125.24 (11)
C27—C14—C8111.26 (9)O1—C31—C32110.60 (10)
C15—C14—C8115.40 (9)C31—C32—H32A109.5
C13—C14—C8104.60 (8)C31—C32—H32B109.5
C16—C15—C14117.84 (9)H32A—C32—H32B109.5
C16—C15—H15A107.8C31—C32—H32C109.5
C14—C15—H15A107.8H32A—C32—H32C109.5
C16—C15—H15B107.8H32B—C32—H32C109.5
C14—C15—H15B107.8O4—C33—H33A109.5
H15A—C15—H15B107.2O4—C33—H33B109.5
C15—C16—C17113.49 (9)H33A—C33—H33B109.5
C15—C16—H16A108.9O4—C33—H33C109.5
C17—C16—H16A108.9H33A—C33—H33C109.5
C15—C16—H16B108.9H33B—C33—H33C109.5
C17—C16—H16B108.9
C10—C1—C2—C358.36 (12)C11—C13—C14—C27122.21 (9)
C31—O1—C3—C276.94 (12)C18—C13—C14—C159.68 (12)
C31—O1—C3—C4157.87 (9)C12—C13—C14—C15124.65 (10)
C1—C2—C3—O1177.46 (9)C11—C13—C14—C15121.55 (9)
C1—C2—C3—C457.50 (12)C18—C13—C14—C8133.53 (9)
O1—C3—C4—C2449.35 (12)C12—C13—C14—C8111.49 (10)
C2—C3—C4—C2472.98 (12)C11—C13—C14—C82.30 (10)
O1—C3—C4—C2369.39 (11)C7—C8—C14—C2723.18 (12)
C2—C3—C4—C23168.28 (9)C26—C8—C14—C27146.90 (10)
O1—C3—C4—C5174.34 (9)C9—C8—C14—C2792.92 (10)
C2—C3—C4—C552.01 (12)C7—C8—C14—C1597.78 (11)
C24—C4—C5—C659.79 (13)C26—C8—C14—C1525.93 (13)
C3—C4—C5—C6176.57 (9)C9—C8—C14—C15146.11 (9)
C23—C4—C5—C661.28 (12)C7—C8—C14—C13142.69 (9)
C24—C4—C5—C1072.47 (12)C26—C8—C14—C1393.60 (10)
C3—C4—C5—C1051.18 (12)C9—C8—C14—C1326.58 (10)
C23—C4—C5—C10166.46 (9)C27—C14—C15—C16158.17 (10)
C4—C5—C6—C7163.94 (10)C13—C14—C15—C1639.06 (12)
C10—C5—C6—C761.63 (12)C8—C14—C15—C1678.12 (12)
C5—C6—C7—C856.45 (13)C14—C15—C16—C1759.65 (13)
C6—C7—C8—C2671.40 (11)C15—C16—C17—C1823.71 (13)
C6—C7—C8—C950.35 (12)C15—C16—C17—C28145.97 (10)
C6—C7—C8—C14162.83 (9)C15—C16—C17—C2292.85 (11)
C7—C8—C9—C11167.72 (9)C12—C13—C18—C194.12 (12)
C26—C8—C9—C1173.36 (10)C11—C13—C18—C19118.43 (11)
C14—C8—C9—C1146.42 (9)C14—C13—C18—C19119.06 (10)
C7—C8—C9—C1055.67 (12)C12—C13—C18—C17170.08 (10)
C26—C8—C9—C1063.26 (12)C11—C13—C18—C1775.61 (14)
C14—C8—C9—C10176.96 (9)C14—C13—C18—C1746.91 (14)
C2—C1—C10—C9166.68 (9)C28—C17—C18—C19103.47 (13)
C2—C1—C10—C2571.10 (11)C22—C17—C18—C1917.30 (15)
C2—C1—C10—C555.43 (12)C16—C17—C18—C19135.92 (12)
C11—C9—C10—C160.76 (12)C28—C17—C18—C1392.58 (13)
C8—C9—C10—C1172.31 (9)C22—C17—C18—C13146.65 (11)
C11—C9—C10—C2558.68 (13)C16—C17—C18—C1328.03 (14)
C8—C9—C10—C2568.25 (12)C13—C18—C19—O74.12 (14)
C11—C9—C10—C5175.26 (9)C17—C18—C19—O7170.38 (10)
C8—C9—C10—C557.82 (11)C13—C18—C19—C20166.81 (11)
C6—C5—C10—C1172.93 (9)C17—C18—C19—C200.55 (19)
C4—C5—C10—C154.10 (12)C12—O7—C19—C182.10 (14)
C6—C5—C10—C957.89 (11)C12—O7—C19—C20170.00 (10)
C4—C5—C10—C9169.14 (9)C18—C19—C20—C29129.02 (13)
C6—C5—C10—C2565.62 (11)O7—C19—C20—C2960.31 (14)
C4—C5—C10—C2567.34 (12)C18—C19—C20—C30109.94 (14)
C10—C9—C11—O25.92 (19)O7—C19—C20—C3060.74 (13)
C8—C9—C11—O2128.53 (13)C18—C19—C20—C2110.71 (17)
C10—C9—C11—C13176.09 (9)O7—C19—C20—C21178.61 (10)
C8—C9—C11—C1349.45 (9)C19—C20—C21—C2240.24 (13)
C19—O7—C12—O6177.07 (12)C29—C20—C21—C22162.58 (10)
C19—O7—C12—C130.79 (12)C30—C20—C21—C2279.52 (12)
O6—C12—C13—C18174.68 (13)C20—C21—C22—C1763.10 (13)
O7—C12—C13—C182.92 (12)C18—C17—C22—C2147.71 (13)
O6—C12—C13—C1149.55 (17)C28—C17—C22—C2174.24 (12)
O7—C12—C13—C11128.06 (9)C16—C17—C22—C21165.04 (10)
O6—C12—C13—C1463.44 (17)C33—O4—C29—O31.44 (18)
O7—C12—C13—C14118.96 (10)C33—O4—C29—C20179.73 (10)
O2—C11—C13—C1819.22 (17)C19—C20—C29—O3162.49 (12)
C9—C11—C13—C18158.92 (9)C30—C20—C29—O340.54 (16)
O2—C11—C13—C1292.91 (14)C21—C20—C29—O379.32 (14)
C9—C11—C13—C1288.95 (10)C19—C20—C29—O419.21 (14)
O2—C11—C13—C14146.27 (12)C30—C20—C29—O4141.16 (10)
C9—C11—C13—C1431.87 (10)C21—C20—C29—O498.98 (11)
C18—C13—C14—C27106.56 (10)C3—O1—C31—O53.23 (18)
C12—C13—C14—C278.41 (12)C3—O1—C31—C32176.93 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O50.992.583.1121 (14)114
C9—H9···O61.002.433.1601 (13)129
C23—H23A···O10.982.492.9084 (15)106
C25—H25A···O20.982.603.2898 (16)127
C27—H27B···O60.982.493.0454 (16)116
C1—H1A···O5i0.992.633.4839 (15)145
C5—H5···O5ii1.002.643.5313 (14)149
C7—H7B···O2iii0.992.593.1743 (15)118
C7—H7B···O5ii0.992.703.5497 (15)145
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC33H46O7
Mr554.70
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.6310 (4), 16.7922 (9), 22.3822 (13)
V3)2868.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.56 × 0.44 × 0.32
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.88, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
41398, 4654, 4540
Rint0.026
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.05
No. of reflections4654
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.19

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SAINT, SADABS and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O50.992.583.1121 (14)113.6
C9—H9···O61.002.433.1601 (13)129.4
C23—H23A···O10.982.492.9084 (15)105.6
C25—H25A···O20.982.603.2898 (16)127.4
C27—H27B···O60.982.493.0454 (16)115.8
C1—H1A···O5i0.992.633.4839 (15)144.7
C5—H5···O5ii1.002.643.5313 (14)148.7
C7—H7B···O2iii0.992.593.1743 (15)117.5
C7—H7B···O5ii0.992.703.5497 (15)144.6
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y, z.
 

Acknowledgements

The work was supported by the ZIT Zentrum für Innovation und Technologie GmbH (Vienna Spot of Excellence, 182081).

References

First citationAmer, H., Mereiter, K., Stanetty, C., Hofinger, A., Czollner, L., Beseda, I., Jordis, U., Kueenburg, B., Classen-Houben, D. & Kosma, P. (2010). Tetrahedron, 66, 4390–4402.  Web of Science CSD CrossRef CAS Google Scholar
First citationAsl, M. N. & Hosseinzadeh, H. (2008). Phytother. Res. 22, 709–724.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBaran, J. S., Langford, D. D., Liang, C. & Pitzele, B. S. (1974). J. Med. Chem. 17, 184–191.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBeseda, I., Czollner, L., Shah, P. S., Khunt, R., Gaware, R., Kosma, P., Stanetty, C., del Ruiz-Ruiz, M. C., Amer, H., Mereiter, K., Da Cunha, T., Odermatt, A., Classen-Houben, D. & Jordis, U. (2010). Bioorg. Med. Chem. 18, 433–454.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrownlie, G. & Spring, F. S. (1956). J. Chem. Soc. pp. 1949–1953.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClassen-Houben, D., Schuster, D., Da Cunha, T., Odermatt, A., Wolber, G., Jordis, U. & Kueenburg, B. (2009). J. Steroid Biochem. Mol. Biol. 113, 248–252.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJeger, O., Norymberski, J. & Ruzicka, L. (1944). Helv. Chim. Acta, 27, 1532–1543.  CrossRef CAS Google Scholar
First citationKitagawa, I. (2002). Pure Appl. Chem. 74, 1189–1198.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2597-o2598
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds