organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(6-Bromo­meth­yl-2-pyrid­yl)acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 30 August 2010; accepted 31 August 2010; online 4 September 2010)

The title acetamide compound, C8H9BrN2O, crystallizes with three crystallographically independent mol­ecules (A, B and C) in the asymmetric unit. In mol­ecule A, the mean plane through the acetamide unit is inclined at a dihedral angle of 4.40 (11)° with respect to the pyridine ring [10.31 (12) and 2.27 (11)°, respectively, for mol­ecules B and C]. In the crystal structure, mol­ecules are inter­connected into sheets parallel to the ac plane by N—H⋯O, C—H⋯Br, C—H⋯O and C—H⋯N hydrogen bonds. The structure is further stabilized by weak inter­molecular C—H⋯π inter­actions.

Related literature

For general background and applications of acetamide compounds, see: Goswami et al. (2000[Goswami, S., Ghosh, K. & Dasgupta, S. (2000). J. Org. Chem. 65, 1907-1914.], 2005[Goswami, S., Mukherjee, R. & Roy, J. (2005). Org. Lett. 7, 1283-1285.]); Ghosh & Masanta (2006[Ghosh, K. & Masanta, G. (2006). Tetrahedron Lett. 47, 9233-9237.]). For the preparation, see: Goswami et al. (2001[Goswami, S., Ghosh, K., Mukherjee, R., Adak, A. K. & Mahapatra, A. K. (2001). J. Heterocycl. Chem. 38, 173-178.], 2004[Goswami, S., Dey, S., Jana, S. & Adak, A. K. (2004). Chem. Lett. 33, 916-917.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9BrN2O

  • Mr = 229.08

  • Monoclinic, P 21 /c

  • a = 4.1894 (8) Å

  • b = 26.219 (5) Å

  • c = 23.817 (4) Å

  • β = 94.148 (4)°

  • V = 2609.2 (8) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 4.68 mm−1

  • T = 100 K

  • 0.31 × 0.14 × 0.09 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.323, Tmax = 0.668

  • 72227 measured reflections

  • 10228 independent reflections

  • 8239 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.100

  • S = 1.06

  • 10228 reflections

  • 340 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.37 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2A–C6A/N1A and C2C–C6C/N1C pyridine rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2NA⋯O1Ci 0.74 (3) 2.29 (3) 3.022 (2) 172 (4)
N2B—H2NB⋯O1A 0.93 (3) 1.97 (3) 2.885 (2) 166 (3)
N2C—H2NC⋯O1Bii 0.73 (3) 2.18 (3) 2.900 (2) 169 (3)
C1B—H1BA⋯Br1Biii 0.97 2.85 3.716 (2) 149
C8B—H8BB⋯O1A 0.96 2.50 3.159 (3) 125
C8C—H8CA⋯N1Aiv 0.96 2.50 3.427 (3) 162
C1A—H1ABCg1iii 0.97 2.88 3.612 (2) 133
C1C—H1CBCg2iii 0.97 2.81 3.447 (2) 124
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine amides having bromine in side chains are enormously useful as they are suitable intermediates for the synthesis of flexible receptors for various biologically important substrates. In addition, they can easily be coupled with alcohol by Williamson reaction and to the amine by a simple reaction with a base. These types of compounds are therefore attracting the attention of molecular recognition chemist (Goswami et al., 2000, 2005; Ghosh & Masanta, 2006).

The title acetamide compound crystallizes in space group P21/c with three crystallographically independent molecules in the asymmetric unit, designated A, B and C (Fig. 1). The molecular geometries of all molecules are essentially similar, as indicated by the r.m.s. deviations for the superposition of the non-H atoms of any pair of molecules using XP in SHELXTL (Sheldrick, 2008) being 0.137 (A/B pair), 0.026 (A/C pair) and 0.130 Å (B/C pair). The superposition of molecular pairs are shown in Fig. 2. The corresponding geometric parameters of the three molecules agree well with each other. In molecule A, the mean plane formed through the acetamide moiety (N2A/C7A/C8A/O1A) is inclined at an interplanar angle of 4.40 (11)° with the pyridine ring (C2A-C6A/N1A); the respective angles for molecules B and C are 10.31 (2) and 2.27 (11)°, respectively.

In the crystal structure, intermolecular N2A—H2NA···O1C, N2B—H2NB···O1A, N2C—H2NC···O1B, C1B—H1BA···Br1B, C8B—H8BB···O1A and C8C—H8CA···N1A hydrogen bonds (Table 1) interconnect molecules into two-molecule-wide arrays parallel to ac plane (Fig. 3). Further stabilization of the crystal structure is provided by weak intermolecular C1A—H1AB···Cg1 and C1C—H1CB···Cg2 interactions (Table 1) where Cg1 and Cg2 are the centroids of C2A-C6A/N1A and C2C-C6C/N1C pyridine rings, respectively.

Related literature top

For general background and applications of acetamide compounds, see: Goswami et al. (2000, 2005); Ghosh & Masanta (2006). For the preparation, see: Goswami et al. (2001, 2004). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was prepared according to literature procedures (Goswami et al., 2001, 2004) and was recrystallized from a mixture of CHCl3 and CH3OH (9:1) by slow evaporation method.

Refinement top

H atoms bound to N atoms are located in a difference Fourier map and allowed to refine freely [range of N—H = 0.73 (3)–0.93 (3) Å]. The remaining H atoms were placed in their calculated positions, with C—H = 0.93–0.97 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model was applied to methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. Fit of (a) molecule A (dashed lines) on molecule B (solid lines), (b) molecule C (dashed lines) on molecule A (solid lines), (c) molecule C (dashed lines) on molecule B (solid lines). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The crystal structure of the title compound, viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.
N-(6-Bromomethyl-2-pyridyl)acetamide top
Crystal data top
C8H9BrN2OF(000) = 1368
Mr = 229.08Dx = 1.750 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9903 reflections
a = 4.1894 (8) Åθ = 3.0–33.5°
b = 26.219 (5) ŵ = 4.68 mm1
c = 23.817 (4) ÅT = 100 K
β = 94.148 (4)°Plate, brown
V = 2609.2 (8) Å30.31 × 0.14 × 0.09 mm
Z = 12
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
10228 independent reflections
Radiation source: fine-focus sealed tube8239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 33.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.323, Tmax = 0.668k = 4040
72227 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.052P)2 + 0.7624P]
where P = (Fo2 + 2Fc2)/3
10228 reflections(Δ/σ)max = 0.005
340 parametersΔρmax = 1.37 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
C8H9BrN2OV = 2609.2 (8) Å3
Mr = 229.08Z = 12
Monoclinic, P21/cMo Kα radiation
a = 4.1894 (8) ŵ = 4.68 mm1
b = 26.219 (5) ÅT = 100 K
c = 23.817 (4) Å0.31 × 0.14 × 0.09 mm
β = 94.148 (4)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
10228 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
8239 reflections with I > 2σ(I)
Tmin = 0.323, Tmax = 0.668Rint = 0.058
72227 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.37 e Å3
10228 reflectionsΔρmin = 0.74 e Å3
340 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A1.14992 (5)0.418118 (8)0.367324 (7)0.02031 (5)
O1A0.5948 (4)0.25161 (6)0.13677 (6)0.0296 (3)
N1A1.1052 (4)0.35205 (6)0.24649 (6)0.0167 (3)
N2A0.9447 (4)0.27575 (6)0.20938 (7)0.0191 (3)
C1A1.3223 (5)0.42675 (8)0.29327 (7)0.0196 (3)
H1AA1.34600.46280.28560.024*
H1AB1.53260.41120.29390.024*
C2A1.1091 (4)0.40309 (7)0.24723 (7)0.0166 (3)
C3A0.9351 (5)0.43276 (7)0.20772 (7)0.0186 (3)
H3AA0.94130.46820.20950.022*
C4A0.7516 (5)0.40783 (7)0.16540 (7)0.0200 (3)
H4AA0.63310.42670.13820.024*
C5A0.7432 (5)0.35522 (7)0.16334 (7)0.0195 (3)
H5AA0.62120.33810.13510.023*
C6A0.9266 (4)0.32861 (7)0.20556 (7)0.0171 (3)
C7A0.7892 (5)0.24022 (7)0.17560 (8)0.0198 (3)
C8A0.8755 (5)0.18609 (7)0.18922 (8)0.0235 (4)
H8AA0.70980.16390.17350.035*
H8AB0.89850.18180.22930.035*
H8AC1.07380.17780.17350.035*
Br1B0.14297 (5)0.058241 (8)0.203481 (7)0.02180 (5)
O1B0.0701 (5)0.23172 (6)0.04493 (7)0.0359 (4)
N1B0.2651 (4)0.12464 (6)0.08249 (6)0.0174 (3)
N2B0.2563 (4)0.20320 (6)0.04135 (7)0.0206 (3)
C1B0.3307 (5)0.04503 (8)0.13130 (8)0.0209 (3)
H1BA0.55730.05300.13510.025*
H1BB0.30860.00910.12210.025*
C2B0.1736 (4)0.07590 (7)0.08467 (7)0.0170 (3)
C3B0.0419 (5)0.05349 (7)0.04525 (8)0.0199 (3)
H3BA0.10040.01940.04820.024*
C4B0.1672 (5)0.08373 (8)0.00115 (8)0.0215 (4)
H4BA0.31320.07000.02600.026*
C5B0.0763 (5)0.13402 (8)0.00257 (8)0.0209 (3)
H5BA0.15730.15460.03210.025*
C6B0.1427 (5)0.15320 (7)0.03964 (7)0.0174 (3)
C7B0.2223 (6)0.23918 (8)0.00022 (8)0.0251 (4)
C8B0.3835 (7)0.28927 (9)0.01365 (10)0.0352 (5)
H8BA0.43730.30540.02060.053*
H8BB0.57500.28360.03750.053*
H8BC0.24140.31090.03270.053*
Br1C1.07629 (5)0.426384 (8)1.034127 (8)0.02481 (6)
O1C0.3915 (4)0.28054 (6)0.79326 (6)0.0243 (3)
N1C0.9830 (4)0.36463 (6)0.90997 (6)0.0173 (3)
N2C0.7488 (4)0.29499 (6)0.86856 (7)0.0201 (3)
C1C1.2666 (5)0.43125 (8)0.96116 (8)0.0218 (3)
H1CA1.33150.46620.95500.026*
H1CB1.45630.41000.96190.026*
C2C1.0370 (5)0.41486 (7)0.91382 (7)0.0174 (3)
C3C0.8994 (5)0.44982 (7)0.87597 (7)0.0202 (3)
H3CA0.94090.48450.88000.024*
C4C0.6977 (5)0.43147 (8)0.83191 (7)0.0209 (3)
H4CA0.60310.45410.80560.025*
C5C0.6360 (5)0.37991 (7)0.82678 (7)0.0194 (3)
H5CA0.50040.36710.79750.023*
C6C0.7858 (4)0.34775 (7)0.86741 (7)0.0168 (3)
C7C0.5659 (5)0.26431 (7)0.83320 (7)0.0196 (3)
C8C0.5926 (6)0.20884 (8)0.84701 (9)0.0271 (4)
H8CA0.50070.18920.81590.041*
H8CB0.48020.20180.87990.041*
H8CC0.81400.19990.85410.041*
H2NA1.062 (8)0.2645 (13)0.2303 (13)0.045 (9)*
H2NB0.372 (8)0.2135 (12)0.0743 (12)0.039 (8)*
H2NC0.850 (8)0.2790 (12)0.8879 (12)0.033 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.02104 (9)0.02320 (9)0.01647 (8)0.00081 (6)0.00005 (6)0.00327 (6)
O1A0.0389 (9)0.0208 (7)0.0268 (7)0.0026 (6)0.0141 (6)0.0012 (6)
N1A0.0182 (7)0.0163 (7)0.0152 (6)0.0005 (5)0.0012 (5)0.0013 (5)
N2A0.0228 (8)0.0159 (7)0.0177 (7)0.0005 (6)0.0055 (6)0.0011 (5)
C1A0.0198 (8)0.0209 (8)0.0181 (7)0.0055 (6)0.0007 (6)0.0008 (6)
C2A0.0166 (8)0.0171 (7)0.0163 (7)0.0012 (6)0.0014 (6)0.0006 (6)
C3A0.0233 (9)0.0161 (7)0.0163 (7)0.0004 (6)0.0015 (6)0.0022 (6)
C4A0.0235 (9)0.0201 (8)0.0163 (7)0.0014 (7)0.0007 (6)0.0018 (6)
C5A0.0238 (9)0.0194 (8)0.0146 (7)0.0004 (6)0.0032 (6)0.0006 (6)
C6A0.0187 (8)0.0175 (8)0.0148 (7)0.0001 (6)0.0005 (6)0.0019 (6)
C7A0.0234 (9)0.0171 (8)0.0186 (7)0.0017 (6)0.0007 (6)0.0022 (6)
C8A0.0287 (10)0.0177 (8)0.0236 (8)0.0001 (7)0.0020 (7)0.0032 (7)
Br1B0.02550 (10)0.02243 (10)0.01691 (8)0.00067 (7)0.00224 (6)0.00250 (6)
O1B0.0555 (11)0.0220 (7)0.0271 (7)0.0039 (7)0.0182 (7)0.0056 (6)
N1B0.0190 (7)0.0172 (7)0.0156 (6)0.0021 (5)0.0022 (5)0.0002 (5)
N2B0.0279 (8)0.0166 (7)0.0163 (6)0.0006 (6)0.0051 (6)0.0002 (5)
C1B0.0214 (9)0.0194 (8)0.0218 (8)0.0032 (6)0.0007 (7)0.0027 (6)
C2B0.0175 (8)0.0177 (8)0.0157 (7)0.0022 (6)0.0008 (6)0.0002 (6)
C3B0.0219 (9)0.0194 (8)0.0186 (7)0.0021 (7)0.0020 (6)0.0033 (6)
C4B0.0225 (9)0.0252 (9)0.0165 (7)0.0013 (7)0.0018 (6)0.0035 (6)
C5B0.0224 (9)0.0234 (9)0.0161 (7)0.0021 (7)0.0032 (6)0.0008 (6)
C6B0.0202 (8)0.0165 (7)0.0154 (7)0.0015 (6)0.0005 (6)0.0010 (6)
C7B0.0341 (11)0.0175 (8)0.0224 (8)0.0024 (7)0.0064 (7)0.0018 (7)
C8B0.0512 (15)0.0194 (9)0.0323 (11)0.0037 (9)0.0145 (10)0.0049 (8)
Br1C0.02540 (10)0.03212 (11)0.01646 (8)0.00276 (7)0.00162 (7)0.00555 (7)
O1C0.0274 (8)0.0223 (7)0.0217 (6)0.0020 (5)0.0090 (5)0.0002 (5)
N1C0.0183 (7)0.0182 (7)0.0150 (6)0.0008 (5)0.0012 (5)0.0007 (5)
N2C0.0254 (8)0.0161 (7)0.0175 (7)0.0022 (6)0.0071 (6)0.0018 (5)
C1C0.0219 (9)0.0223 (8)0.0210 (8)0.0039 (7)0.0010 (6)0.0019 (7)
C2C0.0189 (8)0.0189 (8)0.0145 (7)0.0011 (6)0.0013 (6)0.0009 (6)
C3C0.0260 (9)0.0181 (8)0.0162 (7)0.0017 (7)0.0004 (6)0.0011 (6)
C4C0.0262 (9)0.0208 (8)0.0152 (7)0.0015 (7)0.0025 (6)0.0032 (6)
C5C0.0221 (9)0.0203 (8)0.0151 (7)0.0008 (6)0.0031 (6)0.0006 (6)
C6C0.0186 (8)0.0174 (8)0.0142 (7)0.0000 (6)0.0009 (6)0.0006 (6)
C7C0.0210 (9)0.0198 (8)0.0177 (7)0.0025 (6)0.0012 (6)0.0019 (6)
C8C0.0355 (12)0.0187 (9)0.0254 (9)0.0045 (8)0.0099 (8)0.0008 (7)
Geometric parameters (Å, º) top
Br1A—C1A1.9667 (18)C3B—C4B1.389 (3)
O1A—C7A1.224 (2)C3B—H3BA0.93
N1A—C6A1.335 (2)C4B—C5B1.377 (3)
N1A—C2A1.338 (2)C4B—H4BA0.93
N2A—C7A1.365 (2)C5B—C6B1.404 (3)
N2A—C6A1.391 (2)C5B—H5BA0.93
N2A—H2NA0.74 (3)C7B—C8B1.501 (3)
C1A—C2A1.498 (3)C8B—H8BA0.96
C1A—H1AA0.97C8B—H8BB0.96
C1A—H1AB0.97C8B—H8BC0.96
C2A—C3A1.387 (3)Br1C—C1C1.968 (2)
C3A—C4A1.386 (3)O1C—C7C1.233 (2)
C3A—H3AA0.93N1C—C6C1.336 (2)
C4A—C5A1.380 (3)N1C—C2C1.338 (2)
C4A—H4AA0.93N2C—C7C1.360 (2)
C5A—C6A1.406 (2)N2C—C6C1.392 (2)
C5A—H5AA0.93N2C—H2NC0.73 (3)
C7A—C8A1.494 (3)C1C—C2C1.491 (3)
C8A—H8AA0.96C1C—H1CA0.97
C8A—H8AB0.96C1C—H1CB0.97
C8A—H8AC0.96C2C—C3C1.382 (3)
Br1B—C1B1.9722 (19)C3C—C4C1.385 (3)
O1B—C7B1.225 (2)C3C—H3CA0.93
N1B—C2B1.336 (2)C4C—C5C1.380 (3)
N1B—C6B1.338 (2)C4C—H4CA0.93
N2B—C7B1.360 (2)C5C—C6C1.398 (2)
N2B—C6B1.394 (2)C5C—H5CA0.93
N2B—H2NB0.93 (3)C7C—C8C1.494 (3)
C1B—C2B1.489 (3)C8C—H8CA0.96
C1B—H1BA0.97C8C—H8CB0.96
C1B—H1BB0.97C8C—H8CC0.96
C2B—C3B1.385 (3)
C6A—N1A—C2A118.40 (15)C5B—C4B—H4BA119.9
C7A—N2A—C6A128.33 (16)C3B—C4B—H4BA119.9
C7A—N2A—H2NA113 (3)C4B—C5B—C6B117.78 (17)
C6A—N2A—H2NA118 (3)C4B—C5B—H5BA121.1
C2A—C1A—Br1A111.74 (13)C6B—C5B—H5BA121.1
C2A—C1A—H1AA109.3N1B—C6B—N2B113.14 (16)
Br1A—C1A—H1AA109.3N1B—C6B—C5B122.70 (17)
C2A—C1A—H1AB109.3N2B—C6B—C5B124.16 (16)
Br1A—C1A—H1AB109.3O1B—C7B—N2B122.83 (19)
H1AA—C1A—H1AB107.9O1B—C7B—C8B121.62 (19)
N1A—C2A—C3A123.14 (17)N2B—C7B—C8B115.54 (17)
N1A—C2A—C1A115.46 (16)C7B—C8B—H8BA109.5
C3A—C2A—C1A121.39 (17)C7B—C8B—H8BB109.5
C4A—C3A—C2A117.74 (17)H8BA—C8B—H8BB109.5
C4A—C3A—H3AA121.1C7B—C8B—H8BC109.5
C2A—C3A—H3AA121.1H8BA—C8B—H8BC109.5
C5A—C4A—C3A120.55 (17)H8BB—C8B—H8BC109.5
C5A—C4A—H4AA119.7C6C—N1C—C2C118.06 (16)
C3A—C4A—H4AA119.7C7C—N2C—C6C129.32 (16)
C4A—C5A—C6A117.35 (17)C7C—N2C—H2NC109 (2)
C4A—C5A—H5AA121.3C6C—N2C—H2NC121 (2)
C6A—C5A—H5AA121.3C2C—C1C—Br1C111.62 (13)
N1A—C6A—N2A112.72 (16)C2C—C1C—H1CA109.3
N1A—C6A—C5A122.82 (17)Br1C—C1C—H1CA109.3
N2A—C6A—C5A124.46 (16)C2C—C1C—H1CB109.3
O1A—C7A—N2A122.80 (18)Br1C—C1C—H1CB109.3
O1A—C7A—C8A122.20 (17)H1CA—C1C—H1CB108.0
N2A—C7A—C8A114.99 (17)N1C—C2C—C3C123.20 (17)
C7A—C8A—H8AA109.5N1C—C2C—C1C115.60 (16)
C7A—C8A—H8AB109.5C3C—C2C—C1C121.18 (17)
H8AA—C8A—H8AB109.5C2C—C3C—C4C117.81 (18)
C7A—C8A—H8AC109.5C2C—C3C—H3CA121.1
H8AA—C8A—H8AC109.5C4C—C3C—H3CA121.1
H8AB—C8A—H8AC109.5C5C—C4C—C3C120.48 (17)
C2B—N1B—C6B118.02 (16)C5C—C4C—H4CA119.8
C7B—N2B—C6B127.83 (16)C3C—C4C—H4CA119.8
C7B—N2B—H2NB115.3 (19)C4C—C5C—C6C117.26 (17)
C6B—N2B—H2NB116.8 (19)C4C—C5C—H5CA121.4
C2B—C1B—Br1B111.85 (13)C6C—C5C—H5CA121.4
C2B—C1B—H1BA109.2N1C—C6C—N2C112.20 (16)
Br1B—C1B—H1BA109.2N1C—C6C—C5C123.19 (17)
C2B—C1B—H1BB109.2N2C—C6C—C5C124.62 (16)
Br1B—C1B—H1BB109.2O1C—C7C—N2C123.35 (18)
H1BA—C1B—H1BB107.9O1C—C7C—C8C122.47 (17)
N1B—C2B—C3B123.66 (17)N2C—C7C—C8C114.18 (16)
N1B—C2B—C1B115.86 (16)C7C—C8C—H8CA109.5
C3B—C2B—C1B120.41 (17)C7C—C8C—H8CB109.5
C2B—C3B—C4B117.55 (18)H8CA—C8C—H8CB109.5
C2B—C3B—H3BA121.2C7C—C8C—H8CC109.5
C4B—C3B—H3BA121.2H8CA—C8C—H8CC109.5
C5B—C4B—C3B120.29 (18)H8CB—C8C—H8CC109.5
C6A—N1A—C2A—C3A0.4 (3)C2B—N1B—C6B—N2B179.55 (16)
C6A—N1A—C2A—C1A178.19 (16)C2B—N1B—C6B—C5B0.1 (3)
Br1A—C1A—C2A—N1A71.41 (19)C7B—N2B—C6B—N1B168.3 (2)
Br1A—C1A—C2A—C3A110.00 (18)C7B—N2B—C6B—C5B11.3 (3)
N1A—C2A—C3A—C4A0.5 (3)C4B—C5B—C6B—N1B0.3 (3)
C1A—C2A—C3A—C4A177.93 (17)C4B—C5B—C6B—N2B179.93 (19)
C2A—C3A—C4A—C5A0.3 (3)C6B—N2B—C7B—O1B2.6 (4)
C3A—C4A—C5A—C6A0.1 (3)C6B—N2B—C7B—C8B177.6 (2)
C2A—N1A—C6A—N2A179.68 (16)C6C—N1C—C2C—C3C0.1 (3)
C2A—N1A—C6A—C5A0.0 (3)C6C—N1C—C2C—C1C178.23 (17)
C7A—N2A—C6A—N1A178.45 (19)Br1C—C1C—C2C—N1C73.37 (19)
C7A—N2A—C6A—C5A1.9 (3)Br1C—C1C—C2C—C3C108.44 (18)
C4A—C5A—C6A—N1A0.2 (3)N1C—C2C—C3C—C4C0.4 (3)
C4A—C5A—C6A—N2A179.84 (18)C1C—C2C—C3C—C4C177.65 (18)
C6A—N2A—C7A—O1A2.9 (3)C2C—C3C—C4C—C5C0.6 (3)
C6A—N2A—C7A—C8A176.72 (18)C3C—C4C—C5C—C6C0.3 (3)
C6B—N1B—C2B—C3B0.4 (3)C2C—N1C—C6C—N2C179.58 (17)
C6B—N1B—C2B—C1B176.64 (16)C2C—N1C—C6C—C5C0.4 (3)
Br1B—C1B—C2B—N1B78.77 (19)C7C—N2C—C6C—N1C178.90 (19)
Br1B—C1B—C2B—C3B104.14 (18)C7C—N2C—C6C—C5C1.1 (3)
N1B—C2B—C3B—C4B0.2 (3)C4C—C5C—C6C—N1C0.2 (3)
C1B—C2B—C3B—C4B176.68 (17)C4C—C5C—C6C—N2C179.76 (19)
C2B—C3B—C4B—C5B0.3 (3)C6C—N2C—C7C—O1C1.6 (3)
C3B—C4B—C5B—C6B0.5 (3)C6C—N2C—C7C—C8C178.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2A–C6A/N1A and C2C–C6C/N1C pyridine rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2A—H2NA···O1Ci0.74 (3)2.29 (3)3.022 (2)172 (4)
N2B—H2NB···O1A0.93 (3)1.97 (3)2.885 (2)166 (3)
N2C—H2NC···O1Bii0.73 (3)2.18 (3)2.900 (2)169 (3)
C1B—H1BA···Br1Biii0.972.853.716 (2)149
C8B—H8BB···O1A0.962.503.159 (3)125
C8C—H8CA···N1Aiv0.962.503.427 (3)162
C1A—H1AB···Cg1iii0.972.883.612 (2)133
C1C—H1CB···Cg2iii0.972.813.447 (2)124
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H9BrN2O
Mr229.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)4.1894 (8), 26.219 (5), 23.817 (4)
β (°) 94.148 (4)
V3)2609.2 (8)
Z12
Radiation typeMo Kα
µ (mm1)4.68
Crystal size (mm)0.31 × 0.14 × 0.09
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.323, 0.668
No. of measured, independent and
observed [I > 2σ(I)] reflections
72227, 10228, 8239
Rint0.058
(sin θ/λ)max1)0.780
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.100, 1.06
No. of reflections10228
No. of parameters340
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.37, 0.74

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2A–C6A/N1A and C2C–C6C/N1C pyridine rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2A—H2NA···O1Ci0.74 (3)2.29 (3)3.022 (2)172 (4)
N2B—H2NB···O1A0.93 (3)1.97 (3)2.885 (2)166 (3)
N2C—H2NC···O1Bii0.73 (3)2.18 (3)2.900 (2)169 (3)
C1B—H1BA···Br1Biii0.972.853.716 (2)149
C8B—H8BB···O1A0.962.503.159 (3)125
C8C—H8CA···N1Aiv0.962.503.427 (3)162
C1A—H1AB···Cg1iii0.972.883.612 (2)133
C1C—H1CB···Cg2iii0.972.813.447 (2)124
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x1, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). JHG also thanks USM for the award of a USM Fellowship. SG and DS acknowledge the DST and CSIR, Government of India, for funding. NKD acknowedges the UGC for a fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGhosh, K. & Masanta, G. (2006). Tetrahedron Lett. 47, 9233–9237.  Web of Science CrossRef CAS Google Scholar
First citationGoswami, S., Dey, S., Jana, S. & Adak, A. K. (2004). Chem. Lett. 33, 916–917.  Web of Science CrossRef CAS Google Scholar
First citationGoswami, S., Ghosh, K. & Dasgupta, S. (2000). J. Org. Chem. 65, 1907–1914.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGoswami, S., Ghosh, K., Mukherjee, R., Adak, A. K. & Mahapatra, A. K. (2001). J. Heterocycl. Chem. 38, 173–178.  CrossRef CAS Google Scholar
First citationGoswami, S., Mukherjee, R. & Roy, J. (2005). Org. Lett. 7, 1283–1285.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds