organic compounds
N-[(2-Chloro-3-quinolyl)methyl]-4-fluoroaniline
aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Jamia Hamdard, New Delhi 110 062, India
*Correspondence e-mail: jjasinski@keene.edu
In the title compound, C16H12ClFN2, the dihedral angle between the quinoline ring system and the flourophenyl ring is 86.70 (4)°. In the crystal, molecules are linked into chains along the a axis by N—H⋯N hydrogen bonds. In addition, C—H⋯π interactions involving the two benzene rings are observed.
Related literature
For general background, properties and the biological activity of quinolines, see: Campbell et al. (1988); Dutta et al. (2002); Markees et al. (1970); Meth-Cohn et al. (1981); Michael et al. (1997); Morimoto et al. (1991); Padwa et al. (1999); Rajendran & Karavembu (2002); Robert & Meunier et al. (1998). For the synthesis of quinolines, see: Kouznetsov et al. (2005). For related structures, see: Butcher et al. 2007); Lynch et al. (2001); Subashini et al. (2009); Yathirajan et al. (2007); Wu et al. (2009); Khan et al. (2010). For bond-length data, see: Allen et al. (1987) .
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810036056/ci5158sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810036056/ci5158Isup2.hkl
In a mixture of 3-(chloromethyl)-2-chloroquinoline (0.003 mol) and substituted phenyl amine (0.003 mol) in 20 ml of absolute ethanol, 1 ml of triethylamine (TEA) was added and refluxed for 12–15 hrs (Fig. 3). After completion of the reaction, content of the flask was reduced to half and left overnight. The crystalline mass obtained was filtered off, washed with water, dried and re-crystallized from ethanol to give N-[(2-chloroquinolin-3-yl)methyl]-4-fluoroaniline. X-ray quality crystals were obtained by slow evaporation of a methanol solution (m.p. 413–415 K).
All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.93 Å (CH), 0.97 Å (CH2) or 0.86 Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 times Ueq of the parent atom.
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme and 50% probability displacement ellipsoids. | |
Fig. 2. Packing diagram of the title compound, viewed down the b axis. Dashed lines indicate weak N—H···N hydrogen bonds. | |
Fig. 3. Reaction scheme for the title compound. |
C16H12ClFN2 | Z = 2 |
Mr = 286.73 | F(000) = 296 |
Triclinic, P1 | Dx = 1.427 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.3661 (8) Å | Cell parameters from 5222 reflections |
b = 8.8967 (9) Å | θ = 2.5–31.0° |
c = 11.5129 (12) Å | µ = 0.29 mm−1 |
α = 68.704 (1)° | T = 100 K |
β = 74.468 (1)° | Plate, colourless |
γ = 75.445 (1)° | 0.55 × 0.50 × 0.25 mm |
V = 667.25 (12) Å3 |
Bruker APEXII CCD area-detector diffractometer | 3930 independent reflections |
Radiation source: fine-focus sealed tube | 3633 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
ω scans | θmax = 31.4°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −10→10 |
Tmin = 0.858, Tmax = 0.932 | k = −12→12 |
8162 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0533P)2 + 0.2404P] where P = (Fo2 + 2Fc2)/3 |
3930 reflections | (Δ/σ)max = 0.001 |
181 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C16H12ClFN2 | γ = 75.445 (1)° |
Mr = 286.73 | V = 667.25 (12) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.3661 (8) Å | Mo Kα radiation |
b = 8.8967 (9) Å | µ = 0.29 mm−1 |
c = 11.5129 (12) Å | T = 100 K |
α = 68.704 (1)° | 0.55 × 0.50 × 0.25 mm |
β = 74.468 (1)° |
Bruker APEXII CCD area-detector diffractometer | 3930 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 3633 reflections with I > 2σ(I) |
Tmin = 0.858, Tmax = 0.932 | Rint = 0.014 |
8162 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.49 e Å−3 |
3930 reflections | Δρmin = −0.30 e Å−3 |
181 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.15120 (4) | −0.21591 (3) | 0.79554 (2) | 0.02245 (8) | |
N1 | 1.24567 (12) | 0.03932 (10) | 0.60973 (8) | 0.01634 (16) | |
N2 | 0.55793 (12) | 0.03799 (11) | 0.74940 (8) | 0.01744 (17) | |
H18 | 0.4905 | 0.0291 | 0.7025 | 0.021* | |
F1 | 0.24347 (10) | 0.46529 (9) | 1.02706 (7) | 0.02663 (16) | |
C7 | 1.09918 (14) | −0.03020 (11) | 0.67819 (9) | 0.01494 (17) | |
C1 | 1.02460 (14) | 0.25805 (11) | 0.49326 (9) | 0.01455 (17) | |
C10 | 0.74539 (14) | −0.05999 (12) | 0.75411 (9) | 0.01625 (18) | |
H10A | 0.7513 | −0.1557 | 0.7308 | 0.020* | |
H10B | 0.7657 | −0.0977 | 0.8407 | 0.020* | |
C8 | 0.90473 (13) | 0.03112 (11) | 0.66692 (9) | 0.01406 (17) | |
C5 | 1.36831 (15) | 0.26375 (13) | 0.44050 (10) | 0.01949 (19) | |
H5 | 1.4913 | 0.2165 | 0.4552 | 0.023* | |
C6 | 1.21153 (14) | 0.18553 (12) | 0.51570 (9) | 0.01520 (17) | |
C9 | 0.87191 (13) | 0.17731 (12) | 0.57294 (9) | 0.01522 (17) | |
H9 | 0.7474 | 0.2240 | 0.5615 | 0.018* | |
C14 | 0.21346 (15) | 0.33659 (13) | 0.88812 (10) | 0.0206 (2) | |
H14 | 0.0879 | 0.3910 | 0.8882 | 0.025* | |
C11 | 0.48346 (14) | 0.14581 (12) | 0.81816 (9) | 0.01552 (18) | |
C2 | 0.99836 (15) | 0.40819 (12) | 0.39406 (9) | 0.01792 (19) | |
H17 | 0.8764 | 0.4568 | 0.3777 | 0.022* | |
C13 | 0.32377 (16) | 0.36116 (12) | 0.95720 (10) | 0.01941 (19) | |
C3 | 1.15214 (16) | 0.48201 (13) | 0.32212 (10) | 0.01972 (19) | |
H3 | 1.1338 | 0.5806 | 0.2572 | 0.024* | |
C12 | 0.59034 (14) | 0.17592 (12) | 0.88891 (9) | 0.01760 (18) | |
H12 | 0.7166 | 0.1235 | 0.8889 | 0.021* | |
C4 | 1.33828 (16) | 0.40979 (13) | 0.34565 (10) | 0.0210 (2) | |
H4 | 1.4413 | 0.4616 | 0.2965 | 0.025* | |
C15 | 0.29365 (14) | 0.22899 (13) | 0.81854 (10) | 0.01916 (19) | |
H15 | 0.2208 | 0.2116 | 0.7714 | 0.023* | |
C16 | 0.50987 (15) | 0.28339 (13) | 0.95926 (10) | 0.01933 (19) | |
H16 | 0.5809 | 0.3021 | 1.0068 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01931 (13) | 0.01748 (12) | 0.02433 (13) | −0.00220 (9) | −0.00775 (9) | 0.00240 (9) |
N1 | 0.0150 (4) | 0.0161 (4) | 0.0176 (4) | −0.0027 (3) | −0.0047 (3) | −0.0039 (3) |
N2 | 0.0128 (4) | 0.0214 (4) | 0.0208 (4) | −0.0023 (3) | −0.0036 (3) | −0.0099 (3) |
F1 | 0.0308 (4) | 0.0241 (3) | 0.0268 (3) | −0.0030 (3) | −0.0011 (3) | −0.0146 (3) |
C7 | 0.0154 (4) | 0.0129 (4) | 0.0162 (4) | −0.0015 (3) | −0.0049 (3) | −0.0037 (3) |
C1 | 0.0149 (4) | 0.0143 (4) | 0.0149 (4) | −0.0024 (3) | −0.0030 (3) | −0.0052 (3) |
C10 | 0.0139 (4) | 0.0152 (4) | 0.0183 (4) | −0.0028 (3) | −0.0019 (3) | −0.0045 (3) |
C8 | 0.0137 (4) | 0.0142 (4) | 0.0148 (4) | −0.0028 (3) | −0.0028 (3) | −0.0049 (3) |
C5 | 0.0159 (4) | 0.0216 (5) | 0.0208 (5) | −0.0063 (4) | −0.0028 (3) | −0.0050 (4) |
C6 | 0.0147 (4) | 0.0157 (4) | 0.0161 (4) | −0.0033 (3) | −0.0033 (3) | −0.0054 (3) |
C9 | 0.0134 (4) | 0.0156 (4) | 0.0164 (4) | −0.0016 (3) | −0.0037 (3) | −0.0049 (3) |
C14 | 0.0181 (4) | 0.0211 (5) | 0.0200 (5) | −0.0001 (4) | −0.0030 (4) | −0.0063 (4) |
C11 | 0.0152 (4) | 0.0152 (4) | 0.0143 (4) | −0.0044 (3) | −0.0012 (3) | −0.0025 (3) |
C2 | 0.0197 (4) | 0.0159 (4) | 0.0169 (4) | −0.0022 (3) | −0.0044 (3) | −0.0035 (3) |
C13 | 0.0242 (5) | 0.0161 (4) | 0.0165 (4) | −0.0047 (4) | −0.0001 (4) | −0.0054 (3) |
C3 | 0.0239 (5) | 0.0166 (4) | 0.0174 (4) | −0.0054 (4) | −0.0037 (4) | −0.0029 (3) |
C12 | 0.0165 (4) | 0.0180 (4) | 0.0180 (4) | −0.0051 (3) | −0.0030 (3) | −0.0043 (3) |
C4 | 0.0210 (5) | 0.0212 (5) | 0.0202 (5) | −0.0088 (4) | −0.0012 (4) | −0.0043 (4) |
C15 | 0.0165 (4) | 0.0220 (5) | 0.0196 (4) | −0.0016 (4) | −0.0051 (3) | −0.0073 (4) |
C16 | 0.0221 (5) | 0.0199 (4) | 0.0175 (4) | −0.0077 (4) | −0.0037 (4) | −0.0050 (4) |
Cl1—C7 | 1.7434 (10) | C5—H5 | 0.93 |
N1—C7 | 1.3016 (13) | C9—H9 | 0.93 |
N1—C6 | 1.3732 (12) | C14—C13 | 1.3792 (15) |
N2—C11 | 1.3792 (12) | C14—C15 | 1.3878 (14) |
N2—C10 | 1.4388 (13) | C14—H14 | 0.93 |
N2—H18 | 0.86 | C11—C12 | 1.4011 (14) |
F1—C13 | 1.3661 (12) | C11—C15 | 1.4077 (14) |
C7—C8 | 1.4217 (13) | C2—C3 | 1.3700 (14) |
C1—C9 | 1.4133 (13) | C2—H17 | 0.93 |
C1—C6 | 1.4149 (13) | C13—C16 | 1.3737 (15) |
C1—C2 | 1.4164 (13) | C3—C4 | 1.4128 (15) |
C10—C8 | 1.5161 (13) | C3—H3 | 0.93 |
C10—H10A | 0.97 | C12—C16 | 1.3936 (14) |
C10—H10B | 0.97 | C12—H12 | 0.93 |
C8—C9 | 1.3714 (13) | C4—H4 | 0.93 |
C5—C4 | 1.3726 (15) | C15—H15 | 0.93 |
C5—C6 | 1.4136 (13) | C16—H16 | 0.93 |
C7—N1—C6 | 117.48 (8) | C13—C14—C15 | 118.66 (10) |
C11—N2—C10 | 121.76 (8) | C13—C14—H14 | 120.7 |
C11—N2—H18 | 119.1 | C15—C14—H14 | 120.7 |
C10—N2—H18 | 119.1 | N2—C11—C12 | 122.23 (9) |
N1—C7—C8 | 126.51 (9) | N2—C11—C15 | 119.59 (9) |
N1—C7—Cl1 | 115.47 (7) | C12—C11—C15 | 118.18 (9) |
C8—C7—Cl1 | 118.01 (7) | C3—C2—C1 | 120.15 (9) |
C9—C1—C6 | 117.92 (9) | C3—C2—H17 | 119.9 |
C9—C1—C2 | 123.09 (9) | C1—C2—H17 | 119.9 |
C6—C1—C2 | 118.98 (9) | F1—C13—C16 | 119.13 (9) |
N2—C10—C8 | 113.32 (8) | F1—C13—C14 | 118.49 (9) |
N2—C10—H10A | 108.9 | C16—C13—C14 | 122.38 (10) |
C8—C10—H10A | 108.9 | C2—C3—C4 | 120.64 (9) |
N2—C10—H10B | 108.9 | C2—C3—H3 | 119.7 |
C8—C10—H10B | 108.9 | C4—C3—H3 | 119.7 |
H10A—C10—H10B | 107.7 | C16—C12—C11 | 120.86 (9) |
C9—C8—C7 | 115.61 (8) | C16—C12—H12 | 119.6 |
C9—C8—C10 | 122.70 (8) | C11—C12—H12 | 119.6 |
C7—C8—C10 | 121.69 (8) | C5—C4—C3 | 120.52 (9) |
C4—C5—C6 | 119.71 (9) | C5—C4—H4 | 119.7 |
C4—C5—H5 | 120.1 | C3—C4—H4 | 119.7 |
C6—C5—H5 | 120.1 | C14—C15—C11 | 121.05 (9) |
N1—C6—C5 | 118.51 (9) | C14—C15—H15 | 119.5 |
N1—C6—C1 | 121.50 (9) | C11—C15—H15 | 119.5 |
C5—C6—C1 | 119.99 (9) | C13—C16—C12 | 118.87 (9) |
C8—C9—C1 | 120.95 (9) | C13—C16—H16 | 120.6 |
C8—C9—H9 | 119.5 | C12—C16—H16 | 120.6 |
C1—C9—H9 | 119.5 | ||
C6—N1—C7—C8 | −0.94 (15) | C6—C1—C9—C8 | −1.63 (14) |
C6—N1—C7—Cl1 | 179.70 (7) | C2—C1—C9—C8 | 179.30 (9) |
C11—N2—C10—C8 | −82.06 (11) | C10—N2—C11—C12 | 4.96 (14) |
N1—C7—C8—C9 | 0.82 (15) | C10—N2—C11—C15 | −174.83 (9) |
Cl1—C7—C8—C9 | −179.83 (7) | C9—C1—C2—C3 | 178.48 (9) |
N1—C7—C8—C10 | −178.91 (9) | C6—C1—C2—C3 | −0.58 (15) |
Cl1—C7—C8—C10 | 0.43 (13) | C15—C14—C13—F1 | −179.04 (9) |
N2—C10—C8—C9 | −14.02 (13) | C15—C14—C13—C16 | 0.18 (16) |
N2—C10—C8—C7 | 165.69 (9) | C1—C2—C3—C4 | 0.04 (16) |
C7—N1—C6—C5 | 179.69 (9) | N2—C11—C12—C16 | −178.83 (9) |
C7—N1—C6—C1 | −0.29 (14) | C15—C11—C12—C16 | 0.96 (14) |
C4—C5—C6—N1 | 179.83 (9) | C6—C5—C4—C3 | −0.37 (16) |
C4—C5—C6—C1 | −0.19 (15) | C2—C3—C4—C5 | 0.44 (16) |
C9—C1—C6—N1 | 1.53 (14) | C13—C14—C15—C11 | 0.14 (16) |
C2—C1—C6—N1 | −179.36 (9) | N2—C11—C15—C14 | 179.10 (9) |
C9—C1—C6—C5 | −178.45 (9) | C12—C11—C15—C14 | −0.70 (15) |
C2—C1—C6—C5 | 0.65 (14) | F1—C13—C16—C12 | 179.30 (9) |
C7—C8—C9—C1 | 0.55 (14) | C14—C13—C16—C12 | 0.08 (16) |
C10—C8—C9—C1 | −179.73 (8) | C11—C12—C16—C13 | −0.67 (15) |
Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H18···N1i | 0.86 | 2.30 | 3.1353 (12) | 165 |
C4—H4···Cg2ii | 0.93 | 2.91 | 3.7494 (13) | 151 |
C10—H10A···Cg1iii | 0.97 | 2.62 | 3.5365 (12) | 157 |
C10—H10B···Cg2iv | 0.97 | 2.98 | 3.8083 (11) | 145 |
Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y, −z+1; (iv) −x+1, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C16H12ClFN2 |
Mr | 286.73 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.3661 (8), 8.8967 (9), 11.5129 (12) |
α, β, γ (°) | 68.704 (1), 74.468 (1), 75.445 (1) |
V (Å3) | 667.25 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.55 × 0.50 × 0.25 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.858, 0.932 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8162, 3930, 3633 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.733 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.094, 1.03 |
No. of reflections | 3930 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.49, −0.30 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H18···N1i | 0.86 | 2.30 | 3.1353 (12) | 165 |
C4—H4···Cg2ii | 0.93 | 2.91 | 3.7494 (13) | 151 |
C10—H10A···Cg1iii | 0.97 | 2.62 | 3.5365 (12) | 157 |
C10—H10B···Cg2iv | 0.97 | 2.98 | 3.8083 (11) | 145 |
Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y, −z+1; (iv) −x+1, −y, −z+2. |
Acknowledgements
JPJ thanks Dr Matthias Zeller and the YSU Department of Chemistry for their assistance with the data collection. The diffractometer was funded by NSF grant 0087210, by the Ohio Board of Regents grant CAP-491, and by YSU. CSC thanks the University of Mysore for research facilities and HSY thanks the University of Mysore for sabbatical leave.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA Google Scholar
Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603. Web of Science CSD CrossRef IUCr Journals Google Scholar
Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035. CrossRef CAS PubMed Web of Science Google Scholar
Dutta, N. J., Khunt, R. C. & Parikh, A. R. (2002). Indian J. Chem. Sect. B, 41, 433–435. Google Scholar
Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010). Acta Cryst. E66, o201. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kouznetsov, V. V., Vargas Mendez, L. Y. & Melendez Gomez, C. M. (2005). Curr. Org. Chem. 9, 141–161. Web of Science CrossRef CAS Google Scholar
Lynch, D. E. & McClenaghan, I. (2001). Acta Cryst. E57, o54–o55. Web of Science CSD CrossRef IUCr Journals Google Scholar
Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326. CrossRef CAS PubMed Web of Science Google Scholar
Meth-Cohn, O., Tarnowski, B., Hayear, R., Keyzad, A. & Rhouti, S. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 2509–2517. CrossRef Web of Science Google Scholar
Michael, J. P. (1997). Nat. Prod. Rep. 14, 605–608. CrossRef CAS Web of Science Google Scholar
Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203. CrossRef Google Scholar
Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595–3607. Web of Science CrossRef PubMed CAS Google Scholar
Rajendran, P. & Karavembu, R. (2002). Indian J. Chem. Sect. B, 41, 222–224. Google Scholar
Robert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273–279. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Subashini, R., Khan, F. N., Kumar, R., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2721. Web of Science CrossRef IUCr Journals Google Scholar
Wu, T.-Q., Wang, J.-H., Shen, F. & Hu, A.-X. (2009). Acta Cryst. E65, o1463. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yathirajan, H. S., Sreevidya, T. V., Prathap, M., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o763–o765. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinoline derivatives represent a major class of heterocycles, and a number of preparations using them have been known since the late 1800s. Quinolines are found in natural products (Morimoto et al., 1991; Michael et al., 1997), numerous commercial products, including fragrances, dyes (Padwa et al., 1999) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Quinoline alkaloids such as quinine, chloroquin, mefloquine and amodiaquine are used as efficient drugs for the treatment of malaria (Robert & Meunier, 1998). Several quinoline derivatives have been evaluated in vitro against a number of parasites of HTLV-1 transformed cells. 2-Chloro substituted quinolines are vital synthetic intermediates in the construction of a large number of linearly fused tri- and tetra- cyclic quinolines studied for the DNA intercalating properties (Meth-Cohn et al., 1981; Rajendran & Karavembu, 2002; Dutta et al., 2002). A review on recent progress in the synthesis of quinolines (Kouznetsov et al. 2005) has been described. The crystal structure studies of 8-chloro-2-methylquinoline (Wu et al., 2009), 2-chloro-4-methylquinoline (Lynch et al., 2001), 4-chloro-8-(trifluoromethyl)quinoline (Yathirajan et al., 2007), 1-(quinolin-2-yl)ethanone (Butcher et al., 2007) and 2-chloro-7-methylquinoline-3-carbaldehyde (Subashini et al., 2009) have been reported. In view of the importance of quinolines, the paper reports the synthesis and crystal structure of the title compound.
In the title molecule (Fig. 1), the 2-chloroquinoline ring system and 4-fluoroaniline ring are bonded to a methane carbon, C10. The dihedral angle between the mean planes of the planar chloroquinoline ring system (dihedral angle between rings = 0.92 (5)°) and the flourophenyl ring is 86.70 (4)°. Bond distances (Allen et al., 1987) and angles are in normal ranges.
The molecules are linked into chains along the a axis by N—H···N hydrogen bonds (Fig. 2). In addition, C—H···π interactions involving the two benzene rings (Table 1) influence crystal packing in the unit cell.