organic compounds
4,6-Dimethoxypyrimidin-2-amine–2-(1H-indol-3-yl)acetic acid (1/1)
aSchool of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, Tamilnadu, India.
*Correspondence e-mail: tommtrichy@yahoo.co.in
In the title 6H9N3O2·C10H9NO2, the 4,6-dimethoxypyrimidin-2-amine molecule interacts with the carboxyl group of the 2-(1H-indol-3-yl)acetic acid molecule through N—H⋯O and O—H⋯N hydrogen bonds, forming a cyclic hydrogen-bonded R22(8) motif, which is further linked by an N—H⋯N hydrogen bond, forming a supramolecular chain along the c axis. Neighboring chains are interlinked via C—H⋯O hydrogen bonds, forming a supramolecular ladder
CRelated literature
For background to crystal engineering, see: Desiraju (1989). For the role of aminopyrimidine–carboxylate interactions in protein-nuleic acid recognition and protein-drug binding, see: Hunt et al. (1980); Baker & Santi (1965). 2-Aminopyrimidine forms a wide variety of 1:1 adducts with mono and dicarboxylic acids (Etter & Adsmond, 1990) rather than individual self-assembly compounds (Scheinbeim & Schempp, 1976). The R22(8) motif is frequently observed when a carboxylic acid interacts with a 2-amino heterocyclic ring system, see: Lynch & Jones (2004). It is also one of the most commonly occuring motifs, see: Allen et al. (1998). For the biological activity of aminopyrimidine derivatives and 2-(1H-indol-3-yl)acetic acid, see: Hunt et al. (1980); Arteca (1996). For related structures, see: Karle et al. (1964); Low et al. (2002). For related co-crystals of aminopyrimidines, see: Thanigaimani et al. (2006, 2007, 2008). For stacking interactions, see: Hunter (1994). For hydrogen-bond motifs, see:, see: Bernstein et al. (1995); Etter (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536810037724/bv2155sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810037724/bv2155Isup2.hkl
A hot ethanolic solution (20 ml) of 4,6-dimethoxypyrimidin-2-amine (38 mg, Aldrich) and 2-(1H-indol-3-yl)acetic acid (44 mg, Loba Chemie) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature; afer a few days, colourless plate-like crystals were obtained.
All hydrogen atoms were positioned geometrically and were refined using a riding model. The N—H, O—H and C—H bond lengths are 0.86, 0.82 and 0.93–0.97 Å, respectively [Uiso(H)=1.2 Ueq (parent atom)].
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).C10H9NO2·C6H9N3O2 | Z = 2 |
Mr = 330.34 | F(000) = 348 |
Triclinic, P1 | Dx = 1.375 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4555 (1) Å | Cell parameters from 5363 reflections |
b = 10.7197 (2) Å | θ = 2.0–31.8° |
c = 11.2537 (2) Å | µ = 0.10 mm−1 |
α = 62.981 (1)° | T = 293 K |
β = 85.863 (1)° | Prism, colourless |
γ = 85.584 (1)° | 0.30 × 0.25 × 0.22 mm |
V = 798.16 (2) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 5363 independent reflections |
Radiation source: fine-focus sealed tube | 3979 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ϕ and ω scans | θmax = 31.8°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −10→10 |
Tmin = 0.970, Tmax = 0.978 | k = −15→15 |
19719 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0654P)2 + 0.0927P] where P = (Fo2 + 2Fc2)/3 |
5363 reflections | (Δ/σ)max < 0.001 |
220 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C10H9NO2·C6H9N3O2 | γ = 85.584 (1)° |
Mr = 330.34 | V = 798.16 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.4555 (1) Å | Mo Kα radiation |
b = 10.7197 (2) Å | µ = 0.10 mm−1 |
c = 11.2537 (2) Å | T = 293 K |
α = 62.981 (1)° | 0.30 × 0.25 × 0.22 mm |
β = 85.863 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 5363 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 3979 reflections with I > 2σ(I) |
Tmin = 0.970, Tmax = 0.978 | Rint = 0.028 |
19719 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.23 e Å−3 |
5363 reflections | Δρmin = −0.22 e Å−3 |
220 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O3 | 0.47314 (13) | 0.61367 (8) | 0.19523 (8) | 0.0511 (3) | |
O4 | 0.41360 (15) | 0.83007 (9) | 0.17016 (9) | 0.0610 (3) | |
N4 | 0.33691 (16) | 0.67797 (12) | −0.21918 (11) | 0.0549 (4) | |
C9 | 0.47507 (14) | 0.75081 (11) | 0.12695 (11) | 0.0401 (3) | |
C10 | 0.56115 (15) | 0.79980 (13) | −0.01155 (11) | 0.0458 (3) | |
C11 | 0.44583 (15) | 0.77265 (11) | −0.09994 (11) | 0.0409 (3) | |
C12 | 0.47745 (18) | 0.67593 (13) | −0.14708 (13) | 0.0514 (4) | |
C13 | 0.20837 (16) | 0.77659 (11) | −0.21974 (11) | 0.0429 (3) | |
C14 | 0.27307 (14) | 0.83893 (10) | −0.14517 (10) | 0.0372 (3) | |
C15 | 0.16352 (16) | 0.94084 (11) | −0.12571 (11) | 0.0438 (3) | |
C16 | −0.00356 (18) | 0.97665 (13) | −0.17950 (13) | 0.0526 (4) | |
C17 | −0.06486 (18) | 0.91367 (14) | −0.25289 (14) | 0.0567 (4) | |
C18 | 0.03945 (18) | 0.81345 (14) | −0.27433 (13) | 0.0532 (4) | |
O1 | 0.05798 (14) | 0.34071 (10) | 0.80461 (9) | 0.0602 (3) | |
O2 | 0.34975 (14) | 0.31388 (9) | 0.43080 (9) | 0.0556 (3) | |
N1 | 0.29633 (12) | 0.51850 (9) | 0.43555 (8) | 0.0385 (2) | |
N2 | 0.24541 (15) | 0.73208 (10) | 0.43481 (10) | 0.0492 (3) | |
N3 | 0.15054 (12) | 0.54001 (10) | 0.62253 (9) | 0.0421 (3) | |
C2 | 0.23037 (13) | 0.59256 (10) | 0.49907 (10) | 0.0368 (3) | |
C4 | 0.13751 (15) | 0.40253 (12) | 0.68250 (11) | 0.0433 (3) | |
C5 | 0.20213 (16) | 0.31430 (11) | 0.62803 (11) | 0.0450 (3) | |
C6 | 0.28114 (14) | 0.37938 (11) | 0.50225 (11) | 0.0398 (3) | |
C7 | −0.0202 (2) | 0.42776 (17) | 0.86200 (15) | 0.0684 (5) | |
C8 | 0.3549 (2) | 0.16378 (14) | 0.49465 (17) | 0.0659 (5) | |
H3 | 0.41670 | 0.59300 | 0.26640 | 0.0770* | |
H4 | 0.33010 | 0.62570 | −0.25810 | 0.0660* | |
H10A | 0.57970 | 0.89940 | −0.05000 | 0.0550* | |
H10B | 0.67780 | 0.75120 | −0.00610 | 0.0550* | |
H12 | 0.58030 | 0.61690 | −0.13220 | 0.0620* | |
H15 | 0.20310 | 0.98350 | −0.07720 | 0.0530* | |
H16 | −0.07720 | 1.04400 | −0.16680 | 0.0630* | |
H17 | −0.17860 | 0.94000 | −0.28800 | 0.0680* | |
H18 | −0.00150 | 0.77200 | −0.32350 | 0.0640* | |
H2A | 0.29580 | 0.77020 | 0.35610 | 0.0590* | |
H2B | 0.20460 | 0.78330 | 0.47240 | 0.0590* | |
H5 | 0.19270 | 0.21760 | 0.67350 | 0.0540* | |
H7A | 0.07320 | 0.47350 | 0.87930 | 0.1030* | |
H7B | −0.08420 | 0.37130 | 0.94420 | 0.1030* | |
H7C | −0.10200 | 0.49700 | 0.80110 | 0.1030* | |
H8A | 0.42070 | 0.12850 | 0.57470 | 0.0990* | |
H8B | 0.41310 | 0.12980 | 0.43540 | 0.0990* | |
H8C | 0.23430 | 0.13240 | 0.51670 | 0.0990* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0697 (5) | 0.0377 (4) | 0.0429 (4) | −0.0047 (4) | 0.0080 (4) | −0.0168 (3) |
O4 | 0.0885 (7) | 0.0381 (4) | 0.0480 (5) | 0.0014 (4) | 0.0132 (5) | −0.0150 (4) |
N4 | 0.0687 (7) | 0.0542 (6) | 0.0561 (6) | 0.0007 (5) | 0.0025 (5) | −0.0387 (5) |
C9 | 0.0420 (5) | 0.0379 (5) | 0.0382 (5) | −0.0017 (4) | −0.0039 (4) | −0.0151 (4) |
C10 | 0.0439 (5) | 0.0476 (6) | 0.0420 (6) | −0.0072 (4) | 0.0042 (4) | −0.0170 (5) |
C11 | 0.0467 (5) | 0.0377 (5) | 0.0352 (5) | −0.0028 (4) | 0.0065 (4) | −0.0149 (4) |
C12 | 0.0560 (6) | 0.0490 (6) | 0.0510 (7) | 0.0056 (5) | 0.0053 (5) | −0.0265 (5) |
C13 | 0.0552 (6) | 0.0392 (5) | 0.0349 (5) | −0.0069 (4) | 0.0053 (4) | −0.0175 (4) |
C14 | 0.0473 (5) | 0.0311 (4) | 0.0300 (4) | −0.0056 (4) | 0.0055 (4) | −0.0115 (4) |
C15 | 0.0564 (6) | 0.0341 (5) | 0.0398 (5) | −0.0021 (4) | 0.0030 (4) | −0.0165 (4) |
C16 | 0.0553 (6) | 0.0429 (6) | 0.0527 (7) | 0.0058 (5) | 0.0020 (5) | −0.0174 (5) |
C17 | 0.0521 (6) | 0.0554 (7) | 0.0534 (7) | −0.0018 (5) | −0.0064 (5) | −0.0161 (6) |
C18 | 0.0626 (7) | 0.0539 (7) | 0.0441 (6) | −0.0107 (6) | −0.0034 (5) | −0.0216 (5) |
O1 | 0.0812 (6) | 0.0527 (5) | 0.0390 (4) | −0.0194 (4) | 0.0135 (4) | −0.0137 (4) |
O2 | 0.0780 (6) | 0.0368 (4) | 0.0509 (5) | −0.0012 (4) | 0.0043 (4) | −0.0201 (4) |
N1 | 0.0450 (4) | 0.0338 (4) | 0.0330 (4) | −0.0032 (3) | −0.0023 (3) | −0.0117 (3) |
N2 | 0.0683 (6) | 0.0343 (5) | 0.0418 (5) | −0.0048 (4) | 0.0059 (4) | −0.0152 (4) |
N3 | 0.0480 (5) | 0.0405 (5) | 0.0349 (4) | −0.0054 (4) | −0.0001 (3) | −0.0142 (4) |
C2 | 0.0388 (5) | 0.0352 (5) | 0.0341 (5) | −0.0026 (4) | −0.0056 (4) | −0.0129 (4) |
C4 | 0.0469 (5) | 0.0443 (6) | 0.0335 (5) | −0.0096 (4) | −0.0026 (4) | −0.0119 (4) |
C5 | 0.0556 (6) | 0.0342 (5) | 0.0389 (5) | −0.0082 (4) | −0.0046 (4) | −0.0098 (4) |
C6 | 0.0454 (5) | 0.0348 (5) | 0.0378 (5) | −0.0026 (4) | −0.0065 (4) | −0.0145 (4) |
C7 | 0.0834 (10) | 0.0718 (9) | 0.0483 (7) | −0.0218 (7) | 0.0227 (7) | −0.0266 (7) |
C8 | 0.0883 (10) | 0.0380 (6) | 0.0730 (9) | −0.0021 (6) | −0.0022 (8) | −0.0268 (6) |
O3—C9 | 1.3142 (15) | C13—C18 | 1.3907 (18) |
O4—C9 | 1.2048 (16) | C14—C15 | 1.4009 (17) |
O3—H3 | 0.8200 | C15—C16 | 1.3746 (18) |
O1—C7 | 1.427 (2) | C16—C17 | 1.398 (2) |
O1—C4 | 1.3397 (14) | C17—C18 | 1.377 (2) |
O2—C6 | 1.3415 (16) | C10—H10A | 0.9700 |
O2—C8 | 1.432 (2) | C10—H10B | 0.9700 |
N4—C12 | 1.3637 (18) | C12—H12 | 0.9300 |
N4—C13 | 1.3693 (18) | C15—H15 | 0.9300 |
N4—H4 | 0.8600 | C16—H16 | 0.9300 |
N1—C2 | 1.3371 (15) | C17—H17 | 0.9300 |
N1—C6 | 1.3405 (16) | C18—H18 | 0.9300 |
N2—C2 | 1.3431 (16) | C4—C5 | 1.3843 (18) |
N3—C2 | 1.3502 (13) | C5—C6 | 1.3723 (16) |
N3—C4 | 1.3213 (17) | C5—H5 | 0.9300 |
N2—H2B | 0.8600 | C7—H7A | 0.9600 |
N2—H2A | 0.8600 | C7—H7B | 0.9600 |
C9—C10 | 1.5103 (16) | C7—H7C | 0.9600 |
C10—C11 | 1.4961 (17) | C8—H8A | 0.9600 |
C11—C14 | 1.4311 (16) | C8—H8B | 0.9600 |
C11—C12 | 1.362 (2) | C8—H8C | 0.9600 |
C13—C14 | 1.4146 (17) | ||
O2···C12i | 3.3132 (16) | C5···H8C | 2.7400 |
O2···N4i | 3.1900 (15) | C5···H8A | 2.7300 |
O3···N4i | 3.2341 (17) | C6···H3 | 2.7900 |
O3···N1 | 2.6979 (12) | C8···H5 | 2.5400 |
O3···C12i | 3.3749 (18) | C9···H2A | 2.9000 |
O3···C4ii | 3.2606 (15) | C12···H8Bi | 3.0400 |
O4···N2 | 2.8927 (14) | C13···H7Bvii | 2.8900 |
O1···H10Bii | 2.8800 | C14···H7Bvii | 2.7500 |
O2···H3 | 2.7700 | C15···H5viii | 2.8100 |
O2···H4i | 2.8800 | C16···H5viii | 2.8100 |
O3···H4i | 2.6800 | H2A···C9 | 2.9000 |
O4···H2A | 2.0400 | H2A···O4 | 2.0400 |
O4···H10Aiii | 2.5900 | H3···N1 | 1.8800 |
O4···H16iv | 2.7500 | H3···C2 | 2.8700 |
N1···O3 | 2.6979 (12) | H3···C6 | 2.7900 |
N2···O4 | 2.8927 (14) | H3···O2 | 2.7700 |
N3···N4v | 3.2184 (17) | H4···O3i | 2.6800 |
N4···O3i | 3.2341 (17) | H4···C2vi | 3.0600 |
N4···N3vi | 3.2184 (17) | H4···H7Avi | 2.5500 |
N4···O2i | 3.1900 (15) | H4···N3vi | 2.4500 |
N1···H3 | 1.8800 | H4···O2i | 2.8800 |
N3···H18v | 2.9500 | H5···C15ix | 2.8100 |
N3···H7C | 2.5600 | H5···C16ix | 2.8100 |
N3···H4v | 2.4500 | H5···C8 | 2.5400 |
N3···H7A | 2.6700 | H5···H8A | 2.3400 |
N4···H7Avi | 2.8400 | H5···H8C | 2.3200 |
C2···C4vii | 3.5198 (15) | H7A···N4v | 2.8400 |
C2···C5vii | 3.5089 (15) | H7A···N3 | 2.6700 |
C4···C9ii | 3.5501 (16) | H7A···H4v | 2.5500 |
C4···O3ii | 3.2606 (15) | H7B···C13vii | 2.8900 |
C4···C2vii | 3.5198 (15) | H7B···C14vii | 2.7500 |
C5···C2vii | 3.5089 (15) | H7C···N3 | 2.5600 |
C5···C9ii | 3.5822 (16) | H8A···H5 | 2.3400 |
C9···C15 | 3.5484 (16) | H8A···C5 | 2.7300 |
C9···C4ii | 3.5501 (16) | H8B···C12i | 3.0400 |
C9···C5ii | 3.5822 (16) | H8C···H5 | 2.3200 |
C12···O3i | 3.3749 (18) | H8C···C5 | 2.7400 |
C12···O2i | 3.3132 (16) | H10A···O4iii | 2.5900 |
C15···C9 | 3.5484 (16) | H10B···O1ii | 2.8800 |
C2···H3 | 2.8700 | H16···O4iv | 2.7500 |
C2···H4v | 3.0600 | H18···N3vi | 2.9500 |
C9—O3—H3 | 109.00 | C11—C12—H12 | 125.00 |
C4—O1—C7 | 118.24 (12) | N4—C12—H12 | 125.00 |
C6—O2—C8 | 117.57 (11) | C16—C15—H15 | 121.00 |
C12—N4—C13 | 109.14 (12) | C14—C15—H15 | 121.00 |
C12—N4—H4 | 125.00 | C17—C16—H16 | 119.00 |
C13—N4—H4 | 125.00 | C15—C16—H16 | 119.00 |
C2—N1—C6 | 116.09 (9) | C18—C17—H17 | 119.00 |
C2—N3—C4 | 115.07 (11) | C16—C17—H17 | 119.00 |
C2—N2—H2B | 120.00 | C13—C18—H18 | 121.00 |
C2—N2—H2A | 120.00 | C17—C18—H18 | 121.00 |
H2A—N2—H2B | 120.00 | N1—C2—N2 | 117.23 (9) |
O3—C9—C10 | 113.48 (11) | N1—C2—N3 | 126.02 (11) |
O4—C9—C10 | 123.11 (12) | N2—C2—N3 | 116.74 (11) |
O3—C9—O4 | 123.41 (11) | N3—C4—C5 | 124.42 (10) |
C9—C10—C11 | 111.17 (10) | O1—C4—N3 | 119.52 (12) |
C12—C11—C14 | 106.25 (11) | O1—C4—C5 | 116.06 (12) |
C10—C11—C14 | 126.02 (11) | C4—C5—C6 | 115.35 (11) |
C10—C11—C12 | 127.64 (11) | O2—C6—N1 | 111.97 (10) |
N4—C12—C11 | 110.41 (12) | O2—C6—C5 | 124.99 (12) |
N4—C13—C14 | 107.17 (10) | N1—C6—C5 | 123.04 (11) |
C14—C13—C18 | 122.00 (12) | C4—C5—H5 | 122.00 |
N4—C13—C18 | 130.78 (13) | C6—C5—H5 | 122.00 |
C11—C14—C13 | 107.03 (10) | O1—C7—H7A | 109.00 |
C11—C14—C15 | 133.95 (11) | O1—C7—H7B | 109.00 |
C13—C14—C15 | 118.96 (10) | O1—C7—H7C | 109.00 |
C14—C15—C16 | 118.84 (12) | H7A—C7—H7B | 109.00 |
C15—C16—C17 | 121.25 (13) | H7A—C7—H7C | 109.00 |
C16—C17—C18 | 121.46 (13) | H7B—C7—H7C | 110.00 |
C13—C18—C17 | 117.48 (13) | O2—C8—H8A | 110.00 |
H10A—C10—H10B | 108.00 | O2—C8—H8B | 109.00 |
C11—C10—H10B | 109.00 | O2—C8—H8C | 109.00 |
C11—C10—H10A | 109.00 | H8A—C8—H8B | 109.00 |
C9—C10—H10A | 109.00 | H8A—C8—H8C | 109.00 |
C9—C10—H10B | 109.00 | H8B—C8—H8C | 109.00 |
C7—O1—C4—C5 | −176.42 (11) | C10—C11—C12—N4 | 176.92 (11) |
C7—O1—C4—N3 | 3.89 (17) | C10—C11—C14—C13 | −176.77 (11) |
C8—O2—C6—N1 | 175.18 (11) | C10—C11—C14—C15 | 0.2 (2) |
C8—O2—C6—C5 | −5.60 (17) | C12—C11—C14—C13 | −0.14 (13) |
C13—N4—C12—C11 | −0.47 (15) | C12—C11—C14—C15 | 176.84 (13) |
C12—N4—C13—C14 | 0.36 (14) | N4—C13—C14—C15 | −177.65 (10) |
C12—N4—C13—C18 | −177.05 (13) | C18—C13—C14—C11 | 177.55 (11) |
C6—N1—C2—N3 | −0.22 (15) | N4—C13—C14—C11 | −0.13 (13) |
C2—N1—C6—O2 | 179.64 (9) | C18—C13—C14—C15 | 0.03 (17) |
C6—N1—C2—N2 | 179.42 (10) | N4—C13—C18—C17 | 176.85 (13) |
C2—N1—C6—C5 | 0.40 (16) | C14—C13—C18—C17 | −0.23 (19) |
C2—N3—C4—C5 | 1.29 (16) | C13—C14—C15—C16 | 0.16 (16) |
C4—N3—C2—N2 | 179.77 (10) | C11—C14—C15—C16 | −176.54 (12) |
C2—N3—C4—O1 | −179.05 (10) | C14—C15—C16—C17 | −0.16 (19) |
C4—N3—C2—N1 | −0.59 (15) | C15—C16—C17—C18 | 0.0 (2) |
O4—C9—C10—C11 | −109.62 (14) | C16—C17—C18—C13 | 0.2 (2) |
O3—C9—C10—C11 | 70.10 (13) | O1—C4—C5—C6 | 179.20 (10) |
C9—C10—C11—C12 | −109.00 (14) | N3—C4—C5—C6 | −1.13 (17) |
C9—C10—C11—C14 | 66.91 (16) | C4—C5—C6—O2 | −178.92 (11) |
C14—C11—C12—N4 | 0.37 (14) | C4—C5—C6—N1 | 0.21 (17) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z; (iv) −x, −y+2, −z; (v) x, y, z+1; (vi) x, y, z−1; (vii) −x, −y+1, −z+1; (viii) x, y+1, z−1; (ix) x, y−1, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O4 | 0.86 | 2.04 | 2.8927 (14) | 171 |
O3—H3···N1 | 0.82 | 1.88 | 2.6979 (12) | 172 |
N4—H4···N3vi | 0.86 | 2.45 | 3.2184 (17) | 149 |
C10—H10A···O4iii | 0.97 | 2.59 | 3.5491 (18) | 172 |
Symmetry codes: (iii) −x+1, −y+2, −z; (vi) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C10H9NO2·C6H9N3O2 |
Mr | 330.34 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.4555 (1), 10.7197 (2), 11.2537 (2) |
α, β, γ (°) | 62.981 (1), 85.863 (1), 85.584 (1) |
V (Å3) | 798.16 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.30 × 0.25 × 0.22 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.970, 0.978 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19719, 5363, 3979 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.742 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.137, 1.06 |
No. of reflections | 5363 |
No. of parameters | 220 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.22 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O4 | 0.86 | 2.04 | 2.8927 (14) | 171 |
O3—H3···N1 | 0.82 | 1.88 | 2.6979 (12) | 172 |
N4—H4···N3i | 0.86 | 2.45 | 3.2184 (17) | 149 |
C10—H10A···O4ii | 0.97 | 2.59 | 3.5491 (18) | 172 |
Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y+2, −z. |
Acknowledgements
The authors thank the DST-India (FIST programme) for the use of APEXII diffractometer at the School of Chemistry, Bharathidasan University.
References
Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044. Web of Science CrossRef Google Scholar
Arteca, R. (1996). Plant Growth Substances: Principles and Applications. New York: Chapman and Hall. Google Scholar
Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252–1257. CrossRef CAS PubMed Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier. Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C. & Adsmond, D. A. (1990). J. Chem. Soc. Chem. Commun. pp. 589–591. CrossRef Web of Science Google Scholar
Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533–536. CAS Google Scholar
Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101–109. CrossRef CAS Web of Science Google Scholar
Karle, I. L., Britts, K. & Gum, P. (1964). Acta Cryst. 17, 496–499. CSD CrossRef IUCr Journals Web of Science Google Scholar
Low, J. N., Quesada, A., Marchal, A., Melguizo, M., Nogueras, M. & Glidewell, C. (2002). Acta Cryst. C58, o289–o294. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754. Web of Science CrossRef CAS IUCr Journals Google Scholar
Scheinbeim, J. & Schempp, E. (1976). Acta Cryst. B32, 607–609. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2006). Acta Cryst. E62, o2976–o2978. Web of Science CSD CrossRef IUCr Journals Google Scholar
Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4212. Web of Science CSD CrossRef IUCr Journals Google Scholar
Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2008). Acta Cryst. E64, o107–o108. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A study of non-covalent interactions, such as hydrogen bonding, plays a key role in molecular recognition and crystal engineering (Desiraju, 1989). The prime importance of aminopyrimidine-carboxylate interactions is due to their involvement in protein-nuleic acid recognition and protein-drug binding (Hunt et al., 1980; Baker & Santi, 1965). Aminopyrimidines readily pair up with carboxylic acids to form adducts rather than individual self-assembly compounds which is evident from the fact that 2-aminopyrimidine forms a wide variety of 1:1 adducts with mono and dicarboxylic acids (Etter & Adsmond, 1990) rather than individual self-assembly compounds (Scheinbeim & Schempp, 1976). The R22(8) motif is a robust synthon which is frequently observed when a carboxylic acid interacts with a 2-amino heterocyclic ring system (Lynch & Jones, 2004). This motif is also recognized to be one of the top 5 motifs among the 24 commonly occurring motifs in crystal structures (Allen et al., 1998). Auxin is a plant growth hormone which induces cell elongation in stems. 2-(1H-indol-3-yl)acetic acid is the first isolated auxin (Arteca, 1996). The crystal structures of 4,6-dimethoxypyrimidin-2-amine (Low et al., 2002) and 2-(1H-indol-3-yl)acetic acid (Karle et al.,1964) have already been reported. Several cocrystals of 4,6-dimethoxypyrimidin-2-amine with various carboxylic acids such as 4,6-dimethoxypyrimidin-2-amine 4-aminobenzoic acid (1/1) (Thanigaimani et al., 2006), 4,6-dimethoxypyrimidin-2-amine phthalic acid (1/1) (Thanigaimani et al., 2007) and 4,6-dimethoxypyrimidin-2-amine anthranilic acid (1/1) (Thanigaimani et al., 2008) have been recently reported from our group. In the present study, the various hydrogen-bonding patterns in the 4,6-dimethoxypyrimidin-2-amine (1H-indol-3-yl)acetic acid (1/1) cocrystal, (I), are thoroughly investigated.
The asymmetric unit (Fig. 1) contains a molecule of 4,6-dimethoxypyrimidin-2-amine and a molecule of 2-(1H-indol-3-yl)acetic acid, which are linked by N—H···O and O—H···N hydrogen bonds (Table. 1), forming an eight-membered ring with graph-set notation R22(8) (Etter, 1990; Bernstein et al., 1995). This motif is further linked by an N—H···N hydrogen bond, involving the N3 atom of 4,6-dimethoxypyrimidin-2-amine and N4 atom of the 2-(1H-indol-3-yl)acetic acid molecule, to form a supramolecular chain along the c axis. This supramolecular chain is further interlinked with a neighboring chain through a couple of C—H···O hydrogen bonds. These C—H···O hydrogen bonds form another R22(8) motif. Further N—H···O, N—H···N and C—H···O hydrogen bonds combine together to form a large ring motif, with graph-set notation R64(22). This ring motif extends to give a one dimensional supramolecular ladder as shown in Fig. 2. π-π stacking interaction is observed between two aminopyrimidine rings. They have an interplanar distance, centroid-to-centroid distance and a slip angle (the angle between the centroid vector and the normal to the plane) of 3.4413 (4) Å, 3.4937 (6) Å and 9.93° respectively. These are typical aromatic stacking values (Hunter, 1994).