organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­­oxy­quinoline-3-carbaldehyde

aDepartment of Chemistry, School of Chemical Sciences, Bharathiar University, Coimbatore 641 046, India, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 18 August 2010; accepted 28 August 2010; online 4 September 2010)

In the title compound, C11H9NO2, the quinoline ring system is essentially planar (r.m.s. deviation = 0.005 Å) and the meth­oxy and aldehyde groups are almost coplanar with it [N—C—O—C = 6.24 (19) and O—C—C—C = 0.3 (2)°]. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming centrosymmetric R22(10) dimers. The dimers are linked via ππ inter­actions involving the pyridine and benzene rings [centroid–centroid distance = 3.639 (1) Å].

Related literature

For general background to quinoline derivatives, see: Mali et al. (2010[Mali, J. R., Bhosle, M. R., Mahalle, S. R. & Mane, R. A. (2010). Bull. Korean Chem. Soc. 31, 1859-1863.]); Kuethe et al. (2003[Kuethe, J. T., Wong, A. & Davies, I. W. (2003). Org. Lett. 5, 3975-3978.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9NO2

  • Mr = 187.19

  • Monoclinic, P 21 /c

  • a = 8.8206 (6) Å

  • b = 4.8446 (3) Å

  • c = 21.6828 (14) Å

  • β = 90.612 (4)°

  • V = 926.50 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.983

  • 8812 measured reflections

  • 2305 independent reflections

  • 1658 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.130

  • S = 1.05

  • 2305 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.56 3.4157 (16) 152
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinolines have gained importance in medicinal and natural product chemistry due to their interesting biological and pharmacological activities. They possess anti-malarial, anti-tuberculosis, anti-inflammatory and anti-cancer properties (Mali et al., 2010). Methoxy substituted quinolines are used as synthetic intermediates in the construction of novel class of KDR kinase inhibitors (Kuethe et al., 2003). Against this background and to ascertain the structure of title compound, the crystallographic studies have been carried out.

In the title molecule (Fig.1), the quinoline ring system (N1/C2–C10) is essentially planar with a maximum deviation of 0.007 (1) Å for atom C3. The methoxy and carbaldehyde groups are almost coplanar with the quinoline ring system, which is evidenced from torsion angles C3—C2—O1—C11 and C2—C3—C12—O2 of 173.6 (1)° and 178.5 (2)°, respectively.

The packing of the molecules in the crystal is stabilized by C—H···O, and ππ types of intermolecular interactions. The molecules at (x, y, z) and (1-x, 1-y, 1-z) are linked by a pair of intermolecular C4—H4···O2 hydrogen bonds to form a centrosymmetric dimer containing R22(10) ring motif (Fig. 2) (Bernstein et al., 1995). The ππ interaction between the pyridine ring (N1/C2-C10) of the quinoline ring system at (x, y, z) and the benzene ring (C5—C10) at (x, y-1, z) further stabilize the structure, with a centroid-centroid distance of 3.639 (1) Å.

Related literature top

For general background to quinoline derivatives, see: Mali et al. (2010); Kuethe et al. (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of 1 g (17.8 mmol) of KOH in 50 ml of MeOH was added 2.5 g (13.1 mmol) of 2-chloro-3-quinolinecarboxaldehyde. The mixture was heated at 373 K for 2.5 h and then cooled to room temperature, and poured into 200 g of crushed ice. The precipitate thus obtained was recuperated by filtration. The obtained product was a colourless solid. The product was purified by recrystallization from petroleum ether-ethyl acetate mixture.

Refinement top

H atoms were positioned geometrically (C–H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
2-Methoxyquinoline-3-carbaldehyde top
Crystal data top
C11H9NO2F(000) = 392
Mr = 187.19Dx = 1.342 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1216 reflections
a = 8.8206 (6) Åθ = 1.9–28.4°
b = 4.8446 (3) ŵ = 0.09 mm1
c = 21.6828 (14) ÅT = 293 K
β = 90.612 (4)°Block, colourless
V = 926.50 (10) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2305 independent reflections
Radiation source: fine-focus sealed tube1658 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 911
Tmin = 0.981, Tmax = 0.983k = 66
8812 measured reflectionsl = 2728
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.1045P]
where P = (Fo2 + 2Fc2)/3
2305 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C11H9NO2V = 926.50 (10) Å3
Mr = 187.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8206 (6) ŵ = 0.09 mm1
b = 4.8446 (3) ÅT = 293 K
c = 21.6828 (14) Å0.20 × 0.20 × 0.18 mm
β = 90.612 (4)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2305 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1658 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.983Rint = 0.030
8812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
2305 reflectionsΔρmin = 0.19 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.04660 (11)0.2962 (2)0.42027 (4)0.0664 (3)
O20.32252 (12)0.2311 (3)0.52502 (5)0.0860 (4)
N10.05048 (11)0.6258 (2)0.35559 (5)0.0522 (3)
C20.06704 (13)0.4656 (3)0.40308 (5)0.0498 (3)
C30.20052 (14)0.4490 (3)0.44096 (5)0.0505 (3)
C40.31810 (14)0.6144 (3)0.42593 (6)0.0546 (3)
H40.40640.61070.44970.066*
C50.30810 (14)0.7921 (3)0.37465 (6)0.0502 (3)
C60.42741 (16)0.9652 (3)0.35643 (7)0.0639 (4)
H60.51790.96580.37890.077*
C70.41177 (18)1.1312 (3)0.30644 (7)0.0682 (4)
H70.49131.24500.29470.082*
C80.27587 (18)1.1311 (3)0.27260 (6)0.0656 (4)
H80.26581.24620.23850.079*
C90.15831 (16)0.9657 (3)0.28878 (6)0.0594 (3)
H90.06910.96780.26550.071*
C100.17083 (14)0.7915 (2)0.34040 (5)0.0476 (3)
C110.17739 (17)0.2814 (4)0.38058 (7)0.0822 (5)
H11A0.21890.46300.37500.123*
H11B0.25210.16380.39890.123*
H11C0.14870.20760.34130.123*
C120.21226 (17)0.2551 (3)0.49311 (6)0.0634 (4)
H120.12880.14490.50170.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0566 (5)0.0821 (7)0.0603 (6)0.0219 (5)0.0105 (4)0.0149 (5)
O20.0747 (7)0.1034 (9)0.0792 (7)0.0159 (6)0.0249 (6)0.0365 (7)
N10.0530 (6)0.0557 (6)0.0476 (5)0.0036 (5)0.0056 (4)0.0005 (5)
C20.0503 (7)0.0530 (7)0.0460 (6)0.0067 (5)0.0017 (5)0.0021 (5)
C30.0527 (7)0.0535 (7)0.0453 (6)0.0035 (5)0.0034 (5)0.0014 (5)
C40.0504 (7)0.0603 (8)0.0529 (7)0.0056 (6)0.0084 (5)0.0023 (6)
C50.0532 (7)0.0488 (7)0.0486 (6)0.0042 (5)0.0001 (5)0.0024 (5)
C60.0608 (8)0.0660 (9)0.0648 (8)0.0129 (7)0.0002 (6)0.0044 (7)
C70.0759 (9)0.0609 (8)0.0679 (9)0.0156 (7)0.0118 (7)0.0043 (7)
C80.0894 (10)0.0541 (8)0.0536 (7)0.0015 (7)0.0092 (7)0.0081 (6)
C90.0694 (8)0.0574 (8)0.0512 (7)0.0043 (6)0.0030 (6)0.0039 (6)
C100.0555 (7)0.0441 (6)0.0432 (6)0.0010 (5)0.0002 (5)0.0039 (5)
C110.0647 (9)0.1064 (13)0.0750 (10)0.0338 (9)0.0203 (8)0.0167 (9)
C120.0607 (8)0.0698 (9)0.0595 (8)0.0115 (7)0.0078 (6)0.0136 (7)
Geometric parameters (Å, º) top
O1—C21.3510 (15)C6—C71.356 (2)
O1—C111.4336 (16)C6—H60.93
O2—C121.1932 (16)C7—C81.399 (2)
N1—C21.2964 (16)C7—H70.93
N1—C101.3736 (16)C8—C91.360 (2)
C2—C31.4307 (16)C8—H80.93
C3—C41.3534 (17)C9—C101.4050 (18)
C3—C121.4728 (18)C9—H90.93
C4—C51.4081 (18)C11—H11A0.96
C4—H40.93C11—H11B0.96
C5—C61.4055 (18)C11—H11C0.96
C5—C101.4136 (17)C12—H120.93
C2—O1—C11117.35 (10)C8—C7—H7120.0
C2—N1—C10117.35 (10)C9—C8—C7121.09 (13)
N1—C2—O1120.34 (10)C9—C8—H8119.5
N1—C2—C3125.09 (11)C7—C8—H8119.5
O1—C2—C3114.57 (11)C8—C9—C10120.39 (13)
C4—C3—C2117.15 (11)C8—C9—H9119.8
C4—C3—C12120.99 (12)C10—C9—H9119.8
C2—C3—C12121.83 (11)N1—C10—C9119.18 (12)
C3—C4—C5120.70 (11)N1—C10—C5122.35 (11)
C3—C4—H4119.7C9—C10—C5118.47 (12)
C5—C4—H4119.7O1—C11—H11A109.5
C6—C5—C4123.08 (12)O1—C11—H11B109.5
C6—C5—C10119.56 (12)H11A—C11—H11B109.5
C4—C5—C10117.36 (11)O1—C11—H11C109.5
C7—C6—C5120.57 (13)H11A—C11—H11C109.5
C7—C6—H6119.7H11B—C11—H11C109.5
C5—C6—H6119.7O2—C12—C3123.89 (13)
C6—C7—C8119.91 (13)O2—C12—H12118.1
C6—C7—H7120.0C3—C12—H12118.1
C10—N1—C2—O1179.57 (11)C5—C6—C7—C80.1 (2)
C10—N1—C2—C30.28 (19)C6—C7—C8—C90.3 (2)
C11—O1—C2—N16.24 (19)C7—C8—C9—C100.4 (2)
C11—O1—C2—C3173.63 (13)C2—N1—C10—C9179.19 (11)
N1—C2—C3—C40.2 (2)C2—N1—C10—C50.34 (18)
O1—C2—C3—C4179.94 (11)C8—C9—C10—N1179.80 (12)
N1—C2—C3—C12178.08 (13)C8—C9—C10—C50.25 (19)
O1—C2—C3—C121.78 (18)C6—C5—C10—N1179.55 (12)
C2—C3—C4—C50.62 (19)C4—C5—C10—N10.06 (18)
C12—C3—C4—C5177.68 (12)C6—C5—C10—C90.02 (18)
C3—C4—C5—C6179.05 (13)C4—C5—C10—C9179.60 (11)
C3—C4—C5—C100.56 (19)C4—C3—C12—O20.3 (2)
C4—C5—C6—C7179.67 (14)C2—C3—C12—O2178.47 (15)
C10—C5—C6—C70.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.563.4157 (16)152
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H9NO2
Mr187.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.8206 (6), 4.8446 (3), 21.6828 (14)
β (°) 90.612 (4)
V3)926.50 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.981, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
8812, 2305, 1658
Rint0.030
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.130, 1.05
No. of reflections2305
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.563.4157 (16)152
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank TBI consultancy, University of Madras, India, for the data collection

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKuethe, J. T., Wong, A. & Davies, I. W. (2003). Org. Lett. 5, 3975–3978.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMali, J. R., Bhosle, M. R., Mahalle, S. R. & Mane, R. A. (2010). Bull. Korean Chem. Soc. 31, 1859–1863.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds