organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2634-o2635

4,6-Dimeth­­oxy­pyrimidin-2-amine–2-(1H-indol-3-yl)acetic acid (1/1)

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, Tamilnadu, India.
*Correspondence e-mail: tommtrichy@yahoo.co.in

(Received 21 July 2010; accepted 21 September 2010; online 25 September 2010)

In the title co-crystal C6H9N3O2·C10H9NO2, the 4,6-dimeth­oxy­pyrimidin-2-amine mol­ecule inter­acts with the carboxyl group of the 2-(1H-indol-3-yl)acetic acid mol­ecule through N—H⋯O and O—H⋯N hydrogen bonds, forming a cyclic hydrogen-bonded R22(8) motif, which is further linked by an N—H⋯N hydrogen bond, forming a supra­molecular chain along the c axis. Neighboring chains are inter­linked via C—H⋯O hydrogen bonds, forming a supra­molecular ladder

Related literature

For background to crystal engineering, see: Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]). For the role of amino­pyrimidine–carboxyl­ate inter­actions in protein-nuleic acid recognition and protein-drug binding, see: Hunt et al. (1980[Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533-536.]); Baker & Santi (1965[Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252-1257.]). 2-Amino­pyrimidine forms a wide variety of 1:1 adducts with mono and dicarb­oxy­lic acids (Etter & Adsmond, 1990[Etter, M. C. & Adsmond, D. A. (1990). J. Chem. Soc. Chem. Commun. pp. 589-591.]) rather than individual self-assembly compounds (Scheinbeim & Schempp, 1976[Scheinbeim, J. & Schempp, E. (1976). Acta Cryst. B32, 607-609.]). The R22(8) motif is frequently observed when a carb­oxy­lic acid inter­acts with a 2-amino heterocyclic ring system, see: Lynch & Jones (2004[Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.]). It is also one of the most commonly occuring motifs, see: Allen et al. (1998[Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043-1044.]). For the biological activity of amino­pyrimidine derivatives and 2-(1H-indol-3-yl)acetic acid, see: Hunt et al. (1980[Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533-536.]); Arteca (1996[Arteca, R. (1996). Plant Growth Substances: Principles and Applications. New York: Chapman and Hall.]). For related structures, see: Karle et al. (1964[Karle, I. L., Britts, K. & Gum, P. (1964). Acta Cryst. 17, 496-499.]); Low et al. (2002[Low, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o289-o294.]). For related co-crystals of amino­pyrimidines, see: Thanigaimani et al. (2006[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976-o2978.], 2007[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4212.], 2008[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2008). Acta Cryst. E64, o107-o108.]). For stacking intera­ctions, see: Hunter (1994[Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.]). For hydrogen-bond motifs, see:, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NO2·C6H9N3O2

  • Mr = 330.34

  • Triclinic, [P \overline 1]

  • a = 7.4555 (1) Å

  • b = 10.7197 (2) Å

  • c = 11.2537 (2) Å

  • α = 62.981 (1)°

  • β = 85.863 (1)°

  • γ = 85.584 (1)°

  • V = 798.16 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.978

  • 19719 measured reflections

  • 5363 independent reflections

  • 3979 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.137

  • S = 1.06

  • 5363 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4 0.86 2.04 2.8927 (14) 171
O3—H3⋯N1 0.82 1.88 2.6979 (12) 172
N4—H4⋯N3i 0.86 2.45 3.2184 (17) 149
C10—H10A⋯O4ii 0.97 2.59 3.5491 (18) 172
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

A study of non-covalent interactions, such as hydrogen bonding, plays a key role in molecular recognition and crystal engineering (Desiraju, 1989). The prime importance of aminopyrimidine-carboxylate interactions is due to their involvement in protein-nuleic acid recognition and protein-drug binding (Hunt et al., 1980; Baker & Santi, 1965). Aminopyrimidines readily pair up with carboxylic acids to form adducts rather than individual self-assembly compounds which is evident from the fact that 2-aminopyrimidine forms a wide variety of 1:1 adducts with mono and dicarboxylic acids (Etter & Adsmond, 1990) rather than individual self-assembly compounds (Scheinbeim & Schempp, 1976). The R22(8) motif is a robust synthon which is frequently observed when a carboxylic acid interacts with a 2-amino heterocyclic ring system (Lynch & Jones, 2004). This motif is also recognized to be one of the top 5 motifs among the 24 commonly occurring motifs in crystal structures (Allen et al., 1998). Auxin is a plant growth hormone which induces cell elongation in stems. 2-(1H-indol-3-yl)acetic acid is the first isolated auxin (Arteca, 1996). The crystal structures of 4,6-dimethoxypyrimidin-2-amine (Low et al., 2002) and 2-(1H-indol-3-yl)acetic acid (Karle et al.,1964) have already been reported. Several cocrystals of 4,6-dimethoxypyrimidin-2-amine with various carboxylic acids such as 4,6-dimethoxypyrimidin-2-amine 4-aminobenzoic acid (1/1) (Thanigaimani et al., 2006), 4,6-dimethoxypyrimidin-2-amine phthalic acid (1/1) (Thanigaimani et al., 2007) and 4,6-dimethoxypyrimidin-2-amine anthranilic acid (1/1) (Thanigaimani et al., 2008) have been recently reported from our group. In the present study, the various hydrogen-bonding patterns in the 4,6-dimethoxypyrimidin-2-amine (1H-indol-3-yl)acetic acid (1/1) cocrystal, (I), are thoroughly investigated.

The asymmetric unit (Fig. 1) contains a molecule of 4,6-dimethoxypyrimidin-2-amine and a molecule of 2-(1H-indol-3-yl)acetic acid, which are linked by N—H···O and O—H···N hydrogen bonds (Table. 1), forming an eight-membered ring with graph-set notation R22(8) (Etter, 1990; Bernstein et al., 1995). This motif is further linked by an N—H···N hydrogen bond, involving the N3 atom of 4,6-dimethoxypyrimidin-2-amine and N4 atom of the 2-(1H-indol-3-yl)acetic acid molecule, to form a supramolecular chain along the c axis. This supramolecular chain is further interlinked with a neighboring chain through a couple of C—H···O hydrogen bonds. These C—H···O hydrogen bonds form another R22(8) motif. Further N—H···O, N—H···N and C—H···O hydrogen bonds combine together to form a large ring motif, with graph-set notation R64(22). This ring motif extends to give a one dimensional supramolecular ladder as shown in Fig. 2. π-π stacking interaction is observed between two aminopyrimidine rings. They have an interplanar distance, centroid-to-centroid distance and a slip angle (the angle between the centroid vector and the normal to the plane) of 3.4413 (4) Å, 3.4937 (6) Å and 9.93° respectively. These are typical aromatic stacking values (Hunter, 1994).

Related literature top

For background to crystal engineering, see: Desiraju (1989). For the role of aminopyrimidine–carboxylate interactions in protein-nuleic acid recognition and protein-drug binding, see: Hunt et al. (1980); Baker & Santi (1965). 2-Aminopyrimidine forms a wide variety of 1:1 adducts with mono and dicarboxylic acids (Etter & Adsmond, 1990) rather than individual self-assembly compounds (Scheinbeim & Schempp, 1976). The R22(8) motif is frequently observed when a carboxylic acid interacts with a 2-amino heterocyclic ring system, see:Lynch & Jones (2004). It is also one of the most commonly occuring motifs, see: Allen et al. (1998). For the biological activity of aminopyrimidine derivatives and 2-(1H-indol-3-yl)acetic acid, see: Hunt et al. (1980); Arteca (1996). For related structures, see: Karle et al. (1964); Low et al. (2002). For related co-crystals of aminopyrimidines, see: Thanigaimani et al. (2006, 2007, 2008). For stacking interctions, see: Hunter (1994). For hydrogen-bond motifs, see:, see: Bernstein et al. (1995); Etter (1990).

Experimental top

A hot ethanolic solution (20 ml) of 4,6-dimethoxypyrimidin-2-amine (38 mg, Aldrich) and 2-(1H-indol-3-yl)acetic acid (44 mg, Loba Chemie) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature; afer a few days, colourless plate-like crystals were obtained.

Refinement top

All hydrogen atoms were positioned geometrically and were refined using a riding model. The N—H, O—H and C—H bond lengths are 0.86, 0.82 and 0.93–0.97 Å, respectively [Uiso(H)=1.2 Ueq (parent atom)].

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The crystal structure of (I). Dashed lines indicate hydrogen bonds H atoms not involved in hydrogen bonding have been omitted [symmetry codes: (i) x, y, z - 1; (ii) -x + 1, -y + 2, -z]
4,6-Dimethoxypyrimidin-2-amine–2-(1H-indol-3-yl)acetic acid (1/1) top
Crystal data top
C10H9NO2·C6H9N3O2Z = 2
Mr = 330.34F(000) = 348
Triclinic, P1Dx = 1.375 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4555 (1) ÅCell parameters from 5363 reflections
b = 10.7197 (2) Åθ = 2.0–31.8°
c = 11.2537 (2) ŵ = 0.10 mm1
α = 62.981 (1)°T = 293 K
β = 85.863 (1)°Prism, colourless
γ = 85.584 (1)°0.30 × 0.25 × 0.22 mm
V = 798.16 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5363 independent reflections
Radiation source: fine-focus sealed tube3979 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 31.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.970, Tmax = 0.978k = 1515
19719 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.0927P]
where P = (Fo2 + 2Fc2)/3
5363 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C10H9NO2·C6H9N3O2γ = 85.584 (1)°
Mr = 330.34V = 798.16 (2) Å3
Triclinic, P1Z = 2
a = 7.4555 (1) ÅMo Kα radiation
b = 10.7197 (2) ŵ = 0.10 mm1
c = 11.2537 (2) ÅT = 293 K
α = 62.981 (1)°0.30 × 0.25 × 0.22 mm
β = 85.863 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5363 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3979 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.978Rint = 0.028
19719 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
5363 reflectionsΔρmin = 0.22 e Å3
220 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.47314 (13)0.61367 (8)0.19523 (8)0.0511 (3)
O40.41360 (15)0.83007 (9)0.17016 (9)0.0610 (3)
N40.33691 (16)0.67797 (12)0.21918 (11)0.0549 (4)
C90.47507 (14)0.75081 (11)0.12695 (11)0.0401 (3)
C100.56115 (15)0.79980 (13)0.01155 (11)0.0458 (3)
C110.44583 (15)0.77265 (11)0.09994 (11)0.0409 (3)
C120.47745 (18)0.67593 (13)0.14708 (13)0.0514 (4)
C130.20837 (16)0.77659 (11)0.21974 (11)0.0429 (3)
C140.27307 (14)0.83893 (10)0.14517 (10)0.0372 (3)
C150.16352 (16)0.94084 (11)0.12571 (11)0.0438 (3)
C160.00356 (18)0.97665 (13)0.17950 (13)0.0526 (4)
C170.06486 (18)0.91367 (14)0.25289 (14)0.0567 (4)
C180.03945 (18)0.81345 (14)0.27433 (13)0.0532 (4)
O10.05798 (14)0.34071 (10)0.80461 (9)0.0602 (3)
O20.34975 (14)0.31388 (9)0.43080 (9)0.0556 (3)
N10.29633 (12)0.51850 (9)0.43555 (8)0.0385 (2)
N20.24541 (15)0.73208 (10)0.43481 (10)0.0492 (3)
N30.15054 (12)0.54001 (10)0.62253 (9)0.0421 (3)
C20.23037 (13)0.59256 (10)0.49907 (10)0.0368 (3)
C40.13751 (15)0.40253 (12)0.68250 (11)0.0433 (3)
C50.20213 (16)0.31430 (11)0.62803 (11)0.0450 (3)
C60.28114 (14)0.37938 (11)0.50225 (11)0.0398 (3)
C70.0202 (2)0.42776 (17)0.86200 (15)0.0684 (5)
C80.3549 (2)0.16378 (14)0.49465 (17)0.0659 (5)
H30.416700.593000.266400.0770*
H40.330100.625700.258100.0660*
H10A0.579700.899400.050000.0550*
H10B0.677800.751200.006100.0550*
H120.580300.616900.132200.0620*
H150.203100.983500.077200.0530*
H160.077201.044000.166800.0630*
H170.178600.940000.288000.0680*
H180.001500.772000.323500.0640*
H2A0.295800.770200.356100.0590*
H2B0.204600.783300.472400.0590*
H50.192700.217600.673500.0540*
H7A0.073200.473500.879300.1030*
H7B0.084200.371300.944200.1030*
H7C0.102000.497000.801100.1030*
H8A0.420700.128500.574700.0990*
H8B0.413100.129800.435400.0990*
H8C0.234300.132400.516700.0990*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0697 (5)0.0377 (4)0.0429 (4)0.0047 (4)0.0080 (4)0.0168 (3)
O40.0885 (7)0.0381 (4)0.0480 (5)0.0014 (4)0.0132 (5)0.0150 (4)
N40.0687 (7)0.0542 (6)0.0561 (6)0.0007 (5)0.0025 (5)0.0387 (5)
C90.0420 (5)0.0379 (5)0.0382 (5)0.0017 (4)0.0039 (4)0.0151 (4)
C100.0439 (5)0.0476 (6)0.0420 (6)0.0072 (4)0.0042 (4)0.0170 (5)
C110.0467 (5)0.0377 (5)0.0352 (5)0.0028 (4)0.0065 (4)0.0149 (4)
C120.0560 (6)0.0490 (6)0.0510 (7)0.0056 (5)0.0053 (5)0.0265 (5)
C130.0552 (6)0.0392 (5)0.0349 (5)0.0069 (4)0.0053 (4)0.0175 (4)
C140.0473 (5)0.0311 (4)0.0300 (4)0.0056 (4)0.0055 (4)0.0115 (4)
C150.0564 (6)0.0341 (5)0.0398 (5)0.0021 (4)0.0030 (4)0.0165 (4)
C160.0553 (6)0.0429 (6)0.0527 (7)0.0058 (5)0.0020 (5)0.0174 (5)
C170.0521 (6)0.0554 (7)0.0534 (7)0.0018 (5)0.0064 (5)0.0161 (6)
C180.0626 (7)0.0539 (7)0.0441 (6)0.0107 (6)0.0034 (5)0.0216 (5)
O10.0812 (6)0.0527 (5)0.0390 (4)0.0194 (4)0.0135 (4)0.0137 (4)
O20.0780 (6)0.0368 (4)0.0509 (5)0.0012 (4)0.0043 (4)0.0201 (4)
N10.0450 (4)0.0338 (4)0.0330 (4)0.0032 (3)0.0023 (3)0.0117 (3)
N20.0683 (6)0.0343 (5)0.0418 (5)0.0048 (4)0.0059 (4)0.0152 (4)
N30.0480 (5)0.0405 (5)0.0349 (4)0.0054 (4)0.0001 (3)0.0142 (4)
C20.0388 (5)0.0352 (5)0.0341 (5)0.0026 (4)0.0056 (4)0.0129 (4)
C40.0469 (5)0.0443 (6)0.0335 (5)0.0096 (4)0.0026 (4)0.0119 (4)
C50.0556 (6)0.0342 (5)0.0389 (5)0.0082 (4)0.0046 (4)0.0098 (4)
C60.0454 (5)0.0348 (5)0.0378 (5)0.0026 (4)0.0065 (4)0.0145 (4)
C70.0834 (10)0.0718 (9)0.0483 (7)0.0218 (7)0.0227 (7)0.0266 (7)
C80.0883 (10)0.0380 (6)0.0730 (9)0.0021 (6)0.0022 (8)0.0268 (6)
Geometric parameters (Å, º) top
O3—C91.3142 (15)C13—C181.3907 (18)
O4—C91.2048 (16)C14—C151.4009 (17)
O3—H30.8200C15—C161.3746 (18)
O1—C71.427 (2)C16—C171.398 (2)
O1—C41.3397 (14)C17—C181.377 (2)
O2—C61.3415 (16)C10—H10A0.9700
O2—C81.432 (2)C10—H10B0.9700
N4—C121.3637 (18)C12—H120.9300
N4—C131.3693 (18)C15—H150.9300
N4—H40.8600C16—H160.9300
N1—C21.3371 (15)C17—H170.9300
N1—C61.3405 (16)C18—H180.9300
N2—C21.3431 (16)C4—C51.3843 (18)
N3—C21.3502 (13)C5—C61.3723 (16)
N3—C41.3213 (17)C5—H50.9300
N2—H2B0.8600C7—H7A0.9600
N2—H2A0.8600C7—H7B0.9600
C9—C101.5103 (16)C7—H7C0.9600
C10—C111.4961 (17)C8—H8A0.9600
C11—C141.4311 (16)C8—H8B0.9600
C11—C121.362 (2)C8—H8C0.9600
C13—C141.4146 (17)
O2···C12i3.3132 (16)C5···H8C2.7400
O2···N4i3.1900 (15)C5···H8A2.7300
O3···N4i3.2341 (17)C6···H32.7900
O3···N12.6979 (12)C8···H52.5400
O3···C12i3.3749 (18)C9···H2A2.9000
O3···C4ii3.2606 (15)C12···H8Bi3.0400
O4···N22.8927 (14)C13···H7Bvii2.8900
O1···H10Bii2.8800C14···H7Bvii2.7500
O2···H32.7700C15···H5viii2.8100
O2···H4i2.8800C16···H5viii2.8100
O3···H4i2.6800H2A···C92.9000
O4···H2A2.0400H2A···O42.0400
O4···H10Aiii2.5900H3···N11.8800
O4···H16iv2.7500H3···C22.8700
N1···O32.6979 (12)H3···C62.7900
N2···O42.8927 (14)H3···O22.7700
N3···N4v3.2184 (17)H4···O3i2.6800
N4···O3i3.2341 (17)H4···C2vi3.0600
N4···N3vi3.2184 (17)H4···H7Avi2.5500
N4···O2i3.1900 (15)H4···N3vi2.4500
N1···H31.8800H4···O2i2.8800
N3···H18v2.9500H5···C15ix2.8100
N3···H7C2.5600H5···C16ix2.8100
N3···H4v2.4500H5···C82.5400
N3···H7A2.6700H5···H8A2.3400
N4···H7Avi2.8400H5···H8C2.3200
C2···C4vii3.5198 (15)H7A···N4v2.8400
C2···C5vii3.5089 (15)H7A···N32.6700
C4···C9ii3.5501 (16)H7A···H4v2.5500
C4···O3ii3.2606 (15)H7B···C13vii2.8900
C4···C2vii3.5198 (15)H7B···C14vii2.7500
C5···C2vii3.5089 (15)H7C···N32.5600
C5···C9ii3.5822 (16)H8A···H52.3400
C9···C153.5484 (16)H8A···C52.7300
C9···C4ii3.5501 (16)H8B···C12i3.0400
C9···C5ii3.5822 (16)H8C···H52.3200
C12···O3i3.3749 (18)H8C···C52.7400
C12···O2i3.3132 (16)H10A···O4iii2.5900
C15···C93.5484 (16)H10B···O1ii2.8800
C2···H32.8700H16···O4iv2.7500
C2···H4v3.0600H18···N3vi2.9500
C9—O3—H3109.00C11—C12—H12125.00
C4—O1—C7118.24 (12)N4—C12—H12125.00
C6—O2—C8117.57 (11)C16—C15—H15121.00
C12—N4—C13109.14 (12)C14—C15—H15121.00
C12—N4—H4125.00C17—C16—H16119.00
C13—N4—H4125.00C15—C16—H16119.00
C2—N1—C6116.09 (9)C18—C17—H17119.00
C2—N3—C4115.07 (11)C16—C17—H17119.00
C2—N2—H2B120.00C13—C18—H18121.00
C2—N2—H2A120.00C17—C18—H18121.00
H2A—N2—H2B120.00N1—C2—N2117.23 (9)
O3—C9—C10113.48 (11)N1—C2—N3126.02 (11)
O4—C9—C10123.11 (12)N2—C2—N3116.74 (11)
O3—C9—O4123.41 (11)N3—C4—C5124.42 (10)
C9—C10—C11111.17 (10)O1—C4—N3119.52 (12)
C12—C11—C14106.25 (11)O1—C4—C5116.06 (12)
C10—C11—C14126.02 (11)C4—C5—C6115.35 (11)
C10—C11—C12127.64 (11)O2—C6—N1111.97 (10)
N4—C12—C11110.41 (12)O2—C6—C5124.99 (12)
N4—C13—C14107.17 (10)N1—C6—C5123.04 (11)
C14—C13—C18122.00 (12)C4—C5—H5122.00
N4—C13—C18130.78 (13)C6—C5—H5122.00
C11—C14—C13107.03 (10)O1—C7—H7A109.00
C11—C14—C15133.95 (11)O1—C7—H7B109.00
C13—C14—C15118.96 (10)O1—C7—H7C109.00
C14—C15—C16118.84 (12)H7A—C7—H7B109.00
C15—C16—C17121.25 (13)H7A—C7—H7C109.00
C16—C17—C18121.46 (13)H7B—C7—H7C110.00
C13—C18—C17117.48 (13)O2—C8—H8A110.00
H10A—C10—H10B108.00O2—C8—H8B109.00
C11—C10—H10B109.00O2—C8—H8C109.00
C11—C10—H10A109.00H8A—C8—H8B109.00
C9—C10—H10A109.00H8A—C8—H8C109.00
C9—C10—H10B109.00H8B—C8—H8C109.00
C7—O1—C4—C5176.42 (11)C10—C11—C12—N4176.92 (11)
C7—O1—C4—N33.89 (17)C10—C11—C14—C13176.77 (11)
C8—O2—C6—N1175.18 (11)C10—C11—C14—C150.2 (2)
C8—O2—C6—C55.60 (17)C12—C11—C14—C130.14 (13)
C13—N4—C12—C110.47 (15)C12—C11—C14—C15176.84 (13)
C12—N4—C13—C140.36 (14)N4—C13—C14—C15177.65 (10)
C12—N4—C13—C18177.05 (13)C18—C13—C14—C11177.55 (11)
C6—N1—C2—N30.22 (15)N4—C13—C14—C110.13 (13)
C2—N1—C6—O2179.64 (9)C18—C13—C14—C150.03 (17)
C6—N1—C2—N2179.42 (10)N4—C13—C18—C17176.85 (13)
C2—N1—C6—C50.40 (16)C14—C13—C18—C170.23 (19)
C2—N3—C4—C51.29 (16)C13—C14—C15—C160.16 (16)
C4—N3—C2—N2179.77 (10)C11—C14—C15—C16176.54 (12)
C2—N3—C4—O1179.05 (10)C14—C15—C16—C170.16 (19)
C4—N3—C2—N10.59 (15)C15—C16—C17—C180.0 (2)
O4—C9—C10—C11109.62 (14)C16—C17—C18—C130.2 (2)
O3—C9—C10—C1170.10 (13)O1—C4—C5—C6179.20 (10)
C9—C10—C11—C12109.00 (14)N3—C4—C5—C61.13 (17)
C9—C10—C11—C1466.91 (16)C4—C5—C6—O2178.92 (11)
C14—C11—C12—N40.37 (14)C4—C5—C6—N10.21 (17)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z; (iv) x, y+2, z; (v) x, y, z+1; (vi) x, y, z1; (vii) x, y+1, z+1; (viii) x, y+1, z1; (ix) x, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.862.042.8927 (14)171
O3—H3···N10.821.882.6979 (12)172
N4—H4···N3vi0.862.453.2184 (17)149
C10—H10A···O4iii0.972.593.5491 (18)172
Symmetry codes: (iii) x+1, y+2, z; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formulaC10H9NO2·C6H9N3O2
Mr330.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4555 (1), 10.7197 (2), 11.2537 (2)
α, β, γ (°)62.981 (1), 85.863 (1), 85.584 (1)
V3)798.16 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.970, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
19719, 5363, 3979
Rint0.028
(sin θ/λ)max1)0.742
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.137, 1.06
No. of reflections5363
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.862.042.8927 (14)171
O3—H3···N10.821.882.6979 (12)172
N4—H4···N3i0.862.453.2184 (17)149
C10—H10A···O4ii0.972.593.5491 (18)172
Symmetry codes: (i) x, y, z1; (ii) x+1, y+2, z.
 

Acknowledgements

The authors thank the DST-India (FIST programme) for the use of APEXII diffractometer at the School of Chemistry, Bharathidasan University.

References

First citationAllen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044.  Web of Science CrossRef Google Scholar
First citationArteca, R. (1996). Plant Growth Substances: Principles and Applications. New York: Chapman and Hall.  Google Scholar
First citationBaker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. & Adsmond, D. A. (1990). J. Chem. Soc. Chem. Commun. pp. 589–591.  CrossRef Web of Science Google Scholar
First citationHunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533–536.  CAS Google Scholar
First citationHunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109.  CrossRef CAS Web of Science Google Scholar
First citationKarle, I. L., Britts, K. & Gum, P. (1964). Acta Cryst. 17, 496–499.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationLow, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o289–o294.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationScheinbeim, J. & Schempp, E. (1976). Acta Cryst. B32, 607–609.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976–o2978.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2008). Acta Cryst. E64, o107–o108.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2634-o2635
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds