organic compounds
2-Methoxyquinoline-3-carbaldehyde
aDepartment of Chemistry, School of Chemical Sciences, Bharathiar University, Coimbatore 641 046, India, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com
In the title compound, C11H9NO2, the quinoline ring system is essentially planar (r.m.s. deviation = 0.005 Å) and the methoxy and aldehyde groups are almost coplanar with it [N—C—O—C = 6.24 (19) and O—C—C—C = 0.3 (2)°]. In the crystal, molecules are linked by pairs of C—H⋯O hydrogen bonds, forming centrosymmetric R22(10) dimers. The dimers are linked via π–π interactions involving the pyridine and benzene rings [centroid–centroid distance = 3.639 (1) Å].
Related literature
For general background to quinoline derivatives, see: Mali et al. (2010); Kuethe et al. (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810034744/ci5162sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810034744/ci5162Isup2.hkl
To a solution of 1 g (17.8 mmol) of KOH in 50 ml of MeOH was added 2.5 g (13.1 mmol) of 2-chloro-3-quinolinecarboxaldehyde. The mixture was heated at 373 K for 2.5 h and then cooled to room temperature, and poured into 200 g of crushed ice. The precipitate thus obtained was recuperated by filtration. The obtained product was a colourless solid. The product was purified by recrystallization from petroleum ether-ethyl acetate mixture.
H atoms were positioned geometrically (C–H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C11H9NO2 | F(000) = 392 |
Mr = 187.19 | Dx = 1.342 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1216 reflections |
a = 8.8206 (6) Å | θ = 1.9–28.4° |
b = 4.8446 (3) Å | µ = 0.09 mm−1 |
c = 21.6828 (14) Å | T = 293 K |
β = 90.612 (4)° | Block, colourless |
V = 926.50 (10) Å3 | 0.20 × 0.20 × 0.18 mm |
Z = 4 |
Bruker SMART APEXII area-detector diffractometer | 2305 independent reflections |
Radiation source: fine-focus sealed tube | 1658 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ω and ϕ scans | θmax = 28.4°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −9→11 |
Tmin = 0.981, Tmax = 0.983 | k = −6→6 |
8812 measured reflections | l = −27→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0622P)2 + 0.1045P] where P = (Fo2 + 2Fc2)/3 |
2305 reflections | (Δ/σ)max = 0.001 |
128 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C11H9NO2 | V = 926.50 (10) Å3 |
Mr = 187.19 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.8206 (6) Å | µ = 0.09 mm−1 |
b = 4.8446 (3) Å | T = 293 K |
c = 21.6828 (14) Å | 0.20 × 0.20 × 0.18 mm |
β = 90.612 (4)° |
Bruker SMART APEXII area-detector diffractometer | 2305 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 1658 reflections with I > 2σ(I) |
Tmin = 0.981, Tmax = 0.983 | Rint = 0.030 |
8812 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.16 e Å−3 |
2305 reflections | Δρmin = −0.19 e Å−3 |
128 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.04660 (11) | 0.2962 (2) | 0.42027 (4) | 0.0664 (3) | |
O2 | 0.32252 (12) | 0.2311 (3) | 0.52502 (5) | 0.0860 (4) | |
N1 | 0.05048 (11) | 0.6258 (2) | 0.35559 (5) | 0.0522 (3) | |
C2 | 0.06704 (13) | 0.4656 (3) | 0.40308 (5) | 0.0498 (3) | |
C3 | 0.20052 (14) | 0.4490 (3) | 0.44096 (5) | 0.0505 (3) | |
C4 | 0.31810 (14) | 0.6144 (3) | 0.42593 (6) | 0.0546 (3) | |
H4 | 0.4064 | 0.6107 | 0.4497 | 0.066* | |
C5 | 0.30810 (14) | 0.7921 (3) | 0.37465 (6) | 0.0502 (3) | |
C6 | 0.42741 (16) | 0.9652 (3) | 0.35643 (7) | 0.0639 (4) | |
H6 | 0.5179 | 0.9658 | 0.3789 | 0.077* | |
C7 | 0.41177 (18) | 1.1312 (3) | 0.30644 (7) | 0.0682 (4) | |
H7 | 0.4913 | 1.2450 | 0.2947 | 0.082* | |
C8 | 0.27587 (18) | 1.1311 (3) | 0.27260 (6) | 0.0656 (4) | |
H8 | 0.2658 | 1.2462 | 0.2385 | 0.079* | |
C9 | 0.15831 (16) | 0.9657 (3) | 0.28878 (6) | 0.0594 (3) | |
H9 | 0.0691 | 0.9678 | 0.2655 | 0.071* | |
C10 | 0.17083 (14) | 0.7915 (2) | 0.34040 (5) | 0.0476 (3) | |
C11 | −0.17739 (17) | 0.2814 (4) | 0.38058 (7) | 0.0822 (5) | |
H11A | −0.2189 | 0.4630 | 0.3750 | 0.123* | |
H11B | −0.2521 | 0.1638 | 0.3989 | 0.123* | |
H11C | −0.1487 | 0.2076 | 0.3413 | 0.123* | |
C12 | 0.21226 (17) | 0.2551 (3) | 0.49311 (6) | 0.0634 (4) | |
H12 | 0.1288 | 0.1449 | 0.5017 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0566 (5) | 0.0821 (7) | 0.0603 (6) | −0.0219 (5) | −0.0105 (4) | 0.0149 (5) |
O2 | 0.0747 (7) | 0.1034 (9) | 0.0792 (7) | −0.0159 (6) | −0.0249 (6) | 0.0365 (7) |
N1 | 0.0530 (6) | 0.0557 (6) | 0.0476 (5) | −0.0036 (5) | −0.0056 (4) | 0.0005 (5) |
C2 | 0.0503 (7) | 0.0530 (7) | 0.0460 (6) | −0.0067 (5) | −0.0017 (5) | −0.0021 (5) |
C3 | 0.0527 (7) | 0.0535 (7) | 0.0453 (6) | −0.0035 (5) | −0.0034 (5) | 0.0014 (5) |
C4 | 0.0504 (7) | 0.0603 (8) | 0.0529 (7) | −0.0056 (6) | −0.0084 (5) | 0.0023 (6) |
C5 | 0.0532 (7) | 0.0488 (7) | 0.0486 (6) | −0.0042 (5) | 0.0001 (5) | −0.0024 (5) |
C6 | 0.0608 (8) | 0.0660 (9) | 0.0648 (8) | −0.0129 (7) | −0.0002 (6) | 0.0044 (7) |
C7 | 0.0759 (9) | 0.0609 (8) | 0.0679 (9) | −0.0156 (7) | 0.0118 (7) | 0.0043 (7) |
C8 | 0.0894 (10) | 0.0541 (8) | 0.0536 (7) | 0.0015 (7) | 0.0092 (7) | 0.0081 (6) |
C9 | 0.0694 (8) | 0.0574 (8) | 0.0512 (7) | 0.0043 (6) | −0.0030 (6) | 0.0039 (6) |
C10 | 0.0555 (7) | 0.0441 (6) | 0.0432 (6) | 0.0010 (5) | 0.0002 (5) | −0.0039 (5) |
C11 | 0.0647 (9) | 0.1064 (13) | 0.0750 (10) | −0.0338 (9) | −0.0203 (8) | 0.0167 (9) |
C12 | 0.0607 (8) | 0.0698 (9) | 0.0595 (8) | −0.0115 (7) | −0.0078 (6) | 0.0136 (7) |
O1—C2 | 1.3510 (15) | C6—C7 | 1.356 (2) |
O1—C11 | 1.4336 (16) | C6—H6 | 0.93 |
O2—C12 | 1.1932 (16) | C7—C8 | 1.399 (2) |
N1—C2 | 1.2964 (16) | C7—H7 | 0.93 |
N1—C10 | 1.3736 (16) | C8—C9 | 1.360 (2) |
C2—C3 | 1.4307 (16) | C8—H8 | 0.93 |
C3—C4 | 1.3534 (17) | C9—C10 | 1.4050 (18) |
C3—C12 | 1.4728 (18) | C9—H9 | 0.93 |
C4—C5 | 1.4081 (18) | C11—H11A | 0.96 |
C4—H4 | 0.93 | C11—H11B | 0.96 |
C5—C6 | 1.4055 (18) | C11—H11C | 0.96 |
C5—C10 | 1.4136 (17) | C12—H12 | 0.93 |
C2—O1—C11 | 117.35 (10) | C8—C7—H7 | 120.0 |
C2—N1—C10 | 117.35 (10) | C9—C8—C7 | 121.09 (13) |
N1—C2—O1 | 120.34 (10) | C9—C8—H8 | 119.5 |
N1—C2—C3 | 125.09 (11) | C7—C8—H8 | 119.5 |
O1—C2—C3 | 114.57 (11) | C8—C9—C10 | 120.39 (13) |
C4—C3—C2 | 117.15 (11) | C8—C9—H9 | 119.8 |
C4—C3—C12 | 120.99 (12) | C10—C9—H9 | 119.8 |
C2—C3—C12 | 121.83 (11) | N1—C10—C9 | 119.18 (12) |
C3—C4—C5 | 120.70 (11) | N1—C10—C5 | 122.35 (11) |
C3—C4—H4 | 119.7 | C9—C10—C5 | 118.47 (12) |
C5—C4—H4 | 119.7 | O1—C11—H11A | 109.5 |
C6—C5—C4 | 123.08 (12) | O1—C11—H11B | 109.5 |
C6—C5—C10 | 119.56 (12) | H11A—C11—H11B | 109.5 |
C4—C5—C10 | 117.36 (11) | O1—C11—H11C | 109.5 |
C7—C6—C5 | 120.57 (13) | H11A—C11—H11C | 109.5 |
C7—C6—H6 | 119.7 | H11B—C11—H11C | 109.5 |
C5—C6—H6 | 119.7 | O2—C12—C3 | 123.89 (13) |
C6—C7—C8 | 119.91 (13) | O2—C12—H12 | 118.1 |
C6—C7—H7 | 120.0 | C3—C12—H12 | 118.1 |
C10—N1—C2—O1 | −179.57 (11) | C5—C6—C7—C8 | 0.1 (2) |
C10—N1—C2—C3 | 0.28 (19) | C6—C7—C8—C9 | −0.3 (2) |
C11—O1—C2—N1 | 6.24 (19) | C7—C8—C9—C10 | 0.4 (2) |
C11—O1—C2—C3 | −173.63 (13) | C2—N1—C10—C9 | 179.19 (11) |
N1—C2—C3—C4 | 0.2 (2) | C2—N1—C10—C5 | −0.34 (18) |
O1—C2—C3—C4 | −179.94 (11) | C8—C9—C10—N1 | −179.80 (12) |
N1—C2—C3—C12 | −178.08 (13) | C8—C9—C10—C5 | −0.25 (19) |
O1—C2—C3—C12 | 1.78 (18) | C6—C5—C10—N1 | 179.55 (12) |
C2—C3—C4—C5 | −0.62 (19) | C4—C5—C10—N1 | −0.06 (18) |
C12—C3—C4—C5 | 177.68 (12) | C6—C5—C10—C9 | 0.02 (18) |
C3—C4—C5—C6 | −179.05 (13) | C4—C5—C10—C9 | −179.60 (11) |
C3—C4—C5—C10 | 0.56 (19) | C4—C3—C12—O2 | 0.3 (2) |
C4—C5—C6—C7 | 179.67 (14) | C2—C3—C12—O2 | 178.47 (15) |
C10—C5—C6—C7 | 0.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.93 | 2.56 | 3.4157 (16) | 152 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C11H9NO2 |
Mr | 187.19 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 8.8206 (6), 4.8446 (3), 21.6828 (14) |
β (°) | 90.612 (4) |
V (Å3) | 926.50 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.20 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.981, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8812, 2305, 1658 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.130, 1.05 |
No. of reflections | 2305 |
No. of parameters | 128 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.19 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.93 | 2.56 | 3.4157 (16) | 152 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank TBI consultancy, University of Madras, India, for the data collection
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kuethe, J. T., Wong, A. & Davies, I. W. (2003). Org. Lett. 5, 3975–3978. Web of Science CrossRef PubMed CAS Google Scholar
Mali, J. R., Bhosle, M. R., Mahalle, S. R. & Mane, R. A. (2010). Bull. Korean Chem. Soc. 31, 1859–1863. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinolines have gained importance in medicinal and natural product chemistry due to their interesting biological and pharmacological activities. They possess anti-malarial, anti-tuberculosis, anti-inflammatory and anti-cancer properties (Mali et al., 2010). Methoxy substituted quinolines are used as synthetic intermediates in the construction of novel class of KDR kinase inhibitors (Kuethe et al., 2003). Against this background and to ascertain the structure of title compound, the crystallographic studies have been carried out.
In the title molecule (Fig.1), the quinoline ring system (N1/C2–C10) is essentially planar with a maximum deviation of 0.007 (1) Å for atom C3. The methoxy and carbaldehyde groups are almost coplanar with the quinoline ring system, which is evidenced from torsion angles C3—C2—O1—C11 and C2—C3—C12—O2 of 173.6 (1)° and 178.5 (2)°, respectively.
The packing of the molecules in the crystal is stabilized by C—H···O, and π–π types of intermolecular interactions. The molecules at (x, y, z) and (1-x, 1-y, 1-z) are linked by a pair of intermolecular C4—H4···O2 hydrogen bonds to form a centrosymmetric dimer containing R22(10) ring motif (Fig. 2) (Bernstein et al., 1995). The π–π interaction between the pyridine ring (N1/C2-C10) of the quinoline ring system at (x, y, z) and the benzene ring (C5—C10) at (x, y-1, z) further stabilize the structure, with a centroid-centroid distance of 3.639 (1) Å.