organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Hy­dr­oxy­benzyl­­idene)-2-methyl­benzohydrazide

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: tangchunbao@yahoo.com.cn

(Received 27 August 2010; accepted 31 August 2010; online 4 September 2010)

The title hydrazone compound, C15H14N2O2, was prepared by the condensation of 4-hy­droxy­benzaldehyde with 2-methyl­benzohydrazide in methanol. The dihedral angle between the two benzene rings is 42.3 (2)°. In the crystal structure, mol­ecules are linked by inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds, forming a three-dimensional framework.

Related literature

For general background to hydrazones, see: Rasras et al. (2010[Rasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307-2313.]); Pyta et al. (2010[Pyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147-154.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]); Fun et al. (2008[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961-o1962.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O2

  • Mr = 254.28

  • Orthorhombic, P 21 21 21

  • a = 7.6900 (15) Å

  • b = 11.701 (2) Å

  • c = 14.471 (3) Å

  • V = 1302.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.984

  • 10755 measured reflections

  • 1634 independent reflections

  • 1502 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.12

  • 1634 reflections

  • 177 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.96 2.7657 (18) 166
O1—H1⋯N1i 0.82 2.52 2.995 (2) 118
N2—H2⋯O1ii 0.91 (1) 2.14 (1) 2.995 (2) 158 (2)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds have been received much attention in biological chemistry and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). In the present paper, the author reports the crystal structure of the title new hydrazone compound (Fig. 1).

In the title molecule, the dihedral angle between the two benzene rings is 42.3 (2)°. The torsion angles C1—C7—N1—N2, C7—N1—N2—C8 and N1—N2—C8—C9 are 2.9 (2), 0.9 (2), and 0.2 (2)°, respectively. All the bond lengths are within normal values (Allen et al., 1987).

In the crystal structure of the compound, molecules are linked through O–H···O, O–H···N, and N–H···O intermolecular hydrogen bonds (Table 1), forming a three-dimensional network (Fig. 2).

Related literature top

For general background to hydrazones, see: Rasras et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010); Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010). For bond-length data, see: Allen et al. (1987).

Experimental top

4-Hydroxybenzaldehyde (0.1 mmol, 12.2 mg) and 3-methylbenzohydrazide (0.1 mmol, 15.0 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 10 min to give a clear colourless solution. Colourless block-shaped crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement top

Atom H2 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å [Uiso(H) = 0.08 Å2]. Other H atoms were constrained to ideal geometries, with C–H = 0.93–0.96 Å, O–H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C15 and O1). In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound, with hydrogen bonds shown as dashed lines.
N'-(4-Hydroxybenzylidene)-2-methylbenzohydrazide top
Crystal data top
C15H14N2O2F(000) = 536
Mr = 254.28Dx = 1.297 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4917 reflections
a = 7.6900 (15) Åθ = 2.2–27.1°
b = 11.701 (2) ŵ = 0.09 mm1
c = 14.471 (3) ÅT = 298 K
V = 1302.1 (4) Å3Block, colourless
Z = 40.20 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1634 independent reflections
Radiation source: fine-focus sealed tube1502 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.983, Tmax = 0.984k = 1414
10755 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.1042P]
where P = (Fo2 + 2Fc2)/3
1634 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C15H14N2O2V = 1302.1 (4) Å3
Mr = 254.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.6900 (15) ŵ = 0.09 mm1
b = 11.701 (2) ÅT = 298 K
c = 14.471 (3) Å0.20 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1634 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1502 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.984Rint = 0.024
10755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.15 e Å3
1634 reflectionsΔρmin = 0.23 e Å3
177 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1045 (2)0.76789 (13)0.47260 (10)0.0442 (4)
N20.1260 (2)0.70443 (13)0.55210 (10)0.0433 (4)
O10.1276 (2)1.15917 (11)0.16838 (8)0.0439 (3)
H10.06601.13230.12750.066*
O20.0277 (2)0.54745 (11)0.47842 (8)0.0480 (4)
C10.1310 (2)0.94736 (15)0.39752 (11)0.0369 (4)
C20.0694 (2)0.90743 (16)0.31255 (12)0.0397 (4)
H2A0.02880.83280.30800.048*
C30.0675 (2)0.97611 (15)0.23590 (12)0.0391 (4)
H30.02640.94820.17990.047*
C40.1276 (2)1.08777 (15)0.24249 (11)0.0345 (4)
C50.1884 (3)1.12934 (16)0.32573 (13)0.0416 (4)
H50.22831.20420.33000.050*
C60.1899 (3)1.05962 (16)0.40250 (12)0.0427 (4)
H60.23091.08800.45840.051*
C70.1410 (3)0.87360 (15)0.47796 (12)0.0402 (4)
H70.17470.90430.53450.048*
C80.0859 (2)0.59215 (15)0.54852 (11)0.0375 (4)
C90.1113 (2)0.52835 (15)0.63685 (12)0.0389 (4)
C100.1715 (3)0.41533 (17)0.63644 (15)0.0483 (5)
C110.1871 (3)0.3609 (2)0.7213 (2)0.0631 (7)
H110.22860.28630.72290.076*
C120.1439 (3)0.4126 (3)0.80218 (18)0.0703 (8)
H120.15590.37320.85760.084*
C130.0828 (3)0.5227 (2)0.80235 (14)0.0649 (7)
H130.05190.55790.85760.078*
C140.0678 (3)0.5808 (2)0.71959 (13)0.0498 (5)
H140.02800.65590.71940.060*
C150.2224 (4)0.3530 (2)0.5498 (2)0.0763 (8)
H15A0.11960.33060.51670.114*
H15B0.28860.28630.56560.114*
H15C0.29150.40240.51160.114*
H20.190 (3)0.733 (2)0.5994 (13)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0618 (10)0.0404 (8)0.0303 (7)0.0046 (8)0.0064 (7)0.0072 (6)
N20.0622 (10)0.0384 (8)0.0294 (7)0.0076 (8)0.0103 (7)0.0068 (6)
O10.0610 (8)0.0385 (6)0.0322 (6)0.0012 (6)0.0033 (6)0.0082 (5)
O20.0697 (9)0.0413 (7)0.0329 (6)0.0064 (7)0.0078 (6)0.0010 (6)
C10.0426 (9)0.0353 (8)0.0327 (8)0.0014 (8)0.0021 (7)0.0036 (7)
C20.0499 (10)0.0322 (8)0.0371 (9)0.0036 (8)0.0030 (8)0.0023 (7)
C30.0485 (10)0.0373 (9)0.0316 (8)0.0001 (8)0.0038 (7)0.0014 (7)
C40.0380 (8)0.0335 (8)0.0319 (8)0.0054 (7)0.0010 (7)0.0054 (7)
C50.0537 (11)0.0304 (8)0.0407 (9)0.0019 (8)0.0045 (8)0.0012 (7)
C60.0566 (11)0.0393 (9)0.0322 (8)0.0018 (9)0.0088 (8)0.0008 (8)
C70.0504 (10)0.0396 (9)0.0305 (8)0.0009 (8)0.0039 (8)0.0016 (8)
C80.0437 (9)0.0370 (8)0.0317 (8)0.0007 (8)0.0010 (7)0.0020 (7)
C90.0414 (9)0.0390 (9)0.0361 (8)0.0069 (8)0.0055 (8)0.0068 (7)
C100.0468 (11)0.0388 (9)0.0592 (12)0.0054 (8)0.0076 (9)0.0087 (9)
C110.0553 (13)0.0510 (12)0.0831 (17)0.0073 (10)0.0172 (13)0.0303 (13)
C120.0643 (14)0.0870 (18)0.0594 (14)0.0195 (15)0.0179 (11)0.0431 (14)
C130.0711 (15)0.0877 (19)0.0361 (10)0.0117 (14)0.0034 (10)0.0141 (11)
C140.0590 (12)0.0541 (11)0.0364 (9)0.0040 (10)0.0023 (9)0.0065 (9)
C150.092 (2)0.0484 (12)0.0880 (18)0.0146 (14)0.0047 (17)0.0092 (14)
Geometric parameters (Å, º) top
N1—C71.271 (2)C6—H60.93
N1—N21.379 (2)C7—H70.93
N2—C81.350 (2)C8—C91.493 (2)
N2—H20.907 (10)C9—C141.387 (3)
O1—C41.3594 (19)C9—C101.401 (3)
O1—H10.82C10—C111.389 (3)
O2—C81.226 (2)C10—C151.503 (3)
C1—C61.391 (3)C11—C121.358 (4)
C1—C21.398 (2)C11—H110.93
C1—C71.451 (2)C12—C131.371 (4)
C2—C31.370 (2)C12—H120.93
C2—H2A0.93C13—C141.382 (3)
C3—C41.389 (3)C13—H130.93
C3—H30.93C14—H140.93
C4—C51.381 (2)C15—H15A0.96
C5—C61.378 (2)C15—H15B0.96
C5—H50.93C15—H15C0.96
C7—N1—N2116.54 (15)O2—C8—C9122.87 (16)
C8—N2—N1117.68 (14)N2—C8—C9115.07 (15)
C8—N2—H2120.6 (17)C14—C9—C10120.08 (17)
N1—N2—H2119.9 (17)C14—C9—C8119.10 (17)
C4—O1—H1109.5C10—C9—C8120.77 (17)
C6—C1—C2118.12 (15)C11—C10—C9117.2 (2)
C6—C1—C7120.18 (16)C11—C10—C15119.6 (2)
C2—C1—C7121.65 (16)C9—C10—C15123.19 (19)
C3—C2—C1121.31 (16)C12—C11—C10122.5 (2)
C3—C2—H2A119.3C12—C11—H11118.8
C1—C2—H2A119.3C10—C11—H11118.8
C2—C3—C4119.52 (16)C11—C12—C13120.2 (2)
C2—C3—H3120.2C11—C12—H12119.9
C4—C3—H3120.2C13—C12—H12119.9
O1—C4—C5118.15 (16)C12—C13—C14119.3 (2)
O1—C4—C3121.59 (15)C12—C13—H13120.3
C5—C4—C3120.26 (15)C14—C13—H13120.3
C6—C5—C4119.83 (16)C13—C14—C9120.7 (2)
C6—C5—H5120.1C13—C14—H14119.7
C4—C5—H5120.1C9—C14—H14119.7
C5—C6—C1120.96 (16)C10—C15—H15A109.5
C5—C6—H6119.5C10—C15—H15B109.5
C1—C6—H6119.5H15A—C15—H15B109.5
N1—C7—C1121.21 (16)C10—C15—H15C109.5
N1—C7—H7119.4H15A—C15—H15C109.5
C1—C7—H7119.4H15B—C15—H15C109.5
O2—C8—N2122.01 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.962.7657 (18)166
O1—H1···N1i0.822.522.995 (2)118
N2—H2···O1ii0.91 (1)2.14 (1)2.995 (2)158 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O2
Mr254.28
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.6900 (15), 11.701 (2), 14.471 (3)
V3)1302.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.983, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
10755, 1634, 1502
Rint0.024
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.12
No. of reflections1634
No. of parameters177
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.23

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.962.7657 (18)166
O1—H1···N1i0.822.522.995 (2)118
N2—H2···O1ii0.91 (1)2.14 (1)2.995 (2)158 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y+2, z+1/2.
 

Acknowledgements

Financial support from the Jiaying University research fund is gratefully acknowledged.

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationRasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds