organic compounds
{3-[(2-Chloro-1,3-thiazol-4-yl)methyl]-1,3-thiazolidin-2-ylideneamino}formonitrile
aVocational–Technical Institute, Xiangtan University, Xiangtan 411100, People's Republic of China
*Correspondence e-mail: liyingqi01@163.com
In the title compound, C8H7ClN4S2, the dihedral angle between the thiazolidine ring (r.m.s. deviation = 0.028 Å) and the thiazole ring (r.m.s. deviation = 0.004 Å) is 74.74 (6)°. The formonitrile group is almost coplanar with the attached ring [C—N—C—N torsion angle = 167 (2)°.
Related literature
For the biological activity of compounds containing a thiazole ring, see: Ehrenfreund et al. (2003); Kim et al. (2002); Maienfisch & Gsell (1998); Shiga et al. (2003); Smith & Hunter (2001); Tanaka et al. (2005). For the bioactivity of 1,3-thiazolidine derivatives, see: Albrecht et al. (2005); Liu & Li (2000); Ueda et al. (2004); Yeh & Chen (2002).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810035579/ci5173sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810035579/ci5173Isup2.hkl
To a stirred solution of 2-cyanoimino-1,3-thiazolidine (1.27 g, 0.01 mol), potassium carbonate (1.66 g,0.012 mol) in 20 ml of acetonitrile was added dropwise a solution of 2-chloro-4-(chloromethyl)thiazole (1.68 g, 0.01 mol) in 15 ml of acetonitrile. The reaction mixture was heated to 333 K for 12 h and then filtered. The solvent was removed to give a solid product, which was recrystallized from ethyl acetate to afford colourless crystals.
All H atoms were placed in calculated positions, with C–H = 0.93 and 0.97 Å, and included in the final cycles of
using a riding model, with Uiso(H) = 1.2Ueq(C).Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. |
C8H7ClN4S2 | F(000) = 528 |
Mr = 258.75 | Dx = 1.579 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3431 reflections |
a = 6.1731 (9) Å | θ = 2.4–26.2° |
b = 16.807 (2) Å | µ = 0.70 mm−1 |
c = 10.9057 (14) Å | T = 294 K |
β = 105.846 (2)° | Monoclinic, colourless |
V = 1088.5 (3) Å3 | 0.22 × 0.20 × 0.18 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2220 independent reflections |
Radiation source: fine-focus sealed tube | 1862 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ϕ and ω scans | θmax = 26.4°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→7 |
Tmin = 0.860, Tmax = 0.884 | k = −15→21 |
6141 measured reflections | l = −11→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0573P)2 + 0.3256P] where P = (Fo2 + 2Fc2)/3 |
2220 reflections | (Δ/σ)max = 0.001 |
136 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
C8H7ClN4S2 | V = 1088.5 (3) Å3 |
Mr = 258.75 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.1731 (9) Å | µ = 0.70 mm−1 |
b = 16.807 (2) Å | T = 294 K |
c = 10.9057 (14) Å | 0.22 × 0.20 × 0.18 mm |
β = 105.846 (2)° |
Bruker SMART CCD area-detector diffractometer | 2220 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1862 reflections with I > 2σ(I) |
Tmin = 0.860, Tmax = 0.884 | Rint = 0.021 |
6141 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.30 e Å−3 |
2220 reflections | Δρmin = −0.34 e Å−3 |
136 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.27073 (11) | 0.02267 (4) | 0.65605 (6) | 0.0705 (2) | |
S1 | 0.70384 (10) | 0.09234 (4) | 1.21031 (5) | 0.0588 (2) | |
S2 | 0.07788 (10) | 0.10824 (3) | 0.56567 (5) | 0.05097 (18) | |
N1 | 0.4957 (3) | 0.15672 (9) | 0.99768 (14) | 0.0389 (4) | |
N2 | 0.3327 (3) | 0.18765 (11) | 1.15862 (15) | 0.0466 (4) | |
N3 | 0.3408 (4) | 0.18457 (14) | 1.38596 (19) | 0.0669 (6) | |
N4 | 0.0452 (3) | 0.11665 (10) | 0.79535 (15) | 0.0410 (4) | |
C1 | 0.8149 (4) | 0.07222 (18) | 1.0769 (2) | 0.0660 (7) | |
H1A | 0.9724 | 0.0873 | 1.0975 | 0.079* | |
H1B | 0.8034 | 0.0159 | 1.0571 | 0.079* | |
C2 | 0.6843 (4) | 0.11841 (17) | 0.9667 (2) | 0.0631 (7) | |
H2A | 0.7801 | 0.1583 | 0.9440 | 0.076* | |
H2B | 0.6296 | 0.0834 | 0.8942 | 0.076* | |
C3 | 0.4872 (3) | 0.15132 (11) | 1.11773 (17) | 0.0370 (4) | |
C4 | 0.3448 (4) | 0.18300 (13) | 1.2819 (2) | 0.0478 (5) | |
C5 | 0.3492 (3) | 0.20877 (12) | 0.90364 (17) | 0.0426 (4) | |
H5A | 0.4394 | 0.2499 | 0.8790 | 0.051* | |
H5B | 0.2428 | 0.2346 | 0.9417 | 0.051* | |
C6 | 0.2233 (3) | 0.16430 (11) | 0.78796 (17) | 0.0378 (4) | |
C7 | 0.2661 (4) | 0.16624 (12) | 0.67255 (17) | 0.0451 (5) | |
H7 | 0.3818 | 0.1951 | 0.6541 | 0.054* | |
C8 | −0.0433 (3) | 0.08538 (11) | 0.68491 (19) | 0.0428 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0659 (4) | 0.0730 (4) | 0.0743 (4) | −0.0187 (3) | 0.0221 (3) | −0.0253 (3) |
S1 | 0.0642 (4) | 0.0707 (4) | 0.0407 (3) | 0.0175 (3) | 0.0133 (3) | 0.0086 (3) |
S2 | 0.0674 (4) | 0.0577 (3) | 0.0290 (3) | 0.0066 (3) | 0.0152 (2) | −0.0030 (2) |
N1 | 0.0391 (8) | 0.0492 (9) | 0.0307 (8) | 0.0022 (7) | 0.0131 (6) | −0.0022 (7) |
N2 | 0.0483 (9) | 0.0586 (10) | 0.0382 (9) | 0.0007 (8) | 0.0208 (7) | −0.0049 (7) |
N3 | 0.0869 (15) | 0.0758 (14) | 0.0499 (11) | −0.0106 (11) | 0.0390 (11) | −0.0082 (10) |
N4 | 0.0470 (9) | 0.0462 (9) | 0.0335 (8) | 0.0025 (7) | 0.0174 (7) | −0.0024 (7) |
C1 | 0.0546 (13) | 0.0878 (18) | 0.0591 (14) | 0.0197 (13) | 0.0218 (11) | 0.0030 (13) |
C2 | 0.0664 (15) | 0.0811 (17) | 0.0517 (13) | 0.0266 (13) | 0.0328 (12) | 0.0063 (12) |
C3 | 0.0369 (9) | 0.0420 (10) | 0.0328 (9) | −0.0068 (8) | 0.0108 (7) | −0.0030 (7) |
C4 | 0.0526 (12) | 0.0519 (12) | 0.0465 (12) | −0.0061 (9) | 0.0264 (9) | −0.0056 (9) |
C5 | 0.0517 (11) | 0.0417 (10) | 0.0356 (9) | 0.0012 (8) | 0.0140 (8) | −0.0005 (8) |
C6 | 0.0448 (10) | 0.0398 (10) | 0.0310 (9) | 0.0074 (8) | 0.0141 (7) | 0.0027 (7) |
C7 | 0.0549 (12) | 0.0498 (11) | 0.0345 (10) | 0.0026 (9) | 0.0191 (9) | 0.0019 (8) |
C8 | 0.0470 (10) | 0.0435 (10) | 0.0397 (10) | 0.0051 (8) | 0.0149 (8) | −0.0041 (8) |
Cl1—C8 | 1.715 (2) | N4—C6 | 1.380 (2) |
S1—C3 | 1.7471 (19) | C1—C2 | 1.472 (3) |
S1—C1 | 1.801 (2) | C1—H1A | 0.97 |
S2—C7 | 1.709 (2) | C1—H1B | 0.97 |
S2—C8 | 1.711 (2) | C2—H2A | 0.97 |
N1—C3 | 1.328 (2) | C2—H2B | 0.97 |
N1—C2 | 1.448 (3) | C5—C6 | 1.490 (3) |
N1—C5 | 1.459 (2) | C5—H5A | 0.97 |
N2—C3 | 1.309 (2) | C5—H5B | 0.97 |
N2—C4 | 1.328 (3) | C6—C7 | 1.355 (3) |
N3—C4 | 1.142 (3) | C7—H7 | 0.93 |
N4—C8 | 1.291 (2) | ||
C3—S1—C1 | 92.29 (10) | N2—C3—N1 | 122.18 (17) |
C7—S2—C8 | 88.08 (10) | N2—C3—S1 | 125.57 (14) |
C3—N1—C2 | 116.74 (17) | N1—C3—S1 | 112.25 (14) |
C3—N1—C5 | 123.40 (16) | N3—C4—N2 | 173.6 (3) |
C2—N1—C5 | 119.09 (15) | N1—C5—C6 | 111.98 (15) |
C3—N2—C4 | 118.19 (18) | N1—C5—H5A | 109.2 |
C8—N4—C6 | 108.81 (16) | C6—C5—H5A | 109.2 |
C2—C1—S1 | 108.40 (16) | N1—C5—H5B | 109.2 |
C2—C1—H1A | 110.0 | C6—C5—H5B | 109.2 |
S1—C1—H1A | 110.0 | H5A—C5—H5B | 107.9 |
C2—C1—H1B | 110.0 | C7—C6—N4 | 115.37 (17) |
S1—C1—H1B | 110.0 | C7—C6—C5 | 125.85 (19) |
H1A—C1—H1B | 108.4 | N4—C6—C5 | 118.78 (16) |
N1—C2—C1 | 109.89 (18) | C6—C7—S2 | 110.57 (16) |
N1—C2—H2A | 109.7 | C6—C7—H7 | 124.7 |
C1—C2—H2A | 109.7 | S2—C7—H7 | 124.7 |
N1—C2—H2B | 109.7 | N4—C8—S2 | 117.15 (16) |
C1—C2—H2B | 109.7 | N4—C8—Cl1 | 122.55 (16) |
H2A—C2—H2B | 108.2 | S2—C8—Cl1 | 120.29 (12) |
C3—S1—C1—C2 | 4.2 (2) | C3—N1—C5—C6 | −124.90 (19) |
C3—N1—C2—C1 | 6.9 (3) | C2—N1—C5—C6 | 65.5 (2) |
C5—N1—C2—C1 | 177.2 (2) | C8—N4—C6—C7 | −1.2 (2) |
S1—C1—C2—N1 | −6.7 (3) | C8—N4—C6—C5 | 178.42 (17) |
C4—N2—C3—N1 | −175.95 (18) | N1—C5—C6—C7 | −106.0 (2) |
C4—N2—C3—S1 | 3.3 (3) | N1—C5—C6—N4 | 74.4 (2) |
C2—N1—C3—N2 | 175.7 (2) | N4—C6—C7—S2 | 0.9 (2) |
C5—N1—C3—N2 | 5.9 (3) | C5—C6—C7—S2 | −178.68 (15) |
C2—N1—C3—S1 | −3.7 (2) | C8—S2—C7—C6 | −0.28 (16) |
C5—N1—C3—S1 | −173.46 (14) | C6—N4—C8—S2 | 1.0 (2) |
C1—S1—C3—N2 | −179.83 (19) | C6—N4—C8—Cl1 | −179.65 (14) |
C1—S1—C3—N1 | −0.49 (17) | C7—S2—C8—N4 | −0.42 (17) |
C3—N2—C4—N3 | 167 (2) | C7—S2—C8—Cl1 | −179.83 (14) |
Experimental details
Crystal data | |
Chemical formula | C8H7ClN4S2 |
Mr | 258.75 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 294 |
a, b, c (Å) | 6.1731 (9), 16.807 (2), 10.9057 (14) |
β (°) | 105.846 (2) |
V (Å3) | 1088.5 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.70 |
Crystal size (mm) | 0.22 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.860, 0.884 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6141, 2220, 1862 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.103, 1.05 |
No. of reflections | 2220 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.34 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
References
Albrecht, U., Gördes, D., Schmidt, E., Thurow, K., Lalk, M. & Langer, P. (2005). Bioorg. Med. Chem. 13, 4402–4407. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ehrenfreund, J., Tobler, H. & Walter, H. (2003). WO Patent No. 2003074491. Google Scholar
Kim, K. S., Kimball, S. D., Misra, R. N. & Ranlins, B. D. (2002). J. Med. Chem. 45, 3905–3927. Web of Science CrossRef PubMed CAS Google Scholar
Liu, H. L. & Li, Z. C. (2000). Molecules, 5, 1055–1061. Web of Science CrossRef CAS Google Scholar
Maienfisch, P. & Gsell, L. (1998). WO Patent No. 9806710. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shiga, Y., Okada, I. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 310–312. Web of Science CrossRef CAS Google Scholar
Smith, F. D. & Hunter, R. (2001). Eur. Patent No. 1112688. Google Scholar
Tanaka, A., Tamura, T. & Haramura, M. (2005). WO Patent No. 2005054216. Google Scholar
Ueda, S., Terauchi, H., Yano, A., Matsumoto, M., Kubo, T., Kyoya, Y., Suzuki, K., Ido, M. & Kawasaki, M. (2004). Bioorg. Med. Chem. 12, 4101–4116. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yeh, C. L. & Chen, C. H. (2002). US Patent No. 6465492. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, compounds containing thiazole ring have been reported to possess various biological activities such as fungicidal, insecticidal, and anticancer activities (Maienfisch & Gsell, 1998; Smith et al., 2001; Kim et al., 2002; Ehrenfreund et al., 2003; Shiga et al., 2003; Tanaka et al., 2005). In addition, 1,3-thiazolidine ring is an important heterocycle scaffold among thiazole compounds. In the past few years lots of 1,3-thiazolidine derivatives have attracted intense attention in medicinal research due to their broad spectrum bioactivities (Liu et al., 2000; Yeh et al., 2002; Ueda et al., 2004;Albrecht et al., 2005). In order to discover more biologically active thiazole compounds, we synthesized thiazole compounds containing 1,3-thiazolidine ring and we report here the crystal structure of the title compound.
The molecule of the title compound (Fig.1) contains two planar rings, the substituted 1,3-thiazolidine ring (S1/C1/C2/N1/C3, r.m.s. deviation 0.028 Å) and the thiazole ring (S2/C8/N4/C6/C7, r.m.s. deviation 0.004 Å). The dihedral angle between the planes of 1,3-thiazolidine ring and thiazole ring is 74.74 (6)°.