metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(meso-5,7,7,12,14,14-Hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-4,11-diene)nickel(II) dibromide dihydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 28 July 2010; accepted 20 August 2010; online 30 September 2010)

The asymmetric unit of the title compound, [Ni(C16H32N4)]Br2·2H2O, consists of one half [Ni(C16H32N4)]2+ cation, one Br anion and one water mol­ecule of crystallization. The NiII ion lies on an inversion centre in a square-planar environment formed by the four macrocyclic ligand N atoms. In the crystal structure, the cations, anions and water mol­ecules are linked via inter­molecular N—H⋯Br and O—H⋯Br hydrogen bonds, forming discrete chains with set-graph motif D(2)D22(7)D21(3)D32(8). The water mol­ecules and Br ions are linked with set-graph motif R42(8).

Related literature

For related structures, see: Ballester et al. (2000[Ballester, L., Gil, A. M., Gutiérrez, A., Perpiñán, M. F., Azcondo, M. T., Sánchez, A. E., Coronado, E. & Gómez-García, C. J. (2000). Inorg. Chem. 39, 2837-2842.]); Heinlein & Tebbe (1985[Heinlein, T. & Tebbe, K. F. (1985). Z. Kristallogr. 170, 70-71.]); Shen et al. (1999[Shen, H.-Y., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (1999). Transition Met. Chem. 24, 581-583.]); Szalda et al. (1989[Szalda, D. J., Schwarz, C. L. & Creutz, C. (1989). Inorg. Chem. 30, 586-588.]); Wang et al. (2007[Wang, W.-B., Yang, L.-X., Yu, L.-C., Song, C.-X. & Wu, S.-Y. (2007). J. Coord. Chem. 61, 528-539.]); Whimp et al. (1970[Whimp, P. O., Bailey, M. F. & Curtis, N. F. (1970). J. Chem. Soc. A, pp. 1956-1963.]); Yang (2005[Yang, Y.-M. (2005). Acta Cryst. E61, m1618-m1619.]). For the preparation of the precursor complex C16H32N4·2HBr·2H2O, see: Hay et al. (1975[Hay, R. W., Lawrance, A. G. & Curtis, N. F. (1975). J. Chem. Soc. Perkin Trans. pp. 591-593.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C16H32N4)]Br2·2H2O

  • Mr = 535.02

  • Monoclinic, P 21 /c

  • a = 8.0349 (16) Å

  • b = 15.619 (3) Å

  • c = 8.9355 (18) Å

  • β = 99.72 (3)°

  • V = 1105.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.51 mm−1

  • T = 293 K

  • 0.27 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.831, Tmax = 0.862

  • 11266 measured reflections

  • 2531 independent reflections

  • 1995 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.099

  • S = 1.05

  • 2531 reflections

  • 116 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1i 0.91 2.53 3.413 (3) 164
O1—H1E⋯Br1ii 0.85 2.53 3.374 (3) 169
O1—H1F⋯Br1iii 0.85 2.55 3.388 (5) 170
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structures of several related macrocyclic complexes have been reported (Whimp et al.,1970; Yang, 2005; Heinlein et al., 1985) for many times in the past years. The nickel(II) tetraazamacrocyclic complex cation, [Ni(C16H32N4)]2+ has both meso and enantiomeric forms and can combine with different anions to form many kinds of structures (Shen et al., 1999; Ballester et al., 2000; Wang et al., 2007). We herein report the crystal structure of a new compound synthesized by reaction of Ni(CH3COO)2.4H2O and the complex C16H32N4.2HBr.2H2O in methanol solution. As shown in Fig.1, the NiII atom is coordinated by four N atoms from the tetraazamacrocycle in a square-planar geometry. The metal atom and the four N atoms are coplanar. The Ni—N(amine) and N(imine) bond distances are 1.934 (3) Å and 1.916 (3)Å and are similar to those in previously report (Szalda et al.,1989). In the crystal structure, the cations, anions and water molecules are linked via intermolecular N—H···Br and O— H···Br hydrogen bonds forming discrete chains with set-graph motif D11(2), D22(7), D21(3) and D32(8). The water molecules and Br ions are linked forming R42(8) set-graph motif (Bernstein et al., 1995), Fig 2.

Related literature top

For related structures, see: Ballester et al. (2000); Heinlein & Tebbe (1985); Shen et al. (1999); Szalda et al. (1989); Wang et al. (2007); Whimp et al. (1970); Yang (2005). For the preparation of the precursor complex C16H32N4 .2HBr.2H2O, see: Hay et al. (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

All chemicals were of reagent grade and were used as received without further purification. The precursor complex C16H32N4 .2HBr.2H2O was prepared by described in the literature method (Hay et al., 1975). To a 10 ml methanol solution of Ni(CH3COO)2.4H2O (0.2 mmol, 0.049 g), a 5 ml methanol solution of C16H32N4.2HBr.2H2O (0.2 mmol, 0.0957 g) was added dropwise with stirring. The resulting solution was continuously stirred for about 30 min. Yellow crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature over several days.

Refinement top

All hydrogen atoms were placed in calculated positions with C—H = 0.96 to 0.97 Å, N—H = 0.91 Å and O—H = 0.82 Å. They were included in the refinement in the riding-motion approximation with Uiso(H) = 1.2Ueq(C, N, O) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabeled atoms are related to labeled atoms by the symmetry code (1-x,1-y,1-z)
[Figure 2] Fig. 2. View of (I) along b, showing chains of organic cations running parallel to the (001) direction, with Br- anions and water molecules lying between them.
(meso-5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11- diene)nickel(II) dibromide dihydrate top
Crystal data top
[Ni(C16H32N4)]Br2·2H2OF(000) = 548
Mr = 535.02Dx = 1.608 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3476 reflections
a = 8.0349 (16) Åθ = 2.3–27.5°
b = 15.619 (3) ŵ = 4.51 mm1
c = 8.9355 (18) ÅT = 293 K
β = 99.72 (3)°Prism, brown
V = 1105.3 (4) Å30.27 × 0.20 × 0.20 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
2531 independent reflections
Radiation source: fine-focus sealed tube1995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
thin–slice ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2020
Tmin = 0.831, Tmax = 0.862l = 1111
11266 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0317P)2 + 1.6713P]
where P = (Fo2 + 2Fc2)/3
2531 reflections(Δ/σ)max < 0.001
116 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Ni(C16H32N4)]Br2·2H2OV = 1105.3 (4) Å3
Mr = 535.02Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.0349 (16) ŵ = 4.51 mm1
b = 15.619 (3) ÅT = 293 K
c = 8.9355 (18) Å0.27 × 0.20 × 0.20 mm
β = 99.72 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2531 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1995 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.862Rint = 0.048
11266 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.05Δρmax = 0.74 e Å3
2531 reflectionsΔρmin = 0.74 e Å3
116 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.02894 (16)
Br10.69586 (6)0.10330 (3)0.63849 (6)0.06334 (18)
C10.8076 (5)0.5280 (2)0.7876 (4)0.0410 (8)
H1B0.92280.53340.84060.061*
H1C0.73440.53120.86330.061*
C20.7698 (4)0.6042 (2)0.6830 (4)0.0362 (8)
C30.5246 (5)0.6761 (2)0.5232 (5)0.0546 (11)
H3A0.58770.68310.44050.065*
H3B0.53840.72730.58540.065*
C40.3413 (5)0.6610 (2)0.4621 (5)0.0536 (11)
H4A0.27480.66560.54290.064*
H4B0.30030.70300.38460.064*
C50.2117 (4)0.5591 (2)0.2827 (4)0.0343 (7)
C60.8765 (5)0.6034 (3)0.5571 (5)0.0503 (10)
H6A0.85250.55250.49720.075*
H6B0.99410.60440.60130.075*
H6C0.85030.65280.49370.075*
C70.8061 (5)0.6849 (3)0.7812 (5)0.0561 (11)
H7A0.78330.73480.71840.084*
H7B0.92250.68510.82900.084*
H7C0.73530.68530.85760.084*
C80.0896 (5)0.6244 (3)0.2077 (5)0.0528 (10)
H8A0.01470.59840.12520.079*
H8B0.15040.67020.16950.079*
H8C0.02520.64680.28020.079*
N10.5857 (3)0.60021 (16)0.6151 (3)0.0332 (6)
H1A0.53000.60150.69570.040*
N20.3276 (3)0.57404 (17)0.3970 (3)0.0333 (6)
O10.6240 (6)0.8913 (2)0.6616 (5)0.0923 (12)
H1E0.65250.94380.66650.111*
H1F0.54210.88540.58850.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0263 (3)0.0225 (3)0.0368 (3)0.0004 (2)0.0016 (2)0.0001 (3)
Br10.0521 (3)0.0655 (3)0.0752 (4)0.0076 (2)0.0189 (2)0.0112 (2)
C10.041 (2)0.046 (2)0.0338 (19)0.0010 (16)0.0019 (16)0.0021 (16)
C20.0299 (17)0.0349 (19)0.042 (2)0.0014 (14)0.0011 (15)0.0035 (15)
C30.057 (3)0.0238 (17)0.075 (3)0.0031 (17)0.012 (2)0.0055 (19)
C40.050 (2)0.0277 (19)0.074 (3)0.0112 (17)0.013 (2)0.0055 (19)
C50.0321 (17)0.0398 (19)0.0319 (18)0.0022 (14)0.0079 (14)0.0059 (15)
C60.043 (2)0.051 (2)0.061 (3)0.0022 (18)0.021 (2)0.008 (2)
C70.051 (2)0.041 (2)0.071 (3)0.0062 (18)0.004 (2)0.012 (2)
C80.048 (2)0.057 (3)0.048 (2)0.019 (2)0.0043 (19)0.003 (2)
N10.0299 (14)0.0264 (14)0.0430 (17)0.0001 (11)0.0051 (12)0.0013 (12)
N20.0321 (15)0.0257 (14)0.0407 (16)0.0040 (11)0.0025 (13)0.0021 (12)
O10.103 (3)0.070 (2)0.097 (3)0.013 (2)0.001 (2)0.019 (2)
Geometric parameters (Å, º) top
Ni1—N21.916 (3)C4—H4B0.9700
Ni1—N2i1.916 (3)C5—N21.282 (4)
Ni1—N11.934 (3)C5—C81.494 (5)
Ni1—N1i1.934 (3)C5—C1i1.494 (5)
C1—C5i1.494 (5)C6—H6A0.9600
C1—C21.513 (5)C6—H6B0.9600
C1—H1B0.9700C6—H6C0.9600
C1—H1C0.9700C7—H7A0.9600
C2—N11.503 (4)C7—H7B0.9600
C2—C61.525 (5)C7—H7C0.9600
C2—C71.535 (5)C8—H8A0.9600
C3—N11.477 (4)C8—H8B0.9600
C3—C41.501 (5)C8—H8C0.9600
C3—H3A0.9700N1—H1A0.9100
C3—H3B0.9700O1—H1E0.8500
C4—N21.475 (5)O1—H1F0.8500
C4—H4A0.9700
N2—Ni1—N2i180.000 (1)N2—C5—C1i120.7 (3)
N2—Ni1—N186.01 (12)C8—C5—C1i114.8 (3)
N2i—Ni1—N193.99 (12)C2—C6—H6A109.5
N2—Ni1—N1i93.99 (12)C2—C6—H6B109.5
N2i—Ni1—N1i86.01 (12)H6A—C6—H6B109.5
N1—Ni1—N1i180.0C2—C6—H6C109.5
C5i—C1—C2117.5 (3)H6A—C6—H6C109.5
C5i—C1—H1B107.9H6B—C6—H6C109.5
C2—C1—H1B107.9C2—C7—H7A109.5
C5i—C1—H1C107.9C2—C7—H7B109.5
C2—C1—H1C107.9H7A—C7—H7B109.5
H1B—C1—H1C107.2C2—C7—H7C109.5
N1—C2—C1107.3 (3)H7A—C7—H7C109.5
N1—C2—C6109.9 (3)H7B—C7—H7C109.5
C1—C2—C6111.7 (3)C5—C8—H8A109.5
N1—C2—C7110.1 (3)C5—C8—H8B109.5
C1—C2—C7107.1 (3)H8A—C8—H8B109.5
C6—C2—C7110.6 (3)C5—C8—H8C109.5
N1—C3—C4106.8 (3)H8A—C8—H8C109.5
N1—C3—H3A110.4H8B—C8—H8C109.5
C4—C3—H3A110.4C3—N1—C2113.8 (3)
N1—C3—H3B110.4C3—N1—Ni1107.4 (2)
C4—C3—H3B110.4C2—N1—Ni1119.1 (2)
H3A—C3—H3B108.6C3—N1—H1A105.1
N2—C4—C3106.9 (3)C2—N1—H1A105.1
N2—C4—H4A110.3Ni1—N1—H1A105.1
C3—C4—H4A110.3C5—N2—C4118.5 (3)
N2—C4—H4B110.3C5—N2—Ni1129.9 (2)
C3—C4—H4B110.3C4—N2—Ni1111.5 (2)
H4A—C4—H4B108.6H1E—O1—H1F108.1
N2—C5—C8124.5 (3)
C5i—C1—C2—N164.1 (4)N2—Ni1—N1—C2154.2 (3)
C5i—C1—C2—C656.4 (4)N2i—Ni1—N1—C225.8 (3)
C5i—C1—C2—C7177.6 (3)N1i—Ni1—N1—C279 (100)
N1—C3—C4—N248.4 (5)C8—C5—N2—C41.2 (5)
C4—C3—N1—C2179.0 (3)C1i—C5—N2—C4180.0 (3)
C4—C3—N1—Ni145.0 (4)C8—C5—N2—Ni1176.6 (3)
C1—C2—N1—C3173.5 (3)C1i—C5—N2—Ni12.2 (5)
C6—C2—N1—C364.9 (4)C3—C4—N2—C5148.4 (4)
C7—C2—N1—C357.2 (4)C3—C4—N2—Ni129.8 (4)
C1—C2—N1—Ni158.4 (3)N2i—Ni1—N2—C565 (100)
C6—C2—N1—Ni163.2 (3)N1—Ni1—N2—C5173.9 (3)
C7—C2—N1—Ni1174.7 (3)N1i—Ni1—N2—C56.1 (3)
N2—Ni1—N1—C323.2 (3)N2i—Ni1—N2—C4117 (100)
N2i—Ni1—N1—C3156.8 (3)N1—Ni1—N2—C44.0 (3)
N1i—Ni1—N1—C3150 (100)N1i—Ni1—N2—C4176.0 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1ii0.912.533.413 (3)164
O1—H1E···Br1iii0.852.533.374 (3)169
O1—H1F···Br1i0.852.553.388 (5)170
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C16H32N4)]Br2·2H2O
Mr535.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.0349 (16), 15.619 (3), 8.9355 (18)
β (°) 99.72 (3)
V3)1105.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)4.51
Crystal size (mm)0.27 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.831, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
11266, 2531, 1995
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.099, 1.05
No. of reflections2531
No. of parameters116
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.74

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.912.533.413 (3)164
O1—H1E···Br1ii0.852.533.374 (3)169
O1—H1F···Br1iii0.852.553.388 (5)170
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1, z; (iii) x+1, y+1, z+1.
 

References

First citationBallester, L., Gil, A. M., Gutiérrez, A., Perpiñán, M. F., Azcondo, M. T., Sánchez, A. E., Coronado, E. & Gómez-García, C. J. (2000). Inorg. Chem. 39, 2837–2842.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationHay, R. W., Lawrance, A. G. & Curtis, N. F. (1975). J. Chem. Soc. Perkin Trans. pp. 591–593.  CrossRef Web of Science Google Scholar
First citationHeinlein, T. & Tebbe, K. F. (1985). Z. Kristallogr. 170, 70–71.  Google Scholar
First citationRigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, H.-Y., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (1999). Transition Met. Chem. 24, 581–583.  Web of Science CSD CrossRef CAS Google Scholar
First citationSzalda, D. J., Schwarz, C. L. & Creutz, C. (1989). Inorg. Chem. 30, 586–588.  CSD CrossRef Web of Science Google Scholar
First citationWang, W.-B., Yang, L.-X., Yu, L.-C., Song, C.-X. & Wu, S.-Y. (2007). J. Coord. Chem. 61, 528–539.  Web of Science CSD CrossRef Google Scholar
First citationWhimp, P. O., Bailey, M. F. & Curtis, N. F. (1970). J. Chem. Soc. A, pp. 1956–1963.  CSD CrossRef Google Scholar
First citationYang, Y.-M. (2005). Acta Cryst. E61, m1618–m1619.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds