metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Actetato-1:2κ2O:O′-tri­bromido-2κ3Br-(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-1,7-diene-1κ4N)dizinc(II)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and bDepartment of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 5 June 2010; accepted 20 August 2010; online 30 September 2010)

In the title compound, [Zn2Br3(CH3COO)(C16H32N4)], one ZnII atom has a distorted square-planar coordination formed by the four macrocyclic N atoms with an acetate O atom in the apical position and the other ZnII atom has a tetra­hedral coordination environment formed by three Br atoms and one O acetate atom. The two ZnII atoms are linked by an acetate bridge. In the crystal, mol­ecules are linked into centrosymmetric dimers with graph-set motifs R22(16) by an N—H⋯Br inter­action. The mol­ecular configuration is stabilized by an intra­molecular N—H⋯Br hydrogen bond.

Related literature

For related macrocyclic complexes, see: Whimp et al. (1970[Whimp, P. O., Bailey, M. F. & Curtis, N. F. (1970). J. Chem. Soc. A, pp. 1956-1963.]); Yang (2005[Yang, Y.-M. (2005). Acta Cryst. E61, m1618-m1619.]); Tebbe et al. (1985[Tebbe, K.-F., Heinlein, T. & Fehér, M. (1985). Z. Kristallogr. 172 89-95.]). The unsubstituted parent compound exists in the zwitterionic form, see: Spirlet et al. (1991[Spirlet, M. R., Rebizant, J. & Barthelemy, P. P. (1991). J. Chem. Soc. Dalton Trans. pp. 2477-2481.]); Maurya et al. (1991[Maurya, M. R., Zaluzec, E. J. & Pavkovic, S. F. (1991). Inorg. Chem. 30, 3657-3662.]). For the preparation of the precursor complex C16H32N4·2HBr·2H2O, see: Hay et al. (1975[Hay, R. W., Lawrance, A. G. & Curtis, N. F. (1975). J. Chem. Soc. Perkin Trans. pp. 591-593.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2Br3(C2H3O2)(C16H32N4)]

  • Mr = 709.97

  • Monoclinic, P 21 /n

  • a = 10.2964 (8) Å

  • b = 13.6985 (13) Å

  • c = 18.5235 (18) Å

  • β = 92.280 (1)°

  • V = 2610.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.45 mm−1

  • T = 298 K

  • 0.43 × 0.42 × 0.22 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.240, Tmax = 0.428

  • 13032 measured reflections

  • 4608 independent reflections

  • 2923 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.067

  • S = 0.88

  • 4608 reflections

  • 269 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Br2i 0.91 2.80 3.549 (3) 140
N1—H1⋯Br1 0.91 2.74 3.641 (3) 171
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structures of several related macrocyclic complexes have been reported (Whimp et al., 1970; Yang, 2005; Tebbe et al., 1985). The unsubstituted parent compound exists in the zwitterionic form (Maurya et al., 1991; Spirlet et al., 1991). The zinc teraazamacrocyclic complex cation, [Zn(C16H32N4)] 2+, can combine with different anions to form many kinds of structures.

We herein report the crystal structure of a new compound synthesized by reaction of Zn(CH3COO)2.2H2O and the complex C18H32N4.2HBr.2H2O, Fig.1. The structural analysis reveals that the title complex is formed by a discrete neutral dinuclear C18H35N4O2Br3Zn2 molecule consisting of two Zn atoms bridged by an acetate with the distance of 6.512 (1) Å between the them. Zn(1) is five-coordinated by the four macrocyclic N atoms with acetate O atom as an apical ligand while that the other Zn atom is in a tetrahedron coordinate environment formed by three bromine atoms and one O acetate atom. The average Zn—N(amine) bond distance of 2.1546 (5)Å and Zn—N(imine) bond distance of 2.0582 (5) Å). The average Zn—Br bond distance of 2.4070 (6) Å, the Zn(1)—O(1) bond distance of` 2.0030 (1) Å and the Zn(2)—O(2) bond distance of` 1.9967 (1) Å). In the crystal the molecules are linked into centrosymmetric dimers with graph-set notation R22(16) motifs by a N—H···Br interaction, centred at [1/2,1/2,0] (Bernstein et al., 1995), Fig. 2. The molecular conformation is stabilized by one intramolecular N—H···Br hydrogen bond. Table 1.

Related literature top

For related macrocyclic complexes, see: Whimp et al. (1970); Yang (2005); Tebbe et al. (1985). The unsubstituted parent compound exists in the zwitterionic form, see: Spirlet et al. (1991); Maurya et al. (1991). The precursor complex C18H32N4.2HBr.2H2O was prepared by the literature method, see: Hay et al. (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

All chemicals were of reagent grade and were used as received without further purification. The precursor complex C18H32N4.2HBr.2H2O was prepared by the literature method (Hay et al.,1975). To a 10 ml me thanol solution of Zn(CH3COO)2.2H2O(0.2 mmol,0.039 g), a 5 ml methanol solution of C18H32N4.2HBr.2H2O (0.2 mmol,0.0957 g) was added dropwise with stirring. The resulting solution was continuously stirred for about 30 min. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature over several days.

Refinement top

All H atoms were refined as riding on their parent atoms, with distances of 0.91 (NH), 0.97 (CH2) and 0.96 (CH3) Å from the parent C and N atoms, with Uiso(H) = 1.2Ueq(CH2, N) or 1.5Ueq(CH3).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
µ-Actetato-1:2κ2O:O'-tribromido-2κ3Br- (5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-1,7-diene- 1κ4N)dizinc(II) top
Crystal data top
[Zn2Br3(C2H3O2)(C16H32N4)]F(000) = 1408
Mr = 709.97Dx = 1.806 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3476 reflections
a = 10.2964 (8) Åθ = 2.3–27.5°
b = 13.6985 (13) ŵ = 6.45 mm1
c = 18.5235 (18) ÅT = 298 K
β = 92.280 (1)°Prism, purple
V = 2610.6 (4) Å30.43 × 0.42 × 0.22 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
4608 independent reflections
Radiation source: fine-focus sealed tube2923 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 1.9°
thin–slice ω scansh = 129
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1614
Tmin = 0.240, Tmax = 0.428l = 2217
13032 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0294P)2]
where P = (Fo2 + 2Fc2)/3
4608 reflections(Δ/σ)max = 0.001
269 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Zn2Br3(C2H3O2)(C16H32N4)]V = 2610.6 (4) Å3
Mr = 709.97Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.2964 (8) ŵ = 6.45 mm1
b = 13.6985 (13) ÅT = 298 K
c = 18.5235 (18) Å0.43 × 0.42 × 0.22 mm
β = 92.280 (1)°
Data collection top
Rigaku SCXmini
diffractometer
4608 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2923 reflections with I > 2σ(I)
Tmin = 0.240, Tmax = 0.428Rint = 0.038
13032 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 0.88Δρmax = 0.57 e Å3
4608 reflectionsΔρmin = 0.55 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.41999 (5)0.72812 (3)0.14536 (3)0.03733 (14)
Zn20.62870 (5)0.70274 (3)0.07545 (3)0.04247 (15)
Br10.76873 (5)0.82052 (4)0.01332 (3)0.05506 (16)
Br20.72235 (6)0.62875 (4)0.18003 (3)0.06807 (19)
Br30.43184 (6)0.78165 (4)0.11309 (3)0.07402 (19)
N10.5700 (3)0.8386 (2)0.14436 (19)0.0423 (9)
H10.61280.82910.10290.051*
N20.4572 (4)0.6965 (3)0.25310 (19)0.0469 (10)
N30.2615 (3)0.6280 (2)0.15567 (17)0.0368 (9)
H30.29040.56870.14110.044*
N40.3048 (4)0.8384 (2)0.10354 (19)0.0432 (10)
O10.5078 (3)0.6609 (2)0.06459 (16)0.0492 (8)
O20.6337 (3)0.58620 (19)0.01065 (15)0.0505 (9)
C10.6712 (5)0.8346 (4)0.2045 (3)0.0527 (13)
C20.6081 (5)0.8285 (4)0.2784 (2)0.0676 (16)
H2A0.67580.83940.31540.081*
H2B0.54720.88230.28110.081*
C30.5369 (5)0.7362 (4)0.2978 (3)0.0594 (14)
C40.5646 (5)0.6981 (5)0.3728 (3)0.096 (2)
H4A0.48870.70570.40080.144*
H4B0.63550.73410.39510.144*
H4C0.58730.63030.37050.144*
C50.7534 (5)0.7430 (4)0.1919 (3)0.0635 (15)
H5A0.69940.68610.19410.095*
H5B0.82180.73890.22850.095*
H5C0.79040.74680.14520.095*
C60.7621 (5)0.9236 (4)0.2029 (3)0.0804 (18)
H6A0.79230.93200.15500.121*
H6B0.83510.91340.23600.121*
H6C0.71570.98090.21680.121*
C70.3741 (5)0.6141 (3)0.2740 (2)0.0548 (14)
H7A0.36240.61570.32570.066*
H7B0.41570.55280.26240.066*
C80.2441 (5)0.6206 (3)0.2345 (2)0.0477 (12)
H8A0.19300.56310.24480.057*
H8B0.19760.67750.25100.057*
C90.1416 (4)0.6503 (3)0.1099 (3)0.0465 (12)
C100.0989 (4)0.7575 (3)0.1209 (3)0.0515 (13)
H10A0.01300.76490.09810.062*
H10B0.08990.76740.17230.062*
C110.1824 (5)0.8391 (3)0.0939 (2)0.0453 (12)
C120.1073 (5)0.9219 (3)0.0586 (3)0.0803 (19)
H12A0.16030.97950.05900.121*
H12B0.03020.93420.08470.121*
H12C0.08340.90470.00960.121*
C130.1742 (5)0.6312 (3)0.0316 (2)0.0619 (15)
H13A0.24650.67110.01910.093*
H13B0.10030.64670.00050.093*
H13C0.19630.56360.02590.093*
C140.0265 (5)0.5847 (3)0.1298 (3)0.0669 (15)
H14A0.05180.51740.12680.100*
H14B0.04600.59670.09690.100*
H14C0.00230.59910.17820.100*
C150.3888 (5)0.9187 (3)0.0800 (3)0.0567 (14)
H15A0.33890.97860.07560.068*
H15B0.42270.90360.03320.068*
C160.4994 (5)0.9317 (3)0.1349 (3)0.0626 (15)
H16A0.55810.98180.11880.075*
H16B0.46570.95220.18070.075*
C170.5813 (5)0.5924 (3)0.0502 (2)0.0380 (11)
C180.6139 (5)0.5127 (3)0.1038 (2)0.0585 (14)
H18A0.54820.51000.13910.088*
H18B0.69660.52620.12740.088*
H18C0.61770.45130.07900.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0313 (3)0.0354 (3)0.0452 (3)0.0023 (2)0.0018 (2)0.0006 (2)
Zn20.0463 (4)0.0369 (3)0.0442 (3)0.0020 (3)0.0017 (3)0.0035 (2)
Br10.0495 (4)0.0584 (3)0.0572 (3)0.0164 (3)0.0010 (2)0.0022 (3)
Br20.1039 (5)0.0423 (3)0.0601 (3)0.0021 (3)0.0300 (3)0.0018 (3)
Br30.0596 (4)0.0683 (4)0.0919 (4)0.0104 (3)0.0254 (3)0.0014 (3)
N10.032 (2)0.045 (2)0.050 (2)0.0014 (18)0.0042 (19)0.0088 (18)
N20.043 (3)0.055 (3)0.042 (2)0.000 (2)0.001 (2)0.006 (2)
N30.038 (2)0.0321 (19)0.040 (2)0.0040 (17)0.0038 (18)0.0003 (17)
N40.033 (3)0.036 (2)0.060 (3)0.0012 (18)0.004 (2)0.0044 (18)
O10.043 (2)0.0449 (19)0.060 (2)0.0045 (16)0.0063 (16)0.0063 (16)
O20.067 (3)0.0379 (18)0.048 (2)0.0049 (16)0.0190 (18)0.0034 (15)
C10.032 (3)0.067 (3)0.058 (3)0.012 (3)0.001 (3)0.020 (3)
C20.054 (4)0.093 (4)0.056 (3)0.008 (3)0.001 (3)0.029 (3)
C30.039 (3)0.092 (4)0.048 (3)0.003 (3)0.009 (3)0.022 (3)
C40.069 (5)0.181 (7)0.038 (3)0.027 (4)0.007 (3)0.004 (4)
C50.040 (3)0.094 (4)0.056 (3)0.012 (3)0.005 (3)0.007 (3)
C60.052 (4)0.099 (4)0.089 (4)0.032 (3)0.000 (3)0.024 (4)
C70.067 (4)0.055 (3)0.043 (3)0.003 (3)0.002 (3)0.000 (2)
C80.051 (4)0.045 (3)0.048 (3)0.003 (2)0.016 (3)0.003 (2)
C90.033 (3)0.036 (3)0.071 (4)0.002 (2)0.000 (3)0.003 (2)
C100.032 (3)0.044 (3)0.079 (4)0.009 (2)0.002 (3)0.006 (2)
C110.040 (3)0.036 (3)0.060 (3)0.001 (2)0.001 (3)0.004 (2)
C120.056 (4)0.043 (3)0.139 (5)0.003 (3)0.042 (4)0.017 (3)
C130.069 (4)0.055 (3)0.061 (4)0.002 (3)0.016 (3)0.004 (3)
C140.042 (4)0.052 (3)0.107 (4)0.010 (3)0.001 (3)0.008 (3)
C150.045 (4)0.037 (3)0.088 (4)0.000 (2)0.002 (3)0.016 (3)
C160.049 (4)0.039 (3)0.100 (4)0.006 (3)0.009 (3)0.004 (3)
C170.042 (3)0.033 (3)0.039 (3)0.011 (2)0.000 (2)0.001 (2)
C180.079 (4)0.046 (3)0.051 (3)0.000 (3)0.004 (3)0.008 (2)
Geometric parameters (Å, º) top
Zn1—O12.003 (3)C6—H6A0.9600
Zn1—N42.053 (3)C6—H6B0.9600
Zn1—N22.063 (4)C6—H6C0.9600
Zn1—N32.146 (3)C7—C81.502 (6)
Zn1—N12.163 (3)C7—H7A0.9700
Zn2—O21.997 (3)C7—H7B0.9700
Zn2—Br32.3772 (8)C8—H8A0.9700
Zn2—Br22.4204 (7)C8—H8B0.9700
Zn2—Br12.4236 (7)C9—C131.524 (6)
N1—C161.474 (5)C9—C141.543 (6)
N1—C11.497 (5)C9—C101.548 (6)
N1—H10.9100C10—C111.508 (6)
N2—C31.264 (6)C10—H10A0.9700
N2—C71.479 (5)C10—H10B0.9700
N3—C81.482 (5)C11—C121.508 (6)
N3—C91.501 (5)C12—H12A0.9600
N3—H30.9100C12—H12B0.9600
N4—C111.266 (5)C12—H12C0.9600
N4—C151.476 (5)C13—H13A0.9600
O1—C171.241 (5)C13—H13B0.9600
O2—C171.272 (5)C13—H13C0.9600
C1—C51.537 (6)C14—H14A0.9600
C1—C61.538 (6)C14—H14B0.9600
C1—C21.539 (6)C14—H14C0.9600
C2—C31.512 (7)C15—C161.507 (6)
C2—H2A0.9700C15—H15A0.9700
C2—H2B0.9700C15—H15B0.9700
C3—C41.501 (7)C16—H16A0.9700
C4—H4A0.9600C16—H16B0.9700
C4—H4B0.9600C17—C181.504 (5)
C4—H4C0.9600C18—H18A0.9600
C5—H5A0.9600C18—H18B0.9600
C5—H5B0.9600C18—H18C0.9600
C5—H5C0.9600
O1—Zn1—N4109.13 (13)H6B—C6—H6C109.5
O1—Zn1—N2123.65 (13)N2—C7—C8109.9 (4)
N4—Zn1—N2126.98 (14)N2—C7—H7A109.7
O1—Zn1—N398.04 (12)C8—C7—H7A109.7
N4—Zn1—N394.26 (14)N2—C7—H7B109.7
N2—Zn1—N383.84 (14)C8—C7—H7B109.7
O1—Zn1—N188.39 (12)H7A—C7—H7B108.2
N4—Zn1—N183.31 (14)N3—C8—C7110.1 (4)
N2—Zn1—N192.85 (14)N3—C8—H8A109.6
N3—Zn1—N1173.56 (13)C7—C8—H8A109.6
O2—Zn2—Br3122.76 (10)N3—C8—H8B109.6
O2—Zn2—Br298.32 (8)C7—C8—H8B109.6
Br3—Zn2—Br2108.54 (3)H8A—C8—H8B108.2
O2—Zn2—Br1104.25 (9)N3—C9—C13107.2 (4)
Br3—Zn2—Br1108.71 (3)N3—C9—C14111.6 (4)
Br2—Zn2—Br1114.23 (3)C13—C9—C14109.1 (4)
C16—N1—C1116.5 (4)N3—C9—C10110.5 (4)
C16—N1—Zn1104.9 (3)C13—C9—C10111.3 (4)
C1—N1—Zn1116.4 (3)C14—C9—C10107.2 (4)
C16—N1—H1106.1C11—C10—C9119.4 (4)
C1—N1—H1106.1C11—C10—H10A107.5
Zn1—N1—H1106.1C9—C10—H10A107.5
C3—N2—C7121.6 (4)C11—C10—H10B107.5
C3—N2—Zn1129.4 (4)C9—C10—H10B107.5
C7—N2—Zn1109.1 (3)H10A—C10—H10B107.0
C8—N3—C9116.2 (4)N4—C11—C10121.7 (4)
C8—N3—Zn1104.7 (2)N4—C11—C12123.9 (4)
C9—N3—Zn1115.5 (2)C10—C11—C12114.3 (4)
C8—N3—H3106.6C11—C12—H12A109.5
C9—N3—H3106.6C11—C12—H12B109.5
Zn1—N3—H3106.6H12A—C12—H12B109.5
C11—N4—C15123.0 (4)C11—C12—H12C109.5
C11—N4—Zn1127.9 (3)H12A—C12—H12C109.5
C15—N4—Zn1108.9 (3)H12B—C12—H12C109.5
C17—O1—Zn1143.7 (3)C9—C13—H13A109.5
C17—O2—Zn2118.5 (3)C9—C13—H13B109.5
N1—C1—C5106.7 (3)H13A—C13—H13B109.5
N1—C1—C6111.3 (4)C9—C13—H13C109.5
C5—C1—C6107.8 (4)H13A—C13—H13C109.5
N1—C1—C2110.9 (4)H13B—C13—H13C109.5
C5—C1—C2110.2 (4)C9—C14—H14A109.5
C6—C1—C2109.8 (4)C9—C14—H14B109.5
C3—C2—C1118.8 (4)H14A—C14—H14B109.5
C3—C2—H2A107.6C9—C14—H14C109.5
C1—C2—H2A107.6H14A—C14—H14C109.5
C3—C2—H2B107.6H14B—C14—H14C109.5
C1—C2—H2B107.6N4—C15—C16108.9 (4)
H2A—C2—H2B107.0N4—C15—H15A109.9
N2—C3—C4123.5 (5)C16—C15—H15A109.9
N2—C3—C2120.8 (5)N4—C15—H15B109.9
C4—C3—C2115.7 (4)C16—C15—H15B109.9
C3—C4—H4A109.5H15A—C15—H15B108.3
C3—C4—H4B109.5N1—C16—C15109.5 (4)
H4A—C4—H4B109.5N1—C16—H16A109.8
C3—C4—H4C109.5C15—C16—H16A109.8
H4A—C4—H4C109.5N1—C16—H16B109.8
H4B—C4—H4C109.5C15—C16—H16B109.8
C1—C5—H5A109.5H16A—C16—H16B108.2
C1—C5—H5B109.5O1—C17—O2121.7 (4)
H5A—C5—H5B109.5O1—C17—C18121.9 (4)
C1—C5—H5C109.5O2—C17—C18116.4 (4)
H5A—C5—H5C109.5C17—C18—H18A109.5
H5B—C5—H5C109.5C17—C18—H18B109.5
C1—C6—H6A109.5H18A—C18—H18B109.5
C1—C6—H6B109.5C17—C18—H18C109.5
H6A—C6—H6B109.5H18A—C18—H18C109.5
C1—C6—H6C109.5H18B—C18—H18C109.5
H6A—C6—H6C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Br2i0.912.803.549 (3)140
N1—H1···Br10.912.743.641 (3)171
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn2Br3(C2H3O2)(C16H32N4)]
Mr709.97
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.2964 (8), 13.6985 (13), 18.5235 (18)
β (°) 92.280 (1)
V3)2610.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)6.45
Crystal size (mm)0.43 × 0.42 × 0.22
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.240, 0.428
No. of measured, independent and
observed [I > 2σ(I)] reflections
13032, 4608, 2923
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.067, 0.88
No. of reflections4608
No. of parameters269
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.55

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Br2i0.912.803.549 (3)140.0
N1—H1···Br10.912.743.641 (3)171.2
Symmetry code: (i) x+1, y+1, z.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573  CrossRef CAS Web of Science Google Scholar
First citationHay, R. W., Lawrance, A. G. & Curtis, N. F. (1975). J. Chem. Soc. Perkin Trans. pp. 591–593.  CrossRef Web of Science Google Scholar
First citationMaurya, M. R., Zaluzec, E. J. & Pavkovic, S. F. (1991). Inorg. Chem. 30, 3657–3662.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpirlet, M. R., Rebizant, J. & Barthelemy, P. P. (1991). J. Chem. Soc. Dalton Trans. pp. 2477–2481.  CSD CrossRef Web of Science Google Scholar
First citationTebbe, K.-F., Heinlein, T. & Fehér, M. (1985). Z. Kristallogr. 172 89–95.  CrossRef CAS Web of Science Google Scholar
First citationWhimp, P. O., Bailey, M. F. & Curtis, N. F. (1970). J. Chem. Soc. A, pp. 1956–1963.  CSD CrossRef Google Scholar
First citationYang, Y.-M. (2005). Acta Cryst. E61, m1618–m1619.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds