organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-9-[(4-methyl­phen­yl)sulfon­yl]thio­pyrano[3,4-b]indole-3(9H)-thione

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and bLaboratoire de Chimie Moléculaire et Thio-organique, UMR 6507, ENSICAEN, 6 Boulevard Maréchal Juin, 14050 Caen, France
*Correspondence e-mail: detert@uni-mainz.de

(Received 23 September 2010; accepted 24 September 2010; online 30 September 2010)

The title compound, C19H15NO2S3, is the first example of a dithia analogue of pyrano[3,4-b]indolone. The almost planar thio­pyrano­indole­thione ring system (r.m.s. deviation for all non-H atoms = 0.030 Å) makes a dihedral angle of 80.70 (8)° with the p-tolyl ring. In the crystal, mol­ecules are connected via C—H⋯O hydrogen bonds into two chains along the b axis. These chains are connected via ππ inter­actions between symmetry-related thio­pyrano­indole­thione ring systems [centroid–centroid distance = 3.588 (1) Å].

Related literature

The title compound was synthesized as part of a larger project focusing on metal-catalysed transformations of tethered alkynyl-ynamides to carbazoles (Witulski & Alayrac, 2002[Witulski, B. & Alayrac, C. (2002). Angew. Chem. Int. Ed. 41, 3281-3284.]) and to carbolines and other heteroannulated indoles (Nissen, 2008[Nissen, F. (2008). PhD thesis, University Mainz, Germany.]; Dassonneville, 2010[Dassonneville, B. (2010). PhD thesis, University Mainz, Germany.]). The reactivity of such an annulated thio­pyran­othione could be similar to the respective pyrano[3,4-b]indolone, well known as stable equivalents of indoloquinodimethanes (Plieninger et al., 1964[Plieninger, H., Mueller, W. & Weinerth, K. (1964). Chem. Ber. 97, 667-681.]) and valuable inter­mediates for the synthesis of various heteroannulated indoles, see, for example: Livadiotou et al. (2009[Livadiotou, D., Tsoleridis, C. A. & Stephanidou-Stephanatou, J. (2009). Synthesis, 15, 2579-2583.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15NO2S3

  • Mr = 385.50

  • Monoclinic, P 21 /n

  • a = 13.2530 (4) Å

  • b = 8.2423 (3) Å

  • c = 15.4500 (16) Å

  • β = 96.124 (3)°

  • V = 1678.05 (19) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.15 mm−1

  • T = 193 K

  • 0.60 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: numerical (de Meulenaer & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.]) Tmin = 0.42, Tmax = 0.70

  • 3167 measured reflections

  • 3167 independent reflections

  • 2714 reflections with I > 2σ(I)

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.04

  • 3167 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O15i 0.95 2.50 3.387 (3) 155
C22—H22⋯O16ii 0.95 2.59 3.116 (3) 116
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound is formed via a rhodium-catalyzed [2 + 2+2] cycloaddition of a tethered alkynyl-ynamide and carbon disulfide. This unprecedented thiopyranoindolethione is obtained as dark violet crystals. The crystal structure of the title compound forms a network built by two chains along the b axis connected via hydrogen bonds C21—H21···O15 (2.50 Å) and C22—H21···O16 (2.59 Å). These chains are connected via π-π-interactions of two thiopyranoindolethiones related by a center of symmetry [distance between centroids 3.588 (1) Å].

The tricyclic framework is essentially planar with torsion angles of about 2.1 ° or less in the benzene moiety and up to 5.9 ° in the thiopyrane unit. The torsion angle around the biphenyl bond amounts to 176.0 (2) ° (C6,C7,C8,C13). Whereas the N—C bonds in the pyrrole ring are nearly identical, the C—C bond lengths increase in the sequence C2—C7, C7—C8, C8—C13. With 1.459 (3) Å, the biphenyl bond C7—C8 is significantly longer than C2—C3 (1.384 (3) Å) and C8—C13 (1.443 (3) Å). The thiocarbonyl bond length is about 1.668 (2) Å, much shorter than the C—S single bonds with 1.729 (2) Å (C10—S11) and 1.702 (2) Å (S11—C12). Due to steric repulsion of methyl and thiocarbonyl, the S24—C10—S11 bond angle is reduced to 113.07 (13) ° and the C10—S11—C12 bond angle is only 107.07 (11) °.

Related literature top

The title compound was synthesized as part of a larger project focusing on metal-catalysed transformations of tethered alkynyl-ynamides to carbazoles (Witulski & Alayrac, 2002) and to carbolines and other heteroannulated indoles (Nissen, 2008; Dassonneville, 2010). The reactivity of such an annulated thiopyranothione could be similar to the respective pyrano[3,4-b]indolone, well known as stable equivalents of indoloquinodimethanes (Plieninger et al., 1964) and valuable intermediates for the synthesis of various heteroannulated indoles, see, for example: Livadiotou et al. (2009).

Experimental top

The title compound was prepared from 2-(propynyl)-N-ethynyl-N-[(4-methylphenyl)sulfonyl)]benzenamine (Witulski & Alayrac, 2002)) as follows: Under Argon (Ar), BINAP (15.6 mg, 0.025 mmol, 10 mol%) and [RhCl(C8H14)2]2 (6.1 mg, 0.0087 mmol, 3.5 mol%) are dissolved in degassed CH2Cl2 (3.0 ml) in a Schlenk tube, and the mixture is stirred at room temperature for 5 min. H2 is then introduced to the resulting solution. After stirring at room temperature for 0.5 h, the resulting solution is concentrated to dryness and the residue dissolved in dichloroethane (DCE) (3.0 ml). To this solution is added dropwise over 1 min a solution of the alkynyl-ynamide (0.25 mmol) and CS2 (150 µL, 2.5 mmol, 10 equiv.) in DCE (5.0 ml). Undissolved substrate is dissolved by addition of DCE (2x1.0 ml), added to the solution and the mixture is heated to 353 K. After completion of the reaction (3 h, TLC), the solvent is removed and the residue is purified by column chromatography (Al2O3, Petroleum ether/Ethyl acetate, 95/5). Violet crystals of the title compound suitable for X-ray analysis were obtained by crystallization from CH2Cl2/Petroleum ether.

Refinement top

Hydrogen atoms were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98 Å (methyl groups). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the packing diagram showing the hydrogen bonds and the π-π-interactions.
4-Methyl-9-[(4-methylphenyl)sulfonyl]thiopyrano[3,4-b]indole- 3(9H)-thione top
Crystal data top
C19H15NO2S3F(000) = 800
Mr = 385.50Dx = 1.526 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 13.2530 (4) Åθ = 60–70°
b = 8.2423 (3) ŵ = 4.15 mm1
c = 15.4500 (16) ÅT = 193 K
β = 96.124 (3)°Needle, violet
V = 1678.05 (19) Å30.60 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2714 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.000
Graphite monochromatorθmax = 69.9°, θmin = 4.2°
ω/2θ scansh = 016
Absorption correction: numerical
(de Meulenaer & Tompa, 1965)
k = 010
Tmin = 0.42, Tmax = 0.70l = 1818
3167 measured reflections3 standard reflections every 60 min
3167 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.053P)2 + 0.8161P]
where P = (Fo2 + 2Fc2)/3
3167 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C19H15NO2S3V = 1678.05 (19) Å3
Mr = 385.50Z = 4
Monoclinic, P21/nCu Kα radiation
a = 13.2530 (4) ŵ = 4.15 mm1
b = 8.2423 (3) ÅT = 193 K
c = 15.4500 (16) Å0.60 × 0.10 × 0.10 mm
β = 96.124 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2714 reflections with I > 2σ(I)
Absorption correction: numerical
(de Meulenaer & Tompa, 1965)
Rint = 0.000
Tmin = 0.42, Tmax = 0.703 standard reflections every 60 min
3167 measured reflections intensity decay: 2%
3167 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 0.42 e Å3
3167 reflectionsΔρmin = 0.36 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.30393 (13)0.4410 (2)0.44134 (12)0.0228 (4)
C20.29369 (15)0.4317 (3)0.53192 (14)0.0230 (4)
C30.21571 (17)0.4930 (3)0.57513 (16)0.0293 (5)
H30.16110.55180.54510.035*
C40.22049 (18)0.4654 (3)0.66365 (16)0.0336 (5)
H40.16830.50640.69520.040*
C50.30000 (19)0.3790 (3)0.70717 (16)0.0346 (5)
H50.30050.35960.76780.042*
C60.37865 (18)0.3204 (3)0.66405 (15)0.0309 (5)
H60.43330.26250.69470.037*
C70.37639 (15)0.3478 (2)0.57428 (14)0.0222 (4)
C80.44351 (15)0.3017 (2)0.50942 (14)0.0211 (4)
C90.53663 (16)0.2244 (3)0.52013 (15)0.0243 (4)
C100.58968 (16)0.1801 (3)0.44741 (16)0.0263 (5)
S110.54433 (4)0.23832 (8)0.34297 (4)0.03407 (17)
C120.43366 (17)0.3397 (3)0.34993 (15)0.0303 (5)
H120.39840.38470.29870.036*
C130.39482 (15)0.3576 (2)0.42680 (14)0.0217 (4)
S140.20305 (4)0.46546 (6)0.36740 (4)0.02438 (15)
O150.15035 (12)0.60556 (19)0.39288 (12)0.0353 (4)
O160.24145 (12)0.4613 (2)0.28475 (11)0.0367 (4)
C170.12629 (15)0.2950 (2)0.37845 (13)0.0194 (4)
C180.02728 (16)0.3153 (3)0.39707 (15)0.0268 (5)
H180.00180.42050.40720.032*
C190.03435 (16)0.1799 (3)0.40080 (15)0.0276 (5)
H190.10230.19310.41370.033*
C200.00193 (16)0.0253 (3)0.38587 (14)0.0238 (4)
C210.10251 (16)0.0078 (3)0.36982 (14)0.0254 (5)
H210.12880.09770.36190.031*
C220.16513 (16)0.1414 (3)0.36515 (14)0.0252 (5)
H220.23350.12830.35310.030*
C230.06630 (18)0.1206 (3)0.38685 (16)0.0301 (5)
H23A0.10580.11360.43680.045*
H23B0.02500.21950.39140.045*
H23C0.11250.12360.33290.045*
S240.69645 (4)0.07193 (8)0.45140 (5)0.04028 (18)
C250.58643 (19)0.1818 (3)0.60888 (17)0.0365 (6)
H25A0.58440.27580.64750.055*
H25B0.65720.15090.60480.055*
H25C0.55030.09080.63240.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0188 (8)0.0218 (9)0.0278 (9)0.0008 (7)0.0021 (7)0.0015 (7)
C20.0217 (10)0.0168 (10)0.0303 (11)0.0057 (8)0.0021 (8)0.0027 (8)
C30.0239 (11)0.0226 (11)0.0419 (13)0.0002 (9)0.0058 (9)0.0042 (10)
C40.0323 (12)0.0306 (13)0.0397 (13)0.0057 (10)0.0124 (10)0.0098 (10)
C50.0410 (13)0.0341 (13)0.0299 (12)0.0074 (11)0.0089 (10)0.0040 (10)
C60.0328 (12)0.0296 (12)0.0300 (11)0.0031 (10)0.0023 (9)0.0013 (10)
C70.0225 (10)0.0144 (10)0.0295 (11)0.0048 (8)0.0021 (8)0.0003 (8)
C80.0215 (10)0.0142 (9)0.0276 (10)0.0039 (8)0.0021 (8)0.0010 (8)
C90.0207 (10)0.0166 (10)0.0354 (11)0.0020 (8)0.0014 (8)0.0027 (9)
C100.0192 (10)0.0168 (10)0.0435 (13)0.0028 (8)0.0057 (9)0.0016 (9)
S110.0296 (3)0.0377 (3)0.0369 (3)0.0052 (2)0.0126 (2)0.0018 (3)
C120.0257 (11)0.0360 (13)0.0296 (11)0.0038 (10)0.0044 (9)0.0049 (10)
C130.0185 (9)0.0172 (10)0.0293 (11)0.0017 (8)0.0020 (8)0.0021 (8)
S140.0203 (3)0.0180 (3)0.0340 (3)0.00007 (19)0.0006 (2)0.0073 (2)
O150.0286 (8)0.0155 (8)0.0602 (11)0.0028 (7)0.0026 (8)0.0043 (7)
O160.0284 (8)0.0483 (11)0.0328 (9)0.0043 (8)0.0003 (7)0.0169 (8)
C170.0197 (9)0.0135 (10)0.0245 (10)0.0000 (8)0.0005 (8)0.0010 (8)
C180.0218 (10)0.0175 (11)0.0408 (12)0.0042 (8)0.0027 (9)0.0034 (9)
C190.0217 (10)0.0225 (11)0.0394 (12)0.0003 (9)0.0066 (9)0.0045 (9)
C200.0273 (11)0.0193 (11)0.0241 (10)0.0005 (9)0.0006 (8)0.0012 (8)
C210.0295 (11)0.0158 (10)0.0305 (11)0.0054 (9)0.0008 (9)0.0043 (9)
C220.0224 (10)0.0233 (11)0.0301 (11)0.0047 (9)0.0045 (8)0.0014 (9)
C230.0346 (12)0.0206 (11)0.0345 (12)0.0052 (9)0.0011 (9)0.0017 (9)
S240.0255 (3)0.0312 (3)0.0654 (4)0.0079 (2)0.0110 (3)0.0038 (3)
C250.0316 (12)0.0363 (14)0.0401 (13)0.0056 (11)0.0034 (10)0.0049 (11)
Geometric parameters (Å, º) top
N1—C21.422 (3)C17—C221.390 (3)
N1—C131.425 (3)C18—C191.388 (3)
N1—S141.6756 (18)C19—C201.390 (3)
C2—C31.384 (3)C20—C211.389 (3)
C2—C71.398 (3)C20—C231.505 (3)
C3—C41.381 (3)C21—C221.385 (3)
C4—C51.385 (4)C3—H30.9500
C5—C61.383 (3)C4—H40.9500
C6—C71.403 (3)C5—H50.9500
C7—C81.459 (3)C6—H60.9500
C8—C91.383 (3)C12—H120.9500
C8—C131.443 (3)C18—H180.9500
C9—C101.435 (3)C19—H190.9500
C9—C251.499 (3)C21—H210.9500
C10—S241.668 (2)C22—H220.9500
C10—S111.729 (2)C23—H23A0.9800
S11—C121.702 (2)C23—H23B0.9800
C12—C131.352 (3)C23—H23C0.9800
S14—O161.4245 (18)C25—H25A0.9800
S14—O151.4265 (17)C25—H25B0.9800
S14—C171.754 (2)C25—H25C0.9800
C17—C181.383 (3)
C2—N1—C13107.46 (17)C18—C19—C20121.0 (2)
C2—N1—S14121.62 (14)C21—C20—C19118.7 (2)
C13—N1—S14125.24 (15)C21—C20—C23120.5 (2)
C3—C2—C7122.9 (2)C19—C20—C23120.8 (2)
C3—C2—N1127.5 (2)C22—C21—C20121.2 (2)
C7—C2—N1109.56 (18)C21—C22—C17118.86 (19)
C4—C3—C2117.4 (2)C2—C3—H3121.00
C3—C4—C5121.2 (2)C4—C3—H3121.00
C6—C5—C4121.3 (2)C3—C4—H4119.00
C5—C6—C7118.8 (2)C5—C4—H4119.00
C2—C7—C6118.4 (2)C4—C5—H5119.00
C2—C7—C8108.18 (18)C6—C5—H5119.00
C6—C7—C8133.4 (2)C5—C6—H6121.00
C9—C8—C13124.2 (2)C7—C6—H6121.00
C9—C8—C7129.7 (2)S11—C12—H12119.00
C13—C8—C7106.06 (17)C13—C12—H12119.00
C8—C9—C10121.9 (2)C17—C18—H18120.00
C8—C9—C25121.2 (2)C19—C18—H18120.00
C10—C9—C25116.88 (19)C18—C19—H19119.00
C9—C10—S24126.28 (18)C20—C19—H19120.00
C9—C10—S11120.65 (16)C20—C21—H21119.00
S24—C10—S11113.07 (13)C22—C21—H21119.00
C12—S11—C10107.07 (11)C17—C22—H22121.00
C13—C12—S11121.37 (18)C21—C22—H22121.00
C12—C13—N1126.8 (2)C20—C23—H23A109.00
C12—C13—C8124.5 (2)C20—C23—H23B109.00
N1—C13—C8108.67 (18)C20—C23—H23C109.00
O16—S14—O15119.95 (11)H23A—C23—H23B110.00
O16—S14—N1105.83 (9)H23A—C23—H23C109.00
O15—S14—N1106.73 (10)H23B—C23—H23C109.00
O16—S14—C17109.53 (10)C9—C25—H25A110.00
O15—S14—C17108.39 (10)C9—C25—H25B109.00
N1—S14—C17105.43 (9)C9—C25—H25C109.00
C18—C17—C22121.02 (19)H25A—C25—H25B109.00
C18—C17—S14119.77 (16)H25A—C25—H25C109.00
C22—C17—S14119.17 (16)H25B—C25—H25C109.00
C17—C18—C19119.2 (2)
C13—N1—C2—C3178.6 (2)S11—C12—C13—C83.1 (3)
S14—N1—C2—C324.0 (3)C2—N1—C13—C12178.9 (2)
C13—N1—C2—C71.1 (2)S14—N1—C13—C1227.6 (3)
S14—N1—C2—C7155.80 (15)C2—N1—C13—C82.3 (2)
C7—C2—C3—C41.5 (3)S14—N1—C13—C8155.83 (15)
N1—C2—C3—C4178.3 (2)C9—C8—C13—C120.7 (3)
C2—C3—C4—C50.3 (3)C7—C8—C13—C12179.3 (2)
C3—C4—C5—C61.5 (4)C9—C8—C13—N1176.00 (19)
C4—C5—C6—C70.9 (4)C7—C8—C13—N12.6 (2)
C3—C2—C7—C62.1 (3)C2—N1—S14—O16177.20 (16)
N1—C2—C7—C6177.71 (18)C13—N1—S14—O1627.17 (19)
C3—C2—C7—C8179.74 (19)C2—N1—S14—O1553.96 (18)
N1—C2—C7—C80.5 (2)C13—N1—S14—O15156.01 (17)
C5—C6—C7—C20.8 (3)C2—N1—S14—C1761.18 (18)
C5—C6—C7—C8178.5 (2)C13—N1—S14—C1788.86 (18)
C2—C7—C8—C9176.6 (2)O16—S14—C17—C18124.30 (18)
C6—C7—C8—C95.6 (4)O15—S14—C17—C188.3 (2)
C2—C7—C8—C131.9 (2)N1—S14—C17—C18122.24 (18)
C6—C7—C8—C13176.0 (2)O16—S14—C17—C2253.38 (19)
C13—C8—C9—C105.5 (3)O15—S14—C17—C22174.07 (17)
C7—C8—C9—C10176.3 (2)N1—S14—C17—C2260.09 (19)
C13—C8—C9—C25175.0 (2)C22—C17—C18—C191.2 (3)
C7—C8—C9—C253.2 (3)S14—C17—C18—C19176.40 (17)
C8—C9—C10—S24173.91 (17)C17—C18—C19—C200.2 (3)
C25—C9—C10—S245.6 (3)C18—C19—C20—C212.1 (3)
C8—C9—C10—S115.9 (3)C18—C19—C20—C23177.8 (2)
C25—C9—C10—S11174.60 (17)C19—C20—C21—C222.5 (3)
C9—C10—S11—C122.1 (2)C23—C20—C21—C22177.3 (2)
S24—C10—S11—C12177.70 (12)C20—C21—C22—C171.2 (3)
C10—S11—C12—C132.2 (2)C18—C17—C22—C210.8 (3)
S11—C12—C13—N1179.22 (17)S14—C17—C22—C21176.89 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O15i0.952.503.387 (3)155
C22—H22···O16ii0.952.593.116 (3)116
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H15NO2S3
Mr385.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)13.2530 (4), 8.2423 (3), 15.4500 (16)
β (°) 96.124 (3)
V3)1678.05 (19)
Z4
Radiation typeCu Kα
µ (mm1)4.15
Crystal size (mm)0.60 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionNumerical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.42, 0.70
No. of measured, independent and
observed [I > 2σ(I)] reflections
3167, 3167, 2714
Rint0.000
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.04
No. of reflections3167
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.36

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O15i0.952.503.387 (3)155
C22—H22···O16ii0.952.593.116 (3)116
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDassonneville, B. (2010). PhD thesis, University Mainz, Germany.  Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationLivadiotou, D., Tsoleridis, C. A. & Stephanidou-Stephanatou, J. (2009). Synthesis, 15, 2579–2583.  Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNissen, F. (2008). PhD thesis, University Mainz, Germany.  Google Scholar
First citationPlieninger, H., Mueller, W. & Weinerth, K. (1964). Chem. Ber. 97, 667–681.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWitulski, B. & Alayrac, C. (2002). Angew. Chem. Int. Ed. 41, 3281–3284.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds