organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-4-chloro-6-[(E)-o-tolyl­imino­meth­yl]phenol

aDepartment of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721007, People's Republic of China
*Correspondence e-mail: guojinbao2010@126.com

(Received 20 September 2010; accepted 22 September 2010; online 30 September 2010)

The title compound, C14H11BrClNO, is a Schiff base compound derived from the condensation of 3-bromo-5-chloro­salicyl­aldehyde and o-toluidine in methanol. The aromatic rings make a dihedral angle of 38.3 (1)°. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond, generating an S(6) ring.

Related literature

For Schiff bases, see: Ali et al. (2002[Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H. & Keat, T. B. (2002). J. Inorg. Biochem. 92, 141-148.]). For related structures, see: Li & Zhang (2005[Li, Z. X. & Zhang, X. L. (2005). Chin. J. Struct. Chem. 11, 1310-1313.], 2006[Li, Z.-X. & Zhang, X.-L. (2006). Acta Cryst. E62, o1738-o1739.]); Li et al. (2006[Li, Z.-X., Zhang, X.-L. & Wang, X.-L. (2006). Acta Cryst. E62, o4513-o4514.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11BrClNO

  • Mr = 324.60

  • Orthorhombic, P 21 21 21

  • a = 7.5388 (9) Å

  • b = 12.2452 (11) Å

  • c = 14.2440 (16) Å

  • V = 1314.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.32 mm−1

  • T = 298 K

  • 0.40 × 0.38 × 0.33 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.351, Tmax = 0.408

  • 5422 measured reflections

  • 2284 independent reflections

  • 1815 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.057

  • S = 1.09

  • 2284 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 938 Friedel pairs

  • Flack parameter: 0.006 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.86 2.588 (3) 147

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The roles of Schiff base compounds in biological processes have become a topic of study in recent years. Schiff base compounds have demonstrated significant biological activity and new examples are being tested for their antitumor, antimicrobial, and antiviral activity (Ali et al., 2002). In the past years, we have prepared a series of Schiff base cmpounds, and investigated their structure and properties (Li et al., 2006; Li & Zhang, 2006; Li & Zhang, 2005).

In the title compound (Fig. 1), all the bond lengths and angles are within normal value and are comparable to those observed in a similar Schiff base compound (Li & Zhang, 2005). The two aromatic rings are linked by a C N bond and enclose a dihedral angle of 38.3 (1) °. As expected, the molecule adopts a trans configuration about the C1 N1 bond. The molecular conformation is stabilized by an intramolecular O—H–N hydrogen bond (Table 1).

Related literature top

For Schiff bases, see: Ali et al. (2002). For related structures, see: Li & Zhang (2005, 2006); Li et al. (2006).

Experimental top

3-bromo-5-Chlorosalicylaldehyde (0.1 mmol, 23.5 mg) and o-toluidine (0.1 mmol, 10.7 mg) dissolved in MeOH (10 ml). The solution was stirred for half an hour and then filtered. Crystals of the title compound suitable for single-crystal X-ray analysis were recrystallized from methanol after one weeks at room temperature. The yellow block precipitate was filtered, washed with cold MeOH, and dried in vacuo for 48 h (yield 70%).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis.
2-Bromo-4-chloro-6-[(E)-o-tolyliminomethyl]phenol top
Crystal data top
C14H11BrClNODx = 1.640 Mg m3
Mr = 324.60Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2013 reflections
a = 7.5388 (9) Åθ = 2.2–23.7°
b = 12.2452 (11) ŵ = 3.32 mm1
c = 14.2440 (16) ÅT = 298 K
V = 1314.9 (2) Å3Block, yellow
Z = 40.40 × 0.38 × 0.33 mm
F(000) = 648
Data collection top
Bruker SMART CCD area-detector
diffractometer
2284 independent reflections
Radiation source: fine-focus sealed tube1815 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 88
Tmin = 0.351, Tmax = 0.408k = 1414
5422 measured reflectionsl = 168
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0039P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2284 reflectionsΔρmax = 0.25 e Å3
164 parametersΔρmin = 0.33 e Å3
0 restraintsAbsolute structure: Flack (1983), 938 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (10)
Crystal data top
C14H11BrClNOV = 1314.9 (2) Å3
Mr = 324.60Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5388 (9) ŵ = 3.32 mm1
b = 12.2452 (11) ÅT = 298 K
c = 14.2440 (16) Å0.40 × 0.38 × 0.33 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2284 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1815 reflections with I > 2σ(I)
Tmin = 0.351, Tmax = 0.408Rint = 0.031
5422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.057Δρmax = 0.25 e Å3
S = 1.09Δρmin = 0.33 e Å3
2284 reflectionsAbsolute structure: Flack (1983), 938 Friedel pairs
164 parametersAbsolute structure parameter: 0.006 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.04915 (6)0.84654 (3)0.29615 (2)0.06176 (15)
Cl10.26999 (17)1.17472 (7)0.05785 (7)0.0692 (3)
N10.1302 (3)0.6835 (2)0.05868 (17)0.0362 (7)
O10.0835 (3)0.71558 (18)0.11917 (15)0.0500 (7)
H10.09290.68040.07040.075*
C10.1777 (5)0.7832 (3)0.0667 (2)0.0388 (9)
H1A0.21360.80930.12500.047*
C20.1770 (4)0.8568 (3)0.0137 (2)0.0339 (8)
C30.1263 (4)0.8203 (3)0.1027 (2)0.0376 (9)
C40.1196 (5)0.8952 (3)0.1764 (2)0.0400 (9)
C50.1624 (5)1.0029 (3)0.1627 (2)0.0450 (10)
H50.15541.05220.21220.054*
C60.2160 (5)1.0382 (3)0.0746 (2)0.0447 (10)
C70.2229 (5)0.9665 (3)0.0010 (2)0.0408 (9)
H70.25830.99090.05790.049*
C80.1220 (5)0.6153 (3)0.1403 (2)0.0364 (9)
C90.1705 (5)0.5059 (3)0.1305 (2)0.0360 (9)
C100.1639 (5)0.4404 (3)0.2096 (3)0.0477 (9)
H100.19930.36780.20530.057*
C110.1059 (5)0.4805 (3)0.2947 (3)0.0516 (11)
H110.10140.43480.34670.062*
C120.0553 (5)0.5866 (3)0.3027 (2)0.0478 (9)
H120.01630.61330.36020.057*
C130.0618 (5)0.6549 (3)0.22552 (19)0.0415 (8)
H130.02590.72730.23090.050*
C140.2313 (6)0.4607 (3)0.0376 (2)0.0600 (12)
H14A0.25890.38450.04450.090*
H14B0.33520.49930.01710.090*
H14C0.13870.46920.00810.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0701 (3)0.0765 (3)0.03869 (18)0.0032 (3)0.0065 (2)0.0004 (2)
Cl10.1052 (9)0.0331 (5)0.0692 (6)0.0064 (6)0.0041 (6)0.0075 (5)
N10.0390 (18)0.0323 (16)0.0372 (15)0.0012 (14)0.0006 (13)0.0021 (14)
O10.064 (2)0.0434 (14)0.0423 (13)0.0024 (13)0.0035 (13)0.0011 (11)
C10.034 (2)0.045 (2)0.038 (2)0.0001 (18)0.0003 (18)0.0037 (18)
C20.035 (2)0.033 (2)0.0335 (17)0.0014 (19)0.0021 (15)0.0014 (18)
C30.033 (2)0.034 (2)0.046 (2)0.0048 (17)0.0093 (16)0.0010 (18)
C40.036 (2)0.050 (2)0.034 (2)0.0074 (18)0.0019 (16)0.0027 (17)
C50.045 (3)0.050 (2)0.040 (2)0.009 (2)0.0088 (19)0.0144 (19)
C60.045 (3)0.038 (2)0.050 (2)0.001 (2)0.0066 (19)0.006 (2)
C70.045 (3)0.041 (2)0.0354 (19)0.002 (2)0.0011 (17)0.0011 (18)
C80.038 (2)0.036 (2)0.0354 (19)0.0042 (16)0.0018 (16)0.0049 (16)
C90.039 (2)0.030 (2)0.0396 (19)0.0054 (18)0.0004 (18)0.0001 (17)
C100.052 (3)0.033 (2)0.058 (2)0.0044 (18)0.001 (2)0.004 (2)
C110.063 (3)0.051 (3)0.041 (2)0.010 (2)0.006 (2)0.017 (2)
C120.054 (3)0.053 (2)0.0363 (19)0.012 (2)0.005 (2)0.0002 (19)
C130.049 (2)0.0355 (19)0.0402 (18)0.002 (2)0.0055 (17)0.0007 (17)
C140.075 (3)0.050 (2)0.055 (2)0.000 (3)0.015 (2)0.000 (2)
Geometric parameters (Å, º) top
Br1—C41.883 (3)C7—H70.9300
Cl1—C61.737 (4)C8—C131.383 (4)
N1—C11.277 (4)C8—C91.395 (4)
N1—C81.433 (4)C9—C101.385 (4)
O1—C31.343 (4)C9—C141.506 (5)
O1—H10.8200C10—C111.378 (5)
C1—C21.458 (4)C10—H100.9300
C1—H1A0.9300C11—C121.359 (5)
C2—C71.398 (5)C11—H110.9300
C2—C31.398 (4)C12—C131.382 (4)
C3—C41.394 (4)C12—H120.9300
C4—C51.373 (5)C13—H130.9300
C5—C61.386 (4)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C71.368 (4)C14—H14C0.9600
C1—N1—C8119.8 (3)C13—C8—N1121.5 (3)
C3—O1—H1109.5C9—C8—N1117.8 (3)
N1—C1—C2121.3 (3)C10—C9—C8117.7 (3)
N1—C1—H1A119.3C10—C9—C14120.8 (3)
C2—C1—H1A119.3C8—C9—C14121.4 (3)
C7—C2—C3119.4 (3)C11—C10—C9121.3 (3)
C7—C2—C1119.5 (3)C11—C10—H10119.3
C3—C2—C1121.1 (3)C9—C10—H10119.3
O1—C3—C4119.2 (3)C12—C11—C10120.2 (3)
O1—C3—C2121.9 (3)C12—C11—H11119.9
C4—C3—C2118.9 (3)C10—C11—H11119.9
C5—C4—C3121.0 (3)C11—C12—C13120.1 (3)
C5—C4—Br1120.0 (3)C11—C12—H12119.9
C3—C4—Br1119.0 (3)C13—C12—H12119.9
C4—C5—C6119.8 (3)C12—C13—C8119.8 (3)
C4—C5—H5120.1C12—C13—H13120.1
C6—C5—H5120.1C8—C13—H13120.1
C7—C6—C5120.3 (3)C9—C14—H14A109.5
C7—C6—Cl1120.2 (3)C9—C14—H14B109.5
C5—C6—Cl1119.5 (3)H14A—C14—H14B109.5
C6—C7—C2120.5 (3)C9—C14—H14C109.5
C6—C7—H7119.7H14A—C14—H14C109.5
C2—C7—H7119.7H14B—C14—H14C109.5
C13—C8—C9120.7 (3)
C8—N1—C1—C2176.1 (3)Cl1—C6—C7—C2179.0 (3)
N1—C1—C2—C7177.3 (3)C3—C2—C7—C60.9 (5)
N1—C1—C2—C30.9 (5)C1—C2—C7—C6177.3 (3)
C7—C2—C3—O1179.0 (3)C1—N1—C8—C1338.4 (5)
C1—C2—C3—O12.8 (5)C1—N1—C8—C9144.0 (3)
C7—C2—C3—C41.3 (5)C13—C8—C9—C102.8 (5)
C1—C2—C3—C4176.9 (3)N1—C8—C9—C10179.5 (3)
O1—C3—C4—C5180.0 (3)C13—C8—C9—C14178.3 (3)
C2—C3—C4—C50.3 (5)N1—C8—C9—C140.6 (5)
O1—C3—C4—Br10.4 (4)C8—C9—C10—C112.1 (5)
C2—C3—C4—Br1179.4 (3)C14—C9—C10—C11179.0 (3)
C3—C4—C5—C61.1 (5)C9—C10—C11—C120.7 (6)
Br1—C4—C5—C6179.3 (3)C10—C11—C12—C130.0 (6)
C4—C5—C6—C71.4 (6)C11—C12—C13—C80.8 (6)
C4—C5—C6—Cl1180.0 (3)C9—C8—C13—C122.2 (6)
C5—C6—C7—C20.4 (5)N1—C8—C13—C12179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.588 (3)147

Experimental details

Crystal data
Chemical formulaC14H11BrClNO
Mr324.60
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.5388 (9), 12.2452 (11), 14.2440 (16)
V3)1314.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.32
Crystal size (mm)0.40 × 0.38 × 0.33
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.351, 0.408
No. of measured, independent and
observed [I > 2σ(I)] reflections
5422, 2284, 1815
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.057, 1.09
No. of reflections2284
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.33
Absolute structureFlack (1983), 938 Friedel pairs
Absolute structure parameter0.006 (10)

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.588 (3)147
 

Acknowledgements

This research was supported by a research grant (No. 09JS068) from the Phytochemistry Key Laboratory of Shaanxi Province.

References

First citationAli, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H. & Keat, T. B. (2002). J. Inorg. Biochem. 92, 141–148.  CSD CrossRef PubMed Google Scholar
First citationBruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, Z. X. & Zhang, X. L. (2005). Chin. J. Struct. Chem. 11, 1310–1313.  Google Scholar
First citationLi, Z.-X. & Zhang, X.-L. (2006). Acta Cryst. E62, o1738–o1739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Z.-X., Zhang, X.-L. & Wang, X.-L. (2006). Acta Cryst. E62, o4513–o4514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds