organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[2-(1,3-Benzo­thia­zol-2-ylsulfan­yl)eth­yl]-1,3-oxazolidin-2-one

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and bInstitute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201305, People's Republic of China
*Correspondence e-mail: wenyyhh@126.com

(Received 21 July 2010; accepted 25 August 2010; online 4 September 2010)

The title compound, C12H12N2S2O2, consists of a benzothia­zole group and a oxazolidin-1-one linked via a flexible ethane-1,2-diyl spacer. The benzothiazole group and the oxazolidine ring are each almost planar [with maximum deviations of 0.007 (2) and 0.044 (3) Å, respectively] and make a dihedral angle of 9.35 (10)°. In the crystal structure, adjacent mol­ecules were connected through C—H⋯O and C—H⋯N hydrogen bonds, and further extended into a three-dimensional network structure through inter­molecular aromatic ππ stacking inter­actions in which the centroid–centroid distance is 3.590 (1) Å.

Related literature

For background to the applications of 2-oxazolidinones, see: Ippolito et al. (2008[Ippolito, J. A., Kanyo, Z. F., Wang, D., Franceschi, F. J., Moore, P. B., Steitz, T. A. & Duffy, E. M. (2008). J. Med. Chem. 51, 3353-3356.]); Mullera et al. (1999[Mullera, M. & Schimzb, K. L. (1999). Cell. Mol. Life Sci. 56, 280-285.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O2S2

  • Mr = 280.36

  • Triclinic, [P \overline 1]

  • a = 6.5804 (4) Å

  • b = 7.8331 (5) Å

  • c = 12.5890 (7) Å

  • α = 99.864 (5)°

  • β = 97.715 (5)°

  • γ = 97.011 (5)°

  • V = 626.49 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.83 mm−1

  • T = 293 K

  • 0.16 × 0.14 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.572, Tmax = 1.000

  • 4029 measured reflections

  • 2396 independent reflections

  • 2081 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 1.05

  • 2396 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O1i 0.97 2.58 3.466 (3) 152
C3—H3⋯O1ii 0.93 2.59 3.282 (2) 132
C5—H5⋯N1i 0.93 2.54 3.445 (2) 163
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z-1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

N-substituted 2-oxazolidinones have been widely used as antibiotics which are effective against gram-positive bacteria (Ippolito et al., 2008; Mullera et al., 1999). In this article we provide a new synthetic route of a 2-oxazolidinone derivative. Even though the reaction mechanism has not been established, the reproducibility and high yield of the reaction should prove useful for the synthesis of this type of compound.

Herein, we report the synthesis and structure of the title compound, namely 3-(2-(benzo[d]thiazol-2-ylthio)ethyl)-oxazolidin-2-one (Fig.1). As shown in Fig. 2, a two-dimensional supramolecular network was formed by hydrogen bonds (Table 1) and weak π-π stacking interactions between the phenyl rings and the thiazolyl rings of adjacent molecules with a centroid-centroid distances of 3.590 Å along b direction.

Related literature top

For background to the applications of 2-oxazolidinones, see: Ippolito et al. (2008); Mullera et al. (1999).

Experimental top

A mixture of 2-mercaptobenzothiazole (6.69 g, 0.04 mol), potassium carbonate (8.29 g, 0.06 mol) and ethanol (250 ml) was heated and stirred in a 500 ml flask. Bis(2-chloroethyl)amine hydrochloride (7.14 g, 0.04 mol, dissolved in 100 ml ethanol) was added dropwise into the flask when the mixture was heated to 353 K, and the mixture was further stired at 353 K for 8 h. After cooling, the precipitate was filtered, washed with ethanol and water, and recrystallized from ethanol to obtain a flaxen powder. Yield: 68%. 1H NMR (CDCl3, 400 MHz):3.60 (t, 2H), 3.74 (m, 4H), 4.3 (t, 2H), 7.45 (m, 2H), 7.77 (d, 1H), 7.79 (d, 1H). 13C NMR (CDCl3, 125 MHz): 31.17, 43.81, 45.58, 61.97, 121.40, 121.41, 124.55, 126.20, 135.26, 152.86, 158.40, 165.71.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation (C—H 0.95–0.99 Å), with their temperature factors were set to 1.2 times those of the equivalent isotropic temperature factors of the parent atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis CCD (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The three-dimensional structure by molecular packing, showing the hydrogen bonds as blue dashed lines, and π-π stacking interactions as red dashed lines.
3-[2-(1,3-Benzothiazol-2-ylsulfanyl)ethyl]-1,3-oxazolidin-2-one top
Crystal data top
C12H12N2O2S2Z = 2
Mr = 280.36F(000) = 292
Triclinic, P1Dx = 1.486 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 6.5804 (4) ÅCell parameters from 2669 reflections
b = 7.8331 (5) Åθ = 3.6–72.2°
c = 12.5890 (7) ŵ = 3.83 mm1
α = 99.864 (5)°T = 293 K
β = 97.715 (5)°Rhombus, colourless
γ = 97.011 (5)°0.16 × 0.14 × 0.10 mm
V = 626.49 (7) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2396 independent reflections
Radiation source: Enhance (Cu) X-ray Source2081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.0355 pixels mm-1θmax = 72.4°, θmin = 3.6°
ω scansh = 75
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2005)
k = 98
Tmin = 0.572, Tmax = 1.000l = 1515
4029 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.081P)2 + 0.008P]
where P = (Fo2 + 2Fc2)/3
2396 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C12H12N2O2S2γ = 97.011 (5)°
Mr = 280.36V = 626.49 (7) Å3
Triclinic, P1Z = 2
a = 6.5804 (4) ÅCu Kα radiation
b = 7.8331 (5) ŵ = 3.83 mm1
c = 12.5890 (7) ÅT = 293 K
α = 99.864 (5)°0.16 × 0.14 × 0.10 mm
β = 97.715 (5)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2396 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2005)
2081 reflections with I > 2σ(I)
Tmin = 0.572, Tmax = 1.000Rint = 0.020
4029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
2396 reflectionsΔρmin = 0.38 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35142 (6)0.68528 (6)0.47728 (3)0.04252 (17)
S20.03291 (7)0.79117 (6)0.57333 (4)0.04677 (17)
O10.2992 (3)1.2011 (2)0.90981 (13)0.0693 (5)
O20.6287 (3)1.1616 (2)0.95686 (12)0.0661 (4)
N10.0218 (2)0.6472 (2)0.36963 (12)0.0407 (3)
N20.4734 (2)1.0512 (2)0.78894 (12)0.0465 (4)
C10.1020 (3)0.5814 (2)0.29599 (14)0.0370 (4)
C20.0334 (3)0.5093 (3)0.18583 (15)0.0466 (4)
H20.10480.50290.15560.056*
C30.1746 (3)0.4474 (3)0.12252 (15)0.0500 (4)
H30.13010.39820.04920.060*
C40.3836 (3)0.4578 (2)0.16706 (16)0.0474 (4)
H40.47570.41520.12280.057*
C50.4548 (3)0.5301 (2)0.27549 (15)0.0424 (4)
H50.59370.53820.30500.051*
C60.3115 (3)0.5908 (2)0.33941 (14)0.0358 (3)
C70.0866 (3)0.7046 (2)0.46521 (14)0.0370 (4)
C80.1759 (3)0.8424 (2)0.68809 (14)0.0441 (4)
H8A0.11740.84410.75490.053*
H8B0.26210.75030.68240.053*
C90.3115 (3)1.0177 (2)0.69552 (15)0.0474 (4)
H9A0.37291.01660.62960.057*
H9B0.22671.11090.70140.057*
C100.6791 (3)1.0058 (3)0.78669 (19)0.0533 (5)
H10A0.75201.06680.73890.064*
H10B0.67550.88060.76420.064*
C110.7754 (4)1.0685 (4)0.9048 (2)0.0683 (6)
H11A0.80230.96980.93900.082*
H11B0.90541.14530.91060.082*
C120.4514 (3)1.1428 (2)0.88637 (15)0.0480 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0296 (2)0.0517 (3)0.0405 (3)0.00659 (18)0.00164 (17)0.00180 (18)
S20.0372 (3)0.0556 (3)0.0451 (3)0.0092 (2)0.00809 (19)0.0001 (2)
O10.0739 (11)0.0767 (11)0.0617 (9)0.0256 (9)0.0276 (8)0.0019 (8)
O20.0723 (10)0.0682 (10)0.0476 (8)0.0023 (8)0.0068 (7)0.0007 (7)
N10.0317 (7)0.0481 (8)0.0408 (8)0.0079 (6)0.0018 (6)0.0062 (6)
N20.0426 (9)0.0500 (8)0.0431 (8)0.0105 (7)0.0052 (7)0.0030 (7)
C10.0337 (8)0.0381 (8)0.0395 (8)0.0059 (6)0.0031 (7)0.0097 (7)
C20.0420 (10)0.0542 (10)0.0397 (9)0.0055 (8)0.0022 (7)0.0063 (8)
C30.0567 (11)0.0524 (10)0.0382 (9)0.0068 (9)0.0046 (8)0.0043 (8)
C40.0509 (11)0.0448 (9)0.0485 (10)0.0101 (8)0.0163 (8)0.0055 (8)
C50.0355 (9)0.0411 (9)0.0497 (10)0.0065 (7)0.0073 (7)0.0055 (7)
C60.0325 (8)0.0348 (7)0.0380 (8)0.0026 (6)0.0021 (6)0.0055 (6)
C70.0304 (8)0.0379 (8)0.0412 (9)0.0049 (6)0.0027 (7)0.0055 (7)
C80.0489 (10)0.0438 (9)0.0393 (9)0.0074 (8)0.0074 (8)0.0061 (7)
C90.0554 (11)0.0409 (9)0.0434 (9)0.0079 (8)0.0032 (8)0.0044 (7)
C100.0478 (11)0.0488 (10)0.0680 (13)0.0128 (8)0.0168 (10)0.0146 (9)
C110.0440 (12)0.0807 (16)0.0786 (16)0.0031 (11)0.0035 (11)0.0250 (13)
C120.0544 (11)0.0448 (9)0.0431 (10)0.0062 (8)0.0100 (8)0.0028 (8)
Geometric parameters (Å, º) top
S1—C61.7376 (17)C3—C41.401 (3)
S1—C71.7564 (17)C3—H30.9300
S2—C71.7412 (17)C4—C51.379 (3)
S2—C81.8083 (19)C4—H40.9300
O1—C121.202 (2)C5—C61.394 (2)
O2—C121.343 (2)C5—H50.9300
O2—C111.439 (3)C8—C91.525 (3)
N1—C71.290 (2)C8—H8A0.9700
N1—C11.389 (2)C8—H8B0.9700
N2—C121.346 (2)C9—H9A0.9700
N2—C91.441 (2)C9—H9B0.9700
N2—C101.444 (3)C10—C111.509 (3)
C1—C21.396 (2)C10—H10A0.9700
C1—C61.401 (2)C10—H10B0.9700
C2—C31.382 (3)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C6—S1—C788.66 (8)C9—C8—S2113.55 (13)
C7—S2—C8103.28 (8)C9—C8—H8A108.9
C12—O2—C11109.30 (16)S2—C8—H8A108.9
C7—N1—C1110.61 (14)C9—C8—H8B108.9
C12—N2—C9122.28 (17)S2—C8—H8B108.9
C12—N2—C10112.88 (17)H8A—C8—H8B107.7
C9—N2—C10124.61 (16)N2—C9—C8110.74 (16)
N1—C1—C2125.28 (16)N2—C9—H9A109.5
N1—C1—C6115.23 (15)C8—C9—H9A109.5
C2—C1—C6119.48 (17)N2—C9—H9B109.5
C3—C2—C1118.82 (18)C8—C9—H9B109.5
C3—C2—H2120.6H9A—C9—H9B108.1
C1—C2—H2120.6N2—C10—C11100.92 (18)
C2—C3—C4121.05 (18)N2—C10—H10A111.6
C2—C3—H3119.5C11—C10—H10A111.6
C4—C3—H3119.5N2—C10—H10B111.6
C5—C4—C3120.99 (18)C11—C10—H10B111.6
C5—C4—H4119.5H10A—C10—H10B109.4
C3—C4—H4119.5O2—C11—C10106.53 (17)
C4—C5—C6117.81 (17)O2—C11—H11A110.4
C4—C5—H5121.1C10—C11—H11A110.4
C6—C5—H5121.1O2—C11—H11B110.4
C5—C6—C1121.83 (16)C10—C11—H11B110.4
C5—C6—S1128.83 (14)H11A—C11—H11B108.6
C1—C6—S1109.34 (13)O1—C12—O2123.44 (19)
N1—C7—S2119.85 (13)O1—C12—N2126.8 (2)
N1—C7—S1116.15 (13)O2—C12—N2109.76 (17)
S2—C7—S1123.99 (10)
C7—N1—C1—C2179.93 (17)C8—S2—C7—S11.39 (13)
C7—N1—C1—C60.0 (2)C6—S1—C7—N10.16 (14)
N1—C1—C2—C3179.38 (17)C6—S1—C7—S2179.01 (12)
C6—C1—C2—C30.5 (3)C7—S2—C8—C982.41 (15)
C1—C2—C3—C40.6 (3)C12—N2—C9—C892.9 (2)
C2—C3—C4—C50.0 (3)C10—N2—C9—C892.9 (2)
C3—C4—C5—C60.7 (3)S2—C8—C9—N2179.53 (12)
C4—C5—C6—C10.7 (3)C12—N2—C10—C116.1 (2)
C4—C5—C6—S1179.22 (14)C9—N2—C10—C11179.26 (19)
N1—C1—C6—C5179.97 (15)C12—O2—C11—C107.0 (3)
C2—C1—C6—C50.1 (3)N2—C10—C11—O27.6 (2)
N1—C1—C6—S10.08 (19)C11—O2—C12—O1176.9 (2)
C2—C1—C6—S1179.82 (14)C11—O2—C12—N23.2 (2)
C7—S1—C6—C5179.93 (17)C9—N2—C12—O13.0 (3)
C7—S1—C6—C10.13 (13)C10—N2—C12—O1177.8 (2)
C1—N1—C7—S2179.04 (12)C9—N2—C12—O2176.91 (16)
C1—N1—C7—S10.14 (19)C10—N2—C12—O22.1 (2)
C8—S2—C7—N1177.42 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O1i0.972.583.466 (3)152
C3—H3···O1ii0.932.593.282 (2)132
C5—H5···N1i0.932.543.445 (2)163
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z1.

Experimental details

Crystal data
Chemical formulaC12H12N2O2S2
Mr280.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.5804 (4), 7.8331 (5), 12.5890 (7)
α, β, γ (°)99.864 (5), 97.715 (5), 97.011 (5)
V3)626.49 (7)
Z2
Radiation typeCu Kα
µ (mm1)3.83
Crystal size (mm)0.16 × 0.14 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2005)
Tmin, Tmax0.572, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4029, 2396, 2081
Rint0.020
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.05
No. of reflections2396
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.38

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O1i0.972.583.466 (3)152.3
C3—H3···O1ii0.932.593.282 (2)131.5
C5—H5···N1i0.932.543.445 (2)163.3
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z1.
 

Acknowledgements

The authors acknowledge the Project of Shanghai Munic­ipal Education Commission (09YZ245, 10YZ111, 10ZZ98), the `Chen Guang' project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (09 C G52) and the State Key Laboratory of Pollution Control and Resource Reuse Foundation (PCRRF09001) for financial support.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIppolito, J. A., Kanyo, Z. F., Wang, D., Franceschi, F. J., Moore, P. B., Steitz, T. A. & Duffy, E. M. (2008). J. Med. Chem. 51, 3353–3356.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMullera, M. & Schimzb, K. L. (1999). Cell. Mol. Life Sci. 56, 280–285.  Web of Science PubMed Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds