metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Hy­dr­oxy-2-methyl­quinolinium di­bromido(2-methyl­quinolin-8-olato-κ2N,O)zincate(II) methanol monosolvate

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 September 2010; accepted 14 September 2010; online 18 September 2010)

The anion of the title salt, (C10H10NO)[ZnBr2(C10H8NO)]·CH3OH, has its metal atom N,O-chelated by the deprotonated 2-methyl-8-hy­droxy­quinoline ligand. The hy­droxy unit of the cation is a hydrogen-bond donor to the alkoxide O atom of the tetra­hedrally coordinated anion, whereas the ammonium cation is a hydrogen-bond donor to the methano­lic O atom. In the crystal, adjacent ion pairs and solvent mol­ecules are linked by a methanol–halogen O—H⋯Br hydrogen bond, generating a chain running along the a axis.

Related literature

For the isostructural chloro analog, see: Sattarzadeh et al. (2009[Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H10NO)[ZnBr2(C10H8NO)]·CH4O

  • Mr = 575.60

  • Monoclinic, P 21 /n

  • a = 9.9704 (8) Å

  • b = 13.9954 (11) Å

  • c = 15.8815 (12) Å

  • β = 105.815 (1)°

  • V = 2132.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.93 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.278, Tmax = 0.372

  • 19908 measured reflections

  • 4889 independent reflections

  • 4044 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.057

  • S = 1.03

  • 4889 reflections

  • 267 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.84 1.71 2.546 (2) 172
O3—H3⋯Br1i 0.84 2.48 3.2941 (17) 163
N2—H2n⋯O3 0.86 1.91 2.739 (3) 162
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

An earlier study reported C10H10NO+.ZnCI2(C10H8NO).CH3OH, which feature cations, tetrahedral anions and solvent molecules linked by N···O, O···O and O···Cl hydrogen bonds into a linear chain (Sattarzadeh et al., 2009). The present bromide analog (Scheme I, Fig. 1) is isostructural, the two compounds displaying matching cell dimensions. The hydroxy unit of the cation is hydrogen-bond donor to the alkoxide O atom of the tetrahedrally coordinated anion whereas the ammonium unit is hydrogen-bond donor to the methanolic O atom. Adjacent ion-pairs and solvent molecules are linked by a O–Hmethanol···Br hydrogen bond to generate a linear chain running along the a-axis of the monoclinic unit cell.

Related literature top

For the isostructural chloro analog, see: Sattarzadeh et al. (2009).

Experimental top

Zinc bromide (0.10 g, 0.75 mmol) and 2-methyl-8-hydroxyquinoline (0.24 g, 1.5 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Crystals were collected from the side arm after several days.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.95–0.98, N–H 0.86 and O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C,N,O).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
8-Hydroxy-2-methylquinolinium dibromido(2-methylquinolin-8-olato-κ2N,O)zincate(II) methanol monosolvate top
Crystal data top
(C10H10NO)[ZnBr2(C10H8NO)]·CH4OF(000) = 1144
Mr = 575.60Dx = 1.793 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6099 reflections
a = 9.9704 (8) Åθ = 2.6–28.2°
b = 13.9954 (11) ŵ = 4.93 mm1
c = 15.8815 (12) ÅT = 100 K
β = 105.815 (1)°Prism, yellow
V = 2132.2 (3) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
4889 independent reflections
Radiation source: fine-focus sealed tube4044 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.278, Tmax = 0.372k = 1818
19908 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0224P)2 + 0.8543P]
where P = (Fo2 + 2Fc2)/3
4889 reflections(Δ/σ)max = 0.001
267 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
(C10H10NO)[ZnBr2(C10H8NO)]·CH4OV = 2132.2 (3) Å3
Mr = 575.60Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.9704 (8) ŵ = 4.93 mm1
b = 13.9954 (11) ÅT = 100 K
c = 15.8815 (12) Å0.35 × 0.30 × 0.25 mm
β = 105.815 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4889 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4044 reflections with I > 2σ(I)
Tmin = 0.278, Tmax = 0.372Rint = 0.040
19908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.03Δρmax = 0.49 e Å3
4889 reflectionsΔρmin = 0.37 e Å3
267 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.00294 (2)0.228905 (17)0.184698 (15)0.01708 (6)
Br21.12097 (3)0.497149 (17)0.227454 (16)0.02018 (7)
Zn10.99449 (3)0.369708 (19)0.266658 (17)0.01403 (7)
O10.79813 (16)0.40171 (12)0.25997 (10)0.0166 (4)
O20.58392 (16)0.36051 (12)0.13590 (10)0.0155 (3)
H20.65900.37180.17410.023*
O30.30839 (18)0.27619 (14)0.15184 (11)0.0255 (4)
H30.22400.26600.14820.038*
N11.01652 (19)0.36488 (13)0.39831 (12)0.0120 (4)
N20.35285 (19)0.35026 (13)0.00209 (12)0.0129 (4)
H2N0.35400.33480.05470.015*
C10.8930 (2)0.38963 (15)0.41453 (15)0.0124 (5)
C20.7784 (2)0.40932 (16)0.33955 (15)0.0141 (5)
C30.6537 (2)0.43641 (17)0.35416 (16)0.0168 (5)
H3a0.57620.45050.30580.020*
C40.6399 (3)0.44345 (17)0.43988 (16)0.0181 (5)
H40.55250.46190.44800.022*
C50.7483 (3)0.42455 (17)0.51175 (16)0.0185 (5)
H50.73620.42950.56890.022*
C60.8786 (2)0.39750 (16)0.50003 (15)0.0143 (5)
C70.9995 (3)0.37848 (16)0.56932 (15)0.0169 (5)
H70.99520.38260.62830.020*
C81.1213 (3)0.35443 (16)0.55191 (15)0.0157 (5)
H81.20160.34150.59870.019*
C91.1288 (2)0.34858 (15)0.46464 (15)0.0140 (5)
C101.2609 (2)0.32358 (17)0.44237 (16)0.0177 (5)
H10A1.29130.37810.41350.027*
H10B1.24470.26830.40300.027*
H10C1.33320.30790.49610.027*
C110.4758 (2)0.37589 (15)0.01425 (15)0.0124 (5)
C120.5986 (2)0.38162 (15)0.05651 (15)0.0127 (5)
C130.7208 (2)0.40884 (16)0.03862 (15)0.0144 (5)
H130.80440.41290.08470.017*
C140.7223 (2)0.43073 (16)0.04781 (16)0.0157 (5)
H140.80760.44940.05880.019*
C150.6052 (2)0.42585 (16)0.11591 (15)0.0157 (5)
H150.60900.44130.17350.019*
C160.4782 (2)0.39768 (15)0.10042 (15)0.0133 (5)
C170.3494 (2)0.39320 (16)0.16628 (16)0.0164 (5)
H170.34700.40670.22530.020*
C180.2294 (3)0.36989 (16)0.14609 (16)0.0178 (5)
H180.14380.36840.19080.021*
C190.2312 (2)0.34802 (16)0.05948 (15)0.0152 (5)
C200.1026 (2)0.32331 (18)0.03312 (17)0.0212 (5)
H20A0.10080.35980.01920.032*
H20B0.10250.25480.02040.032*
H20C0.02020.33920.08090.032*
C210.3867 (3)0.27543 (19)0.24135 (16)0.0218 (5)
H21A0.48640.27420.24520.033*
H21B0.36230.21860.27010.033*
H21C0.36520.33290.27040.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01686 (12)0.02067 (12)0.01393 (12)0.00406 (9)0.00458 (9)0.00180 (9)
Br20.02141 (13)0.02021 (12)0.02170 (14)0.00056 (10)0.01060 (11)0.00474 (10)
Zn10.01209 (14)0.02082 (14)0.00922 (14)0.00032 (11)0.00298 (10)0.00126 (11)
O10.0102 (8)0.0304 (9)0.0080 (8)0.0014 (7)0.0003 (6)0.0007 (7)
O20.0124 (8)0.0244 (9)0.0078 (8)0.0009 (7)0.0005 (6)0.0012 (7)
O30.0159 (9)0.0454 (12)0.0159 (9)0.0032 (9)0.0056 (7)0.0036 (8)
N10.0126 (9)0.0126 (9)0.0103 (9)0.0021 (8)0.0024 (8)0.0006 (7)
N20.0143 (10)0.0131 (9)0.0103 (10)0.0007 (8)0.0019 (8)0.0002 (7)
C10.0154 (12)0.0108 (10)0.0119 (11)0.0042 (9)0.0051 (9)0.0005 (8)
C20.0157 (12)0.0144 (11)0.0119 (12)0.0035 (9)0.0032 (9)0.0000 (9)
C30.0130 (11)0.0203 (12)0.0154 (12)0.0033 (9)0.0011 (10)0.0006 (9)
C40.0150 (12)0.0197 (12)0.0217 (13)0.0031 (10)0.0084 (10)0.0042 (10)
C50.0270 (14)0.0165 (12)0.0152 (12)0.0053 (10)0.0113 (11)0.0031 (10)
C60.0189 (12)0.0124 (11)0.0116 (11)0.0042 (9)0.0043 (10)0.0006 (9)
C70.0262 (13)0.0152 (12)0.0090 (12)0.0049 (10)0.0045 (10)0.0006 (9)
C80.0197 (12)0.0131 (11)0.0120 (12)0.0016 (9)0.0003 (10)0.0007 (9)
C90.0177 (12)0.0097 (11)0.0144 (12)0.0032 (9)0.0039 (10)0.0010 (9)
C100.0158 (12)0.0202 (12)0.0153 (13)0.0008 (10)0.0013 (10)0.0005 (10)
C110.0160 (12)0.0095 (10)0.0118 (11)0.0033 (9)0.0041 (9)0.0007 (8)
C120.0153 (11)0.0120 (11)0.0100 (11)0.0022 (9)0.0018 (9)0.0016 (8)
C130.0114 (11)0.0165 (11)0.0140 (12)0.0022 (9)0.0012 (9)0.0018 (9)
C140.0142 (12)0.0155 (11)0.0199 (13)0.0023 (9)0.0090 (10)0.0004 (9)
C150.0212 (13)0.0161 (11)0.0112 (12)0.0023 (10)0.0065 (10)0.0001 (9)
C160.0168 (12)0.0108 (10)0.0115 (11)0.0049 (9)0.0021 (9)0.0008 (9)
C170.0217 (13)0.0139 (11)0.0134 (12)0.0052 (9)0.0042 (10)0.0012 (9)
C180.0175 (12)0.0186 (12)0.0144 (12)0.0021 (10)0.0009 (10)0.0022 (9)
C190.0152 (12)0.0114 (11)0.0175 (13)0.0007 (9)0.0017 (10)0.0005 (9)
C200.0145 (12)0.0254 (13)0.0220 (14)0.0006 (10)0.0023 (11)0.0035 (11)
C210.0207 (13)0.0275 (14)0.0160 (13)0.0011 (11)0.0032 (10)0.0022 (10)
Geometric parameters (Å, º) top
Br1—Zn12.3758 (4)C8—H80.9500
Br2—Zn12.3637 (4)C9—C101.496 (3)
Zn1—O11.9828 (16)C10—H10A0.9800
Zn1—N12.0431 (19)C10—H10B0.9800
O1—C21.335 (3)C10—H10C0.9800
O2—C121.341 (3)C11—C161.409 (3)
O2—H20.8400C11—C121.421 (3)
O3—C211.423 (3)C12—C131.378 (3)
O3—H30.8400C13—C141.411 (3)
N1—C91.331 (3)C13—H130.9500
N1—C11.370 (3)C14—C151.359 (3)
N2—C191.335 (3)C14—H140.9500
N2—C111.368 (3)C15—C161.411 (3)
N2—H2N0.8600C15—H150.9500
C1—C61.408 (3)C16—C171.419 (3)
C1—C21.434 (3)C17—C181.360 (3)
C2—C31.379 (3)C17—H170.9500
C3—C41.409 (3)C18—C191.404 (3)
C3—H3a0.9500C18—H180.9500
C4—C51.367 (3)C19—C201.494 (3)
C4—H40.9500C20—H20A0.9800
C5—C61.414 (3)C20—H20B0.9800
C5—H50.9500C20—H20C0.9800
C6—C71.418 (3)C21—H21A0.9800
C7—C81.359 (3)C21—H21B0.9800
C7—H70.9500C21—H21C0.9800
C8—C91.411 (3)
O1—Zn1—N183.77 (7)H10A—C10—H10B109.5
O1—Zn1—Br2113.91 (5)C9—C10—H10C109.5
N1—Zn1—Br2112.22 (5)H10A—C10—H10C109.5
O1—Zn1—Br1109.87 (5)H10B—C10—H10C109.5
N1—Zn1—Br1121.55 (5)N2—C11—C16119.6 (2)
Br2—Zn1—Br1112.362 (14)N2—C11—C12119.2 (2)
C2—O1—Zn1111.41 (13)C16—C11—C12121.1 (2)
C12—O2—H2109.5O2—C12—C13125.7 (2)
C21—O3—H3109.5O2—C12—C11116.1 (2)
C9—N1—C1119.98 (19)C13—C12—C11118.2 (2)
C9—N1—Zn1130.41 (16)C12—C13—C14120.4 (2)
C1—N1—Zn1109.43 (14)C12—C13—H13119.8
C19—N2—C11123.3 (2)C14—C13—H13119.8
C19—N2—H2N118.3C15—C14—C13121.9 (2)
C11—N2—H2N118.3C15—C14—H14119.0
N1—C1—C6122.3 (2)C13—C14—H14119.0
N1—C1—C2116.5 (2)C14—C15—C16119.5 (2)
C6—C1—C2121.2 (2)C14—C15—H15120.3
O1—C2—C3123.6 (2)C16—C15—H15120.3
O1—C2—C1118.8 (2)C11—C16—C15118.9 (2)
C3—C2—C1117.6 (2)C11—C16—C17117.1 (2)
C2—C3—C4120.8 (2)C15—C16—C17124.0 (2)
C2—C3—H3a119.6C18—C17—C16120.9 (2)
C4—C3—H3a119.6C18—C17—H17119.5
C5—C4—C3122.0 (2)C16—C17—H17119.5
C5—C4—H4119.0C17—C18—C19120.4 (2)
C3—C4—H4119.0C17—C18—H18119.8
C4—C5—C6119.2 (2)C19—C18—H18119.8
C4—C5—H5120.4N2—C19—C18118.6 (2)
C6—C5—H5120.4N2—C19—C20118.6 (2)
C1—C6—C5119.1 (2)C18—C19—C20122.8 (2)
C1—C6—C7116.5 (2)C19—C20—H20A109.5
C5—C6—C7124.4 (2)C19—C20—H20B109.5
C8—C7—C6120.4 (2)H20A—C20—H20B109.5
C8—C7—H7119.8C19—C20—H20C109.5
C6—C7—H7119.8H20A—C20—H20C109.5
C7—C8—C9120.3 (2)H20B—C20—H20C109.5
C7—C8—H8119.9O3—C21—H21A109.5
C9—C8—H8119.9O3—C21—H21B109.5
N1—C9—C8120.6 (2)H21A—C21—H21B109.5
N1—C9—C10117.2 (2)O3—C21—H21C109.5
C8—C9—C10122.1 (2)H21A—C21—H21C109.5
C9—C10—H10A109.5H21B—C21—H21C109.5
C9—C10—H10B109.5
N1—Zn1—O1—C23.23 (14)C6—C7—C8—C90.3 (3)
Br2—Zn1—O1—C2108.35 (14)C1—N1—C9—C81.4 (3)
Br1—Zn1—O1—C2124.58 (13)Zn1—N1—C9—C8176.10 (15)
O1—Zn1—N1—C9178.0 (2)C1—N1—C9—C10178.93 (19)
Br2—Zn1—N1—C964.7 (2)Zn1—N1—C9—C104.3 (3)
Br1—Zn1—N1—C972.5 (2)C7—C8—C9—N11.1 (3)
O1—Zn1—N1—C12.90 (14)C7—C8—C9—C10179.2 (2)
Br2—Zn1—N1—C1110.42 (13)C19—N2—C11—C162.7 (3)
Br1—Zn1—N1—C1112.43 (13)C19—N2—C11—C12176.3 (2)
C9—N1—C1—C60.9 (3)N2—C11—C12—O20.2 (3)
Zn1—N1—C1—C6176.60 (17)C16—C11—C12—O2179.15 (19)
C9—N1—C1—C2177.82 (19)N2—C11—C12—C13179.13 (19)
Zn1—N1—C1—C22.1 (2)C16—C11—C12—C130.2 (3)
Zn1—O1—C2—C3176.09 (18)O2—C12—C13—C14179.0 (2)
Zn1—O1—C2—C13.1 (2)C11—C12—C13—C140.3 (3)
N1—C1—C2—O10.6 (3)C12—C13—C14—C150.1 (3)
C6—C1—C2—O1179.3 (2)C13—C14—C15—C160.3 (3)
N1—C1—C2—C3178.6 (2)N2—C11—C16—C15178.7 (2)
C6—C1—C2—C30.1 (3)C12—C11—C16—C150.2 (3)
O1—C2—C3—C4179.7 (2)N2—C11—C16—C171.1 (3)
C1—C2—C3—C40.6 (3)C12—C11—C16—C17177.8 (2)
C2—C3—C4—C50.4 (4)C14—C15—C16—C110.4 (3)
C3—C4—C5—C60.3 (4)C14—C15—C16—C17177.9 (2)
N1—C1—C6—C5179.2 (2)C11—C16—C17—C180.8 (3)
C2—C1—C6—C50.6 (3)C15—C16—C17—C18176.8 (2)
N1—C1—C6—C70.1 (3)C16—C17—C18—C191.2 (3)
C2—C1—C6—C7178.6 (2)C11—N2—C19—C182.2 (3)
C4—C5—C6—C10.7 (3)C11—N2—C19—C20177.2 (2)
C4—C5—C6—C7178.4 (2)C17—C18—C19—N20.3 (3)
C1—C6—C7—C80.2 (3)C17—C18—C19—C20179.1 (2)
C5—C6—C7—C8178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.841.712.546 (2)172
O3—H3···Br1i0.842.483.2941 (17)163
N2—H2n···O30.861.912.739 (3)162
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula(C10H10NO)[ZnBr2(C10H8NO)]·CH4O
Mr575.60
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.9704 (8), 13.9954 (11), 15.8815 (12)
β (°) 105.815 (1)
V3)2132.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.93
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.278, 0.372
No. of measured, independent and
observed [I > 2σ(I)] reflections
19908, 4889, 4044
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.057, 1.03
No. of reflections4889
No. of parameters267
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.841.712.546 (2)172
O3—H3···Br1i0.842.483.2941 (17)163
N2—H2n···O30.861.912.739 (3)162
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds