organic compounds
3-[2-(1,3-Benzothiazol-2-ylsulfanyl)ethyl]-1,3-oxazolidin-2-one
aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and bInstitute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201305, People's Republic of China
*Correspondence e-mail: wenyyhh@126.com
The title compound, C12H12N2S2O2, consists of a benzothiazole group and a oxazolidin-1-one linked via a flexible ethane-1,2-diyl spacer. The benzothiazole group and the oxazolidine ring are each almost planar [with maximum deviations of 0.007 (2) and 0.044 (3) Å, respectively] and make a dihedral angle of 9.35 (10)°. In the adjacent molecules were connected through C—H⋯O and C—H⋯N hydrogen bonds, and further extended into a three-dimensional network structure through intermolecular aromatic π–π stacking interactions in which the centroid–centroid distance is 3.590 (1) Å.
Related literature
For background to the applications of 2-oxazolidinones, see: Ippolito et al. (2008); Mullera et al. (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
Supporting information
10.1107/S1600536810034264/bv2154sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810034264/bv2154Isup2.hkl
A mixture of 2-mercaptobenzothiazole (6.69 g, 0.04 mol), potassium carbonate (8.29 g, 0.06 mol) and ethanol (250 ml) was heated and stirred in a 500 ml flask. Bis(2-chloroethyl)amine hydrochloride (7.14 g, 0.04 mol, dissolved in 100 ml ethanol) was added dropwise into the flask when the mixture was heated to 353 K, and the mixture was further stired at 353 K for 8 h. After cooling, the precipitate was filtered, washed with ethanol and water, and recrystallized from ethanol to obtain a flaxen powder. Yield: 68%. 1H NMR (CDCl3, 400 MHz):3.60 (t, 2H), 3.74 (m, 4H), 4.3 (t, 2H), 7.45 (m, 2H), 7.77 (d, 1H), 7.79 (d, 1H). 13C NMR (CDCl3, 125 MHz): 31.17, 43.81, 45.58, 61.97, 121.40, 121.41, 124.55, 126.20, 135.26, 152.86, 158.40, 165.71.
The H atoms were placed at calculated positions in the riding model approximation (C—H 0.95–0.99 Å), with their temperature factors were set to 1.2 times those of the equivalent isotropic temperature factors of the parent atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell
CrysAlis CCD (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C12H12N2O2S2 | Z = 2 |
Mr = 280.36 | F(000) = 292 |
Triclinic, P1 | Dx = 1.486 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54184 Å |
a = 6.5804 (4) Å | Cell parameters from 2669 reflections |
b = 7.8331 (5) Å | θ = 3.6–72.2° |
c = 12.5890 (7) Å | µ = 3.83 mm−1 |
α = 99.864 (5)° | T = 293 K |
β = 97.715 (5)° | Rhombus, colourless |
γ = 97.011 (5)° | 0.16 × 0.14 × 0.10 mm |
V = 626.49 (7) Å3 |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 2396 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2081 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 16.0355 pixels mm-1 | θmax = 72.4°, θmin = 3.6° |
ω scans | h = −7→5 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005) | k = −9→8 |
Tmin = 0.572, Tmax = 1.000 | l = −15→15 |
4029 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.081P)2 + 0.008P] where P = (Fo2 + 2Fc2)/3 |
2396 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
C12H12N2O2S2 | γ = 97.011 (5)° |
Mr = 280.36 | V = 626.49 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.5804 (4) Å | Cu Kα radiation |
b = 7.8331 (5) Å | µ = 3.83 mm−1 |
c = 12.5890 (7) Å | T = 293 K |
α = 99.864 (5)° | 0.16 × 0.14 × 0.10 mm |
β = 97.715 (5)° |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 2396 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005) | 2081 reflections with I > 2σ(I) |
Tmin = 0.572, Tmax = 1.000 | Rint = 0.020 |
4029 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.25 e Å−3 |
2396 reflections | Δρmin = −0.38 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.35142 (6) | 0.68528 (6) | 0.47728 (3) | 0.04252 (17) | |
S2 | −0.03291 (7) | 0.79117 (6) | 0.57333 (4) | 0.04677 (17) | |
O1 | 0.2992 (3) | 1.2011 (2) | 0.90981 (13) | 0.0693 (5) | |
O2 | 0.6287 (3) | 1.1616 (2) | 0.95686 (12) | 0.0661 (4) | |
N1 | −0.0218 (2) | 0.6472 (2) | 0.36963 (12) | 0.0407 (3) | |
N2 | 0.4734 (2) | 1.0512 (2) | 0.78894 (12) | 0.0465 (4) | |
C1 | 0.1020 (3) | 0.5814 (2) | 0.29599 (14) | 0.0370 (4) | |
C2 | 0.0334 (3) | 0.5093 (3) | 0.18583 (15) | 0.0466 (4) | |
H2 | −0.1048 | 0.5029 | 0.1556 | 0.056* | |
C3 | 0.1746 (3) | 0.4474 (3) | 0.12252 (15) | 0.0500 (4) | |
H3 | 0.1301 | 0.3982 | 0.0492 | 0.060* | |
C4 | 0.3836 (3) | 0.4578 (2) | 0.16706 (16) | 0.0474 (4) | |
H4 | 0.4757 | 0.4152 | 0.1228 | 0.057* | |
C5 | 0.4548 (3) | 0.5301 (2) | 0.27549 (15) | 0.0424 (4) | |
H5 | 0.5937 | 0.5382 | 0.3050 | 0.051* | |
C6 | 0.3115 (3) | 0.5908 (2) | 0.33941 (14) | 0.0358 (3) | |
C7 | 0.0866 (3) | 0.7046 (2) | 0.46521 (14) | 0.0370 (4) | |
C8 | 0.1759 (3) | 0.8424 (2) | 0.68809 (14) | 0.0441 (4) | |
H8A | 0.1174 | 0.8441 | 0.7549 | 0.053* | |
H8B | 0.2621 | 0.7503 | 0.6824 | 0.053* | |
C9 | 0.3115 (3) | 1.0177 (2) | 0.69552 (15) | 0.0474 (4) | |
H9A | 0.3729 | 1.0166 | 0.6296 | 0.057* | |
H9B | 0.2267 | 1.1109 | 0.7014 | 0.057* | |
C10 | 0.6791 (3) | 1.0058 (3) | 0.78669 (19) | 0.0533 (5) | |
H10A | 0.7520 | 1.0668 | 0.7389 | 0.064* | |
H10B | 0.6755 | 0.8806 | 0.7642 | 0.064* | |
C11 | 0.7754 (4) | 1.0685 (4) | 0.9048 (2) | 0.0683 (6) | |
H11A | 0.8023 | 0.9698 | 0.9390 | 0.082* | |
H11B | 0.9054 | 1.1453 | 0.9106 | 0.082* | |
C12 | 0.4514 (3) | 1.1428 (2) | 0.88637 (15) | 0.0480 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0296 (2) | 0.0517 (3) | 0.0405 (3) | 0.00659 (18) | −0.00164 (17) | −0.00180 (18) |
S2 | 0.0372 (3) | 0.0556 (3) | 0.0451 (3) | 0.0092 (2) | 0.00809 (19) | −0.0001 (2) |
O1 | 0.0739 (11) | 0.0767 (11) | 0.0617 (9) | 0.0256 (9) | 0.0276 (8) | 0.0019 (8) |
O2 | 0.0723 (10) | 0.0682 (10) | 0.0476 (8) | 0.0023 (8) | −0.0068 (7) | 0.0007 (7) |
N1 | 0.0317 (7) | 0.0481 (8) | 0.0408 (8) | 0.0079 (6) | 0.0018 (6) | 0.0062 (6) |
N2 | 0.0426 (9) | 0.0500 (8) | 0.0431 (8) | 0.0105 (7) | 0.0052 (7) | −0.0030 (7) |
C1 | 0.0337 (8) | 0.0381 (8) | 0.0395 (8) | 0.0059 (6) | 0.0031 (7) | 0.0097 (7) |
C2 | 0.0420 (10) | 0.0542 (10) | 0.0397 (9) | 0.0055 (8) | −0.0022 (7) | 0.0063 (8) |
C3 | 0.0567 (11) | 0.0524 (10) | 0.0382 (9) | 0.0068 (9) | 0.0046 (8) | 0.0043 (8) |
C4 | 0.0509 (11) | 0.0448 (9) | 0.0485 (10) | 0.0101 (8) | 0.0163 (8) | 0.0055 (8) |
C5 | 0.0355 (9) | 0.0411 (9) | 0.0497 (10) | 0.0065 (7) | 0.0073 (7) | 0.0055 (7) |
C6 | 0.0325 (8) | 0.0348 (7) | 0.0380 (8) | 0.0026 (6) | 0.0021 (6) | 0.0055 (6) |
C7 | 0.0304 (8) | 0.0379 (8) | 0.0412 (9) | 0.0049 (6) | 0.0027 (7) | 0.0055 (7) |
C8 | 0.0489 (10) | 0.0438 (9) | 0.0393 (9) | 0.0074 (8) | 0.0074 (8) | 0.0061 (7) |
C9 | 0.0554 (11) | 0.0409 (9) | 0.0434 (9) | 0.0079 (8) | 0.0032 (8) | 0.0044 (7) |
C10 | 0.0478 (11) | 0.0488 (10) | 0.0680 (13) | 0.0128 (8) | 0.0168 (10) | 0.0146 (9) |
C11 | 0.0440 (12) | 0.0807 (16) | 0.0786 (16) | 0.0031 (11) | −0.0035 (11) | 0.0250 (13) |
C12 | 0.0544 (11) | 0.0448 (9) | 0.0431 (10) | 0.0062 (8) | 0.0100 (8) | 0.0028 (8) |
S1—C6 | 1.7376 (17) | C3—C4 | 1.401 (3) |
S1—C7 | 1.7564 (17) | C3—H3 | 0.9300 |
S2—C7 | 1.7412 (17) | C4—C5 | 1.379 (3) |
S2—C8 | 1.8083 (19) | C4—H4 | 0.9300 |
O1—C12 | 1.202 (2) | C5—C6 | 1.394 (2) |
O2—C12 | 1.343 (2) | C5—H5 | 0.9300 |
O2—C11 | 1.439 (3) | C8—C9 | 1.525 (3) |
N1—C7 | 1.290 (2) | C8—H8A | 0.9700 |
N1—C1 | 1.389 (2) | C8—H8B | 0.9700 |
N2—C12 | 1.346 (2) | C9—H9A | 0.9700 |
N2—C9 | 1.441 (2) | C9—H9B | 0.9700 |
N2—C10 | 1.444 (3) | C10—C11 | 1.509 (3) |
C1—C2 | 1.396 (2) | C10—H10A | 0.9700 |
C1—C6 | 1.401 (2) | C10—H10B | 0.9700 |
C2—C3 | 1.382 (3) | C11—H11A | 0.9700 |
C2—H2 | 0.9300 | C11—H11B | 0.9700 |
C6—S1—C7 | 88.66 (8) | C9—C8—S2 | 113.55 (13) |
C7—S2—C8 | 103.28 (8) | C9—C8—H8A | 108.9 |
C12—O2—C11 | 109.30 (16) | S2—C8—H8A | 108.9 |
C7—N1—C1 | 110.61 (14) | C9—C8—H8B | 108.9 |
C12—N2—C9 | 122.28 (17) | S2—C8—H8B | 108.9 |
C12—N2—C10 | 112.88 (17) | H8A—C8—H8B | 107.7 |
C9—N2—C10 | 124.61 (16) | N2—C9—C8 | 110.74 (16) |
N1—C1—C2 | 125.28 (16) | N2—C9—H9A | 109.5 |
N1—C1—C6 | 115.23 (15) | C8—C9—H9A | 109.5 |
C2—C1—C6 | 119.48 (17) | N2—C9—H9B | 109.5 |
C3—C2—C1 | 118.82 (18) | C8—C9—H9B | 109.5 |
C3—C2—H2 | 120.6 | H9A—C9—H9B | 108.1 |
C1—C2—H2 | 120.6 | N2—C10—C11 | 100.92 (18) |
C2—C3—C4 | 121.05 (18) | N2—C10—H10A | 111.6 |
C2—C3—H3 | 119.5 | C11—C10—H10A | 111.6 |
C4—C3—H3 | 119.5 | N2—C10—H10B | 111.6 |
C5—C4—C3 | 120.99 (18) | C11—C10—H10B | 111.6 |
C5—C4—H4 | 119.5 | H10A—C10—H10B | 109.4 |
C3—C4—H4 | 119.5 | O2—C11—C10 | 106.53 (17) |
C4—C5—C6 | 117.81 (17) | O2—C11—H11A | 110.4 |
C4—C5—H5 | 121.1 | C10—C11—H11A | 110.4 |
C6—C5—H5 | 121.1 | O2—C11—H11B | 110.4 |
C5—C6—C1 | 121.83 (16) | C10—C11—H11B | 110.4 |
C5—C6—S1 | 128.83 (14) | H11A—C11—H11B | 108.6 |
C1—C6—S1 | 109.34 (13) | O1—C12—O2 | 123.44 (19) |
N1—C7—S2 | 119.85 (13) | O1—C12—N2 | 126.8 (2) |
N1—C7—S1 | 116.15 (13) | O2—C12—N2 | 109.76 (17) |
S2—C7—S1 | 123.99 (10) | ||
C7—N1—C1—C2 | 179.93 (17) | C8—S2—C7—S1 | −1.39 (13) |
C7—N1—C1—C6 | 0.0 (2) | C6—S1—C7—N1 | 0.16 (14) |
N1—C1—C2—C3 | −179.38 (17) | C6—S1—C7—S2 | 179.01 (12) |
C6—C1—C2—C3 | 0.5 (3) | C7—S2—C8—C9 | 82.41 (15) |
C1—C2—C3—C4 | −0.6 (3) | C12—N2—C9—C8 | −92.9 (2) |
C2—C3—C4—C5 | 0.0 (3) | C10—N2—C9—C8 | 92.9 (2) |
C3—C4—C5—C6 | 0.7 (3) | S2—C8—C9—N2 | 179.53 (12) |
C4—C5—C6—C1 | −0.7 (3) | C12—N2—C10—C11 | 6.1 (2) |
C4—C5—C6—S1 | 179.22 (14) | C9—N2—C10—C11 | −179.26 (19) |
N1—C1—C6—C5 | −179.97 (15) | C12—O2—C11—C10 | 7.0 (3) |
C2—C1—C6—C5 | 0.1 (3) | N2—C10—C11—O2 | −7.6 (2) |
N1—C1—C6—S1 | 0.08 (19) | C11—O2—C12—O1 | 176.9 (2) |
C2—C1—C6—S1 | −179.82 (14) | C11—O2—C12—N2 | −3.2 (2) |
C7—S1—C6—C5 | 179.93 (17) | C9—N2—C12—O1 | 3.0 (3) |
C7—S1—C6—C1 | −0.13 (13) | C10—N2—C12—O1 | 177.8 (2) |
C1—N1—C7—S2 | −179.04 (12) | C9—N2—C12—O2 | −176.91 (16) |
C1—N1—C7—S1 | −0.14 (19) | C10—N2—C12—O2 | −2.1 (2) |
C8—S2—C7—N1 | 177.42 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···O1i | 0.97 | 2.58 | 3.466 (3) | 152 |
C3—H3···O1ii | 0.93 | 2.59 | 3.282 (2) | 132 |
C5—H5···N1i | 0.93 | 2.54 | 3.445 (2) | 163 |
Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z−1. |
Experimental details
Crystal data | |
Chemical formula | C12H12N2O2S2 |
Mr | 280.36 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.5804 (4), 7.8331 (5), 12.5890 (7) |
α, β, γ (°) | 99.864 (5), 97.715 (5), 97.011 (5) |
V (Å3) | 626.49 (7) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 3.83 |
Crystal size (mm) | 0.16 × 0.14 × 0.10 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2005) |
Tmin, Tmax | 0.572, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4029, 2396, 2081 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.111, 1.05 |
No. of reflections | 2396 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.38 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···O1i | 0.97 | 2.58 | 3.466 (3) | 152.3 |
C3—H3···O1ii | 0.93 | 2.59 | 3.282 (2) | 131.5 |
C5—H5···N1i | 0.93 | 2.54 | 3.445 (2) | 163.3 |
Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z−1. |
Acknowledgements
The authors acknowledge the Project of Shanghai Municipal Education Commission (09YZ245, 10YZ111, 10ZZ98), the `Chen Guang' project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (09 C G52) and the State Key Laboratory of Pollution Control and Resource Reuse Foundation (PCRRF09001) for financial support.
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ippolito, J. A., Kanyo, Z. F., Wang, D., Franceschi, F. J., Moore, P. B., Steitz, T. A. & Duffy, E. M. (2008). J. Med. Chem. 51, 3353–3356. Web of Science CrossRef PubMed CAS Google Scholar
Mullera, M. & Schimzb, K. L. (1999). Cell. Mol. Life Sci. 56, 280–285. Web of Science PubMed Google Scholar
Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N-substituted 2-oxazolidinones have been widely used as antibiotics which are effective against gram-positive bacteria (Ippolito et al., 2008; Mullera et al., 1999). In this article we provide a new synthetic route of a 2-oxazolidinone derivative. Even though the reaction mechanism has not been established, the reproducibility and high yield of the reaction should prove useful for the synthesis of this type of compound.
Herein, we report the synthesis and structure of the title compound, namely 3-(2-(benzo[d]thiazol-2-ylthio)ethyl)-oxazolidin-2-one (Fig.1). As shown in Fig. 2, a two-dimensional supramolecular network was formed by hydrogen bonds (Table 1) and weak π-π stacking interactions between the phenyl rings and the thiazolyl rings of adjacent molecules with a centroid-centroid distances of 3.590 Å along b direction.