metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A dimeric zinc(II) complex: bis­­[μ-1,2-bis­­(1,2,4-triazol-4-yl)ethane-κ2N1:N1′]bis­­[dinitritozinc(II)]

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China, and bSchool of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: rong@ujs.edu.cn

(Received 12 July 2010; accepted 25 August 2010; online 4 September 2010)

The coordination geometry of the ZnII atom in the title complex, [Zn2(NO2)4(C6H8N6)2], is distorted octa­hedral, in which the ZnII atom is coordinated by two N atoms from the triazole rings of two symmetry-related 1,2-bis­(1,2,4-triazol-4-yl)ethane ligands and four O atoms from two nitrite ligands. Two ZnII atoms are bridged by two organic ligands, forming a centrosymmetric dimer. Weak C—H⋯N and C—H⋯O hydrogen bonds play an important role in the inter­molecular packing.

Related literature

For background to 1,2,4-triazole and its derivatives, see: Haasnoot (2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.]). For a related structure, see: Habit et al. (2009[Habit, H. A., Hoffmann, A., Hoppe, H. A., Steinfeld, G. & Janiak, C. (2009). Inorg. Chem. 48, 2166-2180.]). For hydrogen bonding, see: Mascal (1998[Mascal, M. (1998). Chem. Commun. pp. 303-304.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(NO2)4(C6H8N6)2]

  • Mr = 643.15

  • Monoclinic, C 2/c

  • a = 20.491 (4) Å

  • b = 6.7087 (13) Å

  • c = 17.289 (4) Å

  • β = 97.125 (5)°

  • V = 2358.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 293 K

  • 0.60 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.364, Tmax = 0.678

  • 10892 measured reflections

  • 2144 independent reflections

  • 1945 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.06

  • 2144 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N4i 2.002 (3)
Zn1—O1 2.031 (3)
Zn1—N1 2.036 (3)
Zn1—O3 2.046 (3)
Zn1—O2 2.477 (3)
Zn1—O4 2.488 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+2].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O2ii 0.97 2.53 3.396 (5) 149
C2—H2A⋯O1iii 0.97 2.49 3.417 (4) 160
C3—H3A⋯O2ii 0.93 2.66 3.412 (5) 139
C6—H6A⋯N2iv 0.93 2.39 3.314 (4) 176
Symmetry codes: (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,2,4-Triazole and its derivatives are very interesting ligands, because they combine the coordination geometry of both pyrazole and imidazole with regard to the arrangement of their three heteroatoms. A large number of mononuclear, oligonuclear and polynuclear transition metal complexes of 1,2,4-triazole derivatives have been synthesized and characterized because of their magnetic properties and novel topologies (Haasnoot, 2000).

In the present work, we report here the preparation and crystal structure of a dimeric zincII complex, namely, [Zn(btre)NO2)2]2 (I) (btre = 1,2-bis(1,2,4-triazol-4-yl)ethane.

In the complex (I), the coordination geometry of the zincII atom in the title complex, [Zn(C6H8N6)(NO2)2]2 or [Zn(btre)(NO2)2]2, where btre is µ-[1,2-bis(1,2,4-triazol-4-yl)ethane], is a distorted octahedron, in which the ZnII atom is coordinated by two N atoms from the triazole rings of two symmetry-related btre ligands and four O atoms from two NO2- ligands. Two ZnII atoms are bridged by two organic ligands to form a dimer. Each NO2- anion acts as a chelating coordination mode.

The crystal structure of (I) is built up from a neutral dimeric metallocycle. The dimer is centrosymmetric. As shown in Fig.1, in each dimer, two zincII centres are connected by two btre ligands resulting in a discrete Zn2(btre)2 18-membered binuclear metallocycle.

Each zincII centre is six-coordinated by two N atoms of btre ligands and four O atoms from two NO2- ligands (Table 1), forming a distorted octahedral geometry. Each btre exhibits a gauche conformation in (I). The N3—C1—C2—N6 torsion angle is 64.9 (4)°. The dihedral angle between the two triazole ring is 40.1 (2)°. The Zn···Zn separation via the bridging btre ligand is 7.809 (2)Å in (I), compared with the corresponding values 7.8750 (2)Å in [Zn(btre)Cl2]2 and 7.7980 (5)Å in [Zn(btre)I2]2 (Habit et al., 2009).

Weak hydrogen bonds play an important role in the formation of the crystal structure. The intermolecular packing is organized by C—H···N and C—H···O hydrogen bonds (Table 2 and Figure 2; Mascal 1998).

Related literature top

For background to 1,2,4-triazole and its derivatives, see: Haasnoot (2000). For a related structure, see: Habit et al. (2009). For hydrogen bonding, see: Mascal (1998).

Experimental top

A 10 ml aqueous solution of Zn(NO2)2 (1 mmol) was added to a tube, and a 10 ml MeOH solution of 1,2-bis(1,2,4-triazol-4-yl)ethane (btre) (1.0 mmol) was carefully added above the aqueous solution. Colourless crystal were obtained after about two weeks. Anal. Calcd. for C12H16N16O8Zn2: C, 22.41; H, 2.51; N, 34.85%. Found: C, 22.36; H, 2.44; N, 34.69%.

Refinement top

H atom were placed in idealized positions and refined as riding, with C—H distances of 0.93 (triazole) and 0.97Å (ethane), and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A dimeric structure of (I), with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: A -x + 1/2, -y - 1/2, -z21.]
[Figure 2] Fig. 2. The cell packing of (I) along [010] direction.
bis[µ-1,2-bis(1,2,4-triazol-4-yl)ethane- κ2N1:N1']bis[dinitritozinc(II)] top
Crystal data top
[Zn2(NO2)4(C6H8N6)2]F(000) = 1296
Mr = 643.15Dx = 1.811 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -c 2ycCell parameters from 4261 reflections
a = 20.491 (4) Åθ = 3.2–25.4°
b = 6.7087 (13) ŵ = 2.11 mm1
c = 17.289 (4) ÅT = 293 K
β = 97.125 (5)°Block, colorless
V = 2358.3 (8) Å30.60 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2144 independent reflections
Radiation source: fine-focus sealed tube1945 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 25.3°, θmin = 3.2°
Absorption correction: multi-scan
(Blessing, 1995, 1997)
h = 2424
Tmin = 0.364, Tmax = 0.678k = 78
10892 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0627P)2 + 2.1848P]
where P = (Fo2 + 2Fc2)/3
2144 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Zn2(NO2)4(C6H8N6)2]V = 2358.3 (8) Å3
Mr = 643.15Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.491 (4) ŵ = 2.11 mm1
b = 6.7087 (13) ÅT = 293 K
c = 17.289 (4) Å0.60 × 0.20 × 0.20 mm
β = 97.125 (5)°
Data collection top
Rigaku Mercury CCD
diffractometer
2144 independent reflections
Absorption correction: multi-scan
(Blessing, 1995, 1997)
1945 reflections with I > 2σ(I)
Tmin = 0.364, Tmax = 0.678Rint = 0.036
10892 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.06Δρmax = 0.47 e Å3
2144 reflectionsΔρmin = 0.61 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.377036 (17)0.06273 (5)0.900523 (19)0.03325 (17)
O10.42015 (16)0.3236 (5)0.8755 (2)0.0767 (10)
O20.3646 (2)0.3909 (5)0.96266 (18)0.0876 (12)
O30.40736 (13)0.1027 (4)0.81217 (16)0.0581 (7)
O40.48542 (14)0.1050 (5)0.90120 (16)0.0662 (8)
N10.28080 (13)0.0744 (4)0.85410 (15)0.0353 (6)
N20.26438 (14)0.0921 (4)0.77408 (15)0.0401 (7)
N30.17452 (13)0.0807 (4)0.83012 (15)0.0325 (6)
N40.12627 (14)0.4368 (4)0.99508 (15)0.0353 (6)
N50.17231 (16)0.4949 (5)0.94714 (18)0.0499 (8)
N60.10563 (13)0.2736 (4)0.88654 (14)0.0355 (6)
N70.4027 (2)0.4550 (5)0.9200 (2)0.0712 (11)
N80.46565 (16)0.1617 (6)0.83561 (19)0.0568 (8)
C10.10463 (16)0.0757 (5)0.8402 (2)0.0413 (8)
H1A0.08070.16680.80340.050*
H1B0.09920.12020.89240.050*
C20.07634 (16)0.1309 (6)0.82762 (19)0.0448 (8)
H2A0.02920.12540.82920.054*
H2B0.08370.17750.77630.054*
C30.22636 (17)0.0689 (5)0.88560 (19)0.0360 (7)
H3A0.22370.05840.93880.043*
C40.20115 (17)0.0957 (5)0.76274 (18)0.0392 (8)
H4A0.17670.10720.71390.047*
C50.08740 (15)0.3056 (5)0.95728 (17)0.0330 (7)
H5A0.05220.24350.97660.040*
C60.15788 (19)0.3936 (6)0.8829 (2)0.0468 (9)
H6A0.18080.40310.83990.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0323 (3)0.0385 (3)0.0298 (2)0.00378 (14)0.00707 (16)0.00015 (14)
O10.080 (2)0.0613 (18)0.098 (2)0.0275 (16)0.0486 (19)0.0208 (18)
O20.142 (4)0.071 (2)0.0574 (19)0.033 (2)0.041 (2)0.0132 (16)
O30.0422 (16)0.0766 (18)0.0542 (16)0.0062 (13)0.0013 (12)0.0270 (14)
O40.0506 (18)0.098 (2)0.0485 (16)0.0159 (16)0.0018 (13)0.0053 (15)
N10.0298 (15)0.0439 (16)0.0322 (14)0.0011 (11)0.0038 (11)0.0003 (11)
N20.0341 (16)0.0556 (17)0.0321 (14)0.0014 (13)0.0100 (12)0.0078 (12)
N30.0279 (14)0.0353 (14)0.0354 (14)0.0019 (10)0.0083 (11)0.0064 (11)
N40.0377 (15)0.0387 (15)0.0309 (14)0.0026 (11)0.0097 (12)0.0004 (11)
N50.052 (2)0.0539 (17)0.0480 (18)0.0126 (15)0.0243 (15)0.0090 (15)
N60.0336 (14)0.0440 (15)0.0293 (13)0.0075 (12)0.0056 (11)0.0035 (11)
N70.110 (3)0.0459 (19)0.062 (2)0.022 (2)0.028 (2)0.0096 (17)
N80.0402 (18)0.078 (2)0.0531 (19)0.0002 (17)0.0121 (15)0.0140 (17)
C10.0286 (17)0.056 (2)0.0415 (18)0.0098 (14)0.0106 (14)0.0181 (15)
C20.0274 (17)0.074 (2)0.0320 (17)0.0075 (17)0.0009 (13)0.0115 (17)
C30.0348 (18)0.0455 (19)0.0287 (15)0.0005 (14)0.0082 (13)0.0004 (13)
C40.0374 (19)0.0522 (19)0.0285 (16)0.0049 (15)0.0060 (14)0.0088 (14)
C50.0317 (17)0.0392 (16)0.0290 (15)0.0046 (14)0.0072 (12)0.0003 (13)
C60.053 (2)0.053 (2)0.0378 (18)0.0008 (17)0.0219 (16)0.0017 (16)
Geometric parameters (Å, º) top
Zn1—N4i2.002 (3)N4—C51.307 (4)
Zn1—O12.031 (3)N4—N51.386 (4)
Zn1—N12.036 (3)N4—Zn1i2.002 (3)
Zn1—O32.046 (3)N5—C61.304 (5)
Zn1—O22.477 (3)N6—C51.340 (4)
Zn1—O42.488 (3)N6—C61.347 (5)
O1—N71.251 (4)N6—C21.471 (4)
O2—N71.218 (5)C1—C21.508 (5)
O3—N81.276 (4)C1—H1A0.9700
O4—N81.217 (4)C1—H1B0.9700
N1—C31.301 (4)C2—H2A0.9700
N1—N21.388 (4)C2—H2B0.9700
N2—C41.286 (4)C3—H3A0.9300
N3—C31.342 (4)C4—H4A0.9300
N3—C41.350 (4)C5—H5A0.9300
N3—C11.464 (4)C6—H6A0.9300
N4i—Zn1—O1128.32 (12)C5—N6—C6105.1 (3)
N4i—Zn1—N1103.43 (11)C5—N6—C2126.9 (3)
O1—Zn1—N1107.96 (13)C6—N6—C2128.0 (3)
N4i—Zn1—O3119.46 (12)O2—N7—O1112.2 (3)
O1—Zn1—O397.34 (12)O4—N8—O3112.9 (3)
N1—Zn1—O395.48 (11)N3—C1—C2111.6 (3)
N4i—Zn1—O288.11 (11)N3—C1—H1A109.3
O1—Zn1—O252.96 (11)C2—C1—H1A109.3
N1—Zn1—O289.42 (13)N3—C1—H1B109.3
O3—Zn1—O2149.67 (12)C2—C1—H1B109.3
N4i—Zn1—O486.27 (10)H1A—C1—H1B108.0
O1—Zn1—O488.80 (12)N6—C2—C1112.5 (3)
N1—Zn1—O4147.07 (10)N6—C2—H2A109.1
O3—Zn1—O453.47 (10)C1—C2—H2A109.1
O2—Zn1—O4122.68 (12)N6—C2—H2B109.1
N7—O1—Zn1108.1 (2)C1—C2—H2B109.1
N7—O2—Zn186.7 (2)H2A—C2—H2B107.8
N8—O3—Zn1106.9 (2)N1—C3—N3110.1 (3)
N8—O4—Zn186.7 (2)N1—C3—H3A125.0
C3—N1—N2107.8 (3)N3—C3—H3A125.0
C3—N1—Zn1132.3 (2)N2—C4—N3112.0 (3)
N2—N1—Zn1120.0 (2)N2—C4—H4A124.0
C4—N2—N1105.6 (3)N3—C4—H4A124.0
C3—N3—C4104.6 (3)N4—C5—N6110.0 (3)
C3—N3—C1127.8 (3)N4—C5—H5A125.0
C4—N3—C1127.6 (3)N6—C5—H5A125.0
C5—N4—N5107.9 (3)N5—C6—N6111.6 (3)
C5—N4—Zn1i130.4 (2)N5—C6—H6A124.2
N5—N4—Zn1i121.5 (2)N6—C6—H6A124.2
C6—N5—N4105.3 (3)
N4i—Zn1—O1—N748.4 (4)O4—Zn1—N1—N255.0 (3)
N1—Zn1—O1—N776.1 (3)C3—N1—N2—C40.1 (4)
O3—Zn1—O1—N7174.4 (3)Zn1—N1—N2—C4180.0 (2)
O2—Zn1—O1—N71.1 (3)C5—N4—N5—C60.0 (4)
O4—Zn1—O1—N7132.7 (3)Zn1i—N4—N5—C6176.0 (2)
N4i—Zn1—O2—N7142.3 (3)Zn1—O2—N7—O11.5 (4)
O1—Zn1—O2—N71.1 (3)Zn1—O1—N7—O21.9 (5)
N1—Zn1—O2—N7114.3 (3)Zn1—O4—N8—O30.1 (3)
O3—Zn1—O2—N714.4 (5)Zn1—O3—N8—O40.1 (4)
O4—Zn1—O2—N757.9 (3)C3—N3—C1—C296.2 (4)
N4i—Zn1—O3—N859.3 (3)C4—N3—C1—C282.9 (4)
O1—Zn1—O3—N882.9 (3)C5—N6—C2—C184.7 (4)
N1—Zn1—O3—N8168.1 (3)C6—N6—C2—C192.2 (4)
O2—Zn1—O3—N893.6 (3)N3—C1—C2—N664.9 (4)
O4—Zn1—O3—N80.1 (2)N2—N1—C3—N30.4 (3)
N4i—Zn1—O4—N8131.5 (2)Zn1—N1—C3—N3179.7 (2)
O1—Zn1—O4—N8100.0 (3)C4—N3—C3—N10.6 (3)
N1—Zn1—O4—N822.4 (3)C1—N3—C3—N1178.7 (3)
O3—Zn1—O4—N80.1 (2)N1—N2—C4—N30.2 (4)
O2—Zn1—O4—N8143.1 (2)C3—N3—C4—N20.5 (4)
N4i—Zn1—N1—C321.0 (3)C1—N3—C4—N2178.7 (3)
O1—Zn1—N1—C3117.4 (3)N5—N4—C5—N60.1 (4)
O3—Zn1—N1—C3143.0 (3)Zn1i—N4—C5—N6175.7 (2)
O2—Zn1—N1—C367.0 (3)C6—N6—C5—N40.3 (4)
O4—Zn1—N1—C3125.2 (3)C2—N6—C5—N4177.2 (3)
N4i—Zn1—N1—N2159.2 (2)N4—N5—C6—N60.2 (4)
O1—Zn1—N1—N262.4 (2)C5—N6—C6—N50.3 (4)
O3—Zn1—N1—N237.2 (2)C2—N6—C6—N5177.1 (3)
O2—Zn1—N1—N2112.8 (2)
Symmetry code: (i) x+1/2, y1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2ii0.972.533.396 (5)149
C2—H2A···O1iii0.972.493.417 (4)160
C3—H3A···O2ii0.932.663.412 (5)139
C6—H6A···N2iv0.932.393.314 (4)176
Symmetry codes: (ii) x+1/2, y+1/2, z+2; (iii) x1/2, y1/2, z; (iv) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn2(NO2)4(C6H8N6)2]
Mr643.15
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.491 (4), 6.7087 (13), 17.289 (4)
β (°) 97.125 (5)
V3)2358.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.11
Crystal size (mm)0.60 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995, 1997)
Tmin, Tmax0.364, 0.678
No. of measured, independent and
observed [I > 2σ(I)] reflections
10892, 2144, 1945
Rint0.036
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.06
No. of reflections2144
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.61

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—N4i2.002 (3)Zn1—O32.046 (3)
Zn1—O12.031 (3)Zn1—O22.477 (3)
Zn1—N12.036 (3)Zn1—O42.488 (3)
N4i—Zn1—O1128.32 (12)N1—Zn1—O289.42 (13)
N4i—Zn1—N1103.43 (11)O3—Zn1—O2149.67 (12)
O1—Zn1—N1107.96 (13)N4i—Zn1—O486.27 (10)
N4i—Zn1—O3119.46 (12)O1—Zn1—O488.80 (12)
O1—Zn1—O397.34 (12)N1—Zn1—O4147.07 (10)
N1—Zn1—O395.48 (11)O3—Zn1—O453.47 (10)
N4i—Zn1—O288.11 (11)O2—Zn1—O4122.68 (12)
O1—Zn1—O252.96 (11)
Symmetry code: (i) x+1/2, y1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O2ii0.972.533.396 (5)149.4
C2—H2A···O1iii0.972.493.417 (4)160.1
C3—H3A···O2ii0.932.663.412 (5)138.7
C6—H6A···N2iv0.932.393.314 (4)176.1
Symmetry codes: (ii) x+1/2, y+1/2, z+2; (iii) x1/2, y1/2, z; (iv) x+1/2, y1/2, z+3/2.
 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185.  Web of Science CrossRef CAS Google Scholar
First citationHabit, H. A., Hoffmann, A., Hoppe, H. A., Steinfeld, G. & Janiak, C. (2009). Inorg. Chem. 48, 2166–2180.  Web of Science PubMed Google Scholar
First citationMascal, M. (1998). Chem. Commun. pp. 303–304.  Web of Science CrossRef Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds