organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2546-o2547

2-(4-Chloro­phen­yl)-6-meth­­oxy­chroman-4-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mysore 570 006 India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 17 August 2010; accepted 6 September 2010; online 11 September 2010)

In the title mol­ecule, C16H13Cl O3, the two aromatic rings form a dihedral angle of 65.3 (1)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers, which are further packed into columns propagating in [100] by weak C—H⋯π inter­actions.

Related literature

For the pharmacological and alkyl­ating properties of chromenes (benzopyrans) and their derivatives and for their use as synthons for the synthesis of natural products, see: Brooks (1998[Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.]); Chenera et al. (1993[Chenera, B., West, M. L., Finkelstein, J. A. & Dreyer, G. B. J. (1993). J. Org. Chem. 58, 5605-5606.]); Ellis et al. (1997[Ellis, G. P. (1997). Chromenes, Chromanones and Chromones. New York: John Wiley and Sons Inc.]); Gabor et al. (1988[Gabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91-126. Budapest: Akademiai Kiado.]); Hatakeyama et al. (1988[Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1022-1024.]); Hyana & Saimoto, et al. (1987[Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.]); Kooijman et al. (1984[Kooijman, H., Spek, A. L., Kleijn, H., van Maanen, H. L., Jastrzebski, J. T. B. H. & van Kozikowski, A. P. (1984). Acc. Chem. Res. 17, 410-416.]); Liu et al. (2007[Liu, C.-B., Chen, Y.-H., Zhou, X.-Y., Ding, L. & Wen, H.-L. (2007). Acta Cryst. E63, o90-o91.]); Tang et al. (2007[Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.]); Valenti et al. (1993[Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349-360.]). For related structures, see: Brito et al. (2008[Brito, I., Bórquez, J., Loyola, L. A. & López-Rodríguez, M. (2008). Acta Cryst. E64, o285.]); Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Samshad (2007). Acta Cryst. E63, o3412-o3413.]); Li et al. (2007[Li, H.-Q., Xiao, Z.-P., Han, Y., Fang, R.-Q. & Zhu, H.-L. (2007). Acta Cryst. E63, o3923.]); Nallasivam et al. (2009[Nallasivam, A., Nethaji, M., Vembu, N., Ragunathan, V. & Sulochana, N. (2009). Acta Cryst. E65, o504-o505.]); Hao et al. (2010[Hao, L., Chen, J. & Zhang, X. (2010). Acta Cryst. E66, o1564.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClO3

  • Mr = 288.71

  • Triclinic, [P \overline 1]

  • a = 5.0188 (3) Å

  • b = 12.0138 (7) Å

  • c = 12.3708 (7) Å

  • α = 108.035 (5)°

  • β = 98.379 (4)°

  • γ = 91.820 (5)°

  • V = 699.33 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.46 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.590, Tmax = 1.000

  • 4431 measured reflections

  • 2733 independent reflections

  • 2318 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.156

  • S = 1.62

  • 2733 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2i 0.98 2.50 3.260 (2) 135
C8—H8BCg1ii 0.97 2.69 3.5709 (18) 151
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chromenes (benzopyrans) and their derivatives exhibit a wide spectrum of biological and pharmacological properties including spasmolytic, antisterility, anti-arrhytmic, cardionthonic, antiviral, anticancer and alkylating properties (Gabor et al., 1988; Brooks, 1998; Valenti et al., 1993; Hyana & Saimoto, et al. 1987; Tang et al., 2007). In addition, polyfunctionalized chromene units are present in numerous natural products (Hatakeyama et al., 1988). Chromanone derivatives are important synthons for the synthesis of natural products such as brazillin, hematoxylin, ripariochromene and clausenin (Kooijman et al., 1984; Ellis et al., 1997; Chenera et al., 1993; Liu et al., 2007). The crystal structures of some rleated chromene derivatives viz., 7-hydroxy-4-methyl-2H-chromen-2-one monohydrate (Butcher et al., 2007), 5,7-dimethoxy-3-(4-methoxyphenyl)-4H-chromen-4-one (Li et al., 2007), 5,7-dimethoxy-2-phenyl-4H-chromen-4-one (Nallasivam et al., 2009), 5-hydroxy-7-methoxy-4H-chromen-4-one (Brito et al., 2008) and 3-methyl-4H-chromen-4-one (Hao et al., 2010) have been reported. In view of the importance of chromene derivatives, the crystal structure of the title compound, (I), is reported.

In (I), 4-chloro phenyl ring is found bonded to a 6-methoxy-2,3-dihydro-4H-chromen-4-one ring at C7 which is in an S configuration (Fig.1). The fused pyran ring in the benzopyran moiety adopts a slightly distorted envelope conformation with puckering parameters Q, θ and ϕ of 0.4973 (16)A%, 122.19 (19)°, and 243.0 (2)°, respectively. The dihedral angles between the mean planes of the benzene and benzopyran rings is 65.3 (1)°. Bond distances (Allen et al., 1987) and angles are in normal ranges. Weak C—H···O hydrogen bond and C—H···π intermolecular interactions (where Cg1 is the centroid of ring C7—C12) are observed which contribute to crystal packing (Table 1).

Related literature top

For the pharmacological and alkylating properties of chromenes (benzopyrans) and their derivatives and for their use as synthons for the synthesis of natural products, see: Brooks (1998); Chenera et al. (1993); Ellis et al. (1997); Gabor et al. (1988); Hatakeyama et al. (1988); Hyana & Saimoto, et al. (1987); Kooijman et al. (1984); Liu et al. (2007); Tang et al. (2007); Valenti et al. (1993). For related structures, see: Brito et al. (2008); Butcher et al. (2007); Li et al. (2007); Nallasivam et al. (2009); Hao et al. (2010). For bond-length data, see: Allen et al. (1987).

Experimental top

To a mixture of 1-(2-hydroxy-5-methoxyphenyl)ethanone (1.66 g, 0.01 mol) and p-chloro benzaldehyde (1.4 g, 0.01 mol) in 30 ml e thanol, 10 ml of 10% potassium hydroxide solution was added and stirred at 5–10 C° for 24 h (Fig. 2). The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from DMF by the slow evaporation method and the yield of the compound was 75%. (m.p. 378 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.19–1.50Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Reaction scheme for (I).
2-(4-Chlorophenyl)-6-methoxychroman-4-one top
Crystal data top
C16H13ClO3Z = 2
Mr = 288.71F(000) = 300
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 5.0188 (3) ÅCell parameters from 2808 reflections
b = 12.0138 (7) Åθ = 4.5–74.2°
c = 12.3708 (7) ŵ = 2.46 mm1
α = 108.035 (5)°T = 293 K
β = 98.379 (4)°Block, colourless
γ = 91.820 (5)°0.40 × 0.35 × 0.20 mm
V = 699.33 (7) Å3
Data collection top
Oxford Diffraction Xcalibur with a Ruby (Gemini Cu) detector
diffractometer
2733 independent reflections
Radiation source: Enhance (Cu) X-ray Source2318 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 10.5081 pixels mm-1θmax = 74.3°, θmin = 4.5°
ω scansh = 65
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1414
Tmin = 0.590, Tmax = 1.000l = 1315
4431 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.62 w = 1/[σ2(Fo2) + (0.072P)2]
where P = (Fo2 + 2Fc2)/3
2733 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C16H13ClO3γ = 91.820 (5)°
Mr = 288.71V = 699.33 (7) Å3
Triclinic, P1Z = 2
a = 5.0188 (3) ÅCu Kα radiation
b = 12.0138 (7) ŵ = 2.46 mm1
c = 12.3708 (7) ÅT = 293 K
α = 108.035 (5)°0.40 × 0.35 × 0.20 mm
β = 98.379 (4)°
Data collection top
Oxford Diffraction Xcalibur with a Ruby (Gemini Cu) detector
diffractometer
2733 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2318 reflections with I > 2σ(I)
Tmin = 0.590, Tmax = 1.000Rint = 0.018
4431 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.62Δρmax = 0.17 e Å3
2733 reflectionsΔρmin = 0.39 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.44159 (18)1.09772 (6)1.41015 (7)0.1128 (4)
C150.1890 (4)0.52826 (16)0.74092 (15)0.0510 (4)
H140.18710.44690.72050.061*
C100.3876 (3)0.59907 (15)0.82937 (14)0.0445 (4)
C110.3896 (3)0.72078 (15)0.85979 (14)0.0457 (4)
C50.8624 (4)0.83325 (15)1.12894 (15)0.0486 (4)
C41.0438 (4)0.90581 (17)1.10279 (18)0.0588 (5)
H41.04510.90041.02620.071*
C31.2237 (5)0.98652 (19)1.1888 (2)0.0698 (6)
H31.34421.03561.17060.084*
C21.2221 (5)0.99320 (18)1.3011 (2)0.0703 (6)
C60.8664 (5)0.8411 (2)1.24293 (19)0.0714 (6)
H60.74590.79241.26170.098 (9)*
C11.0475 (6)0.9205 (2)1.3295 (2)0.0830 (7)
H11.05100.92471.40610.100*
C120.1994 (4)0.77156 (17)0.79994 (16)0.0547 (4)
H110.20340.85280.81830.066*
C140.0029 (4)0.57890 (18)0.68435 (16)0.0564 (5)
C130.0067 (4)0.70101 (19)0.71392 (17)0.0610 (5)
H120.12040.73520.67440.073*
C70.6684 (3)0.74364 (14)1.03660 (15)0.0454 (4)
H70.51490.72471.07030.055*
C90.5995 (3)0.54557 (14)0.88808 (15)0.0453 (4)
C80.7957 (3)0.63138 (15)0.98271 (15)0.0483 (4)
H8B0.85680.59581.04150.058*
H8A0.95210.64970.95170.058*
O10.5707 (2)0.79532 (10)0.94837 (11)0.0500 (3)
O20.6175 (3)0.43987 (11)0.86011 (12)0.0597 (4)
O30.2094 (3)0.51981 (15)0.59887 (13)0.0759 (5)
C160.2392 (5)0.3957 (2)0.5693 (2)0.0841 (7)
H15A0.07930.36350.54250.126*
H15B0.39240.36520.50940.126*
H15C0.26610.37450.63580.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1341 (7)0.0652 (4)0.1049 (5)0.0140 (4)0.0625 (5)0.0169 (3)
C150.0503 (10)0.0501 (9)0.0500 (9)0.0020 (7)0.0083 (8)0.0124 (8)
C100.0406 (8)0.0485 (9)0.0462 (9)0.0040 (7)0.0085 (7)0.0170 (7)
C110.0419 (8)0.0491 (9)0.0480 (9)0.0028 (7)0.0056 (7)0.0192 (7)
C50.0470 (9)0.0455 (9)0.0520 (9)0.0090 (7)0.0023 (7)0.0157 (7)
C40.0606 (11)0.0546 (11)0.0586 (11)0.0020 (9)0.0036 (9)0.0181 (9)
C30.0647 (13)0.0559 (11)0.0834 (15)0.0077 (9)0.0067 (11)0.0239 (10)
C20.0761 (14)0.0470 (10)0.0716 (13)0.0032 (9)0.0259 (11)0.0129 (9)
C60.0796 (15)0.0738 (14)0.0572 (12)0.0087 (11)0.0004 (10)0.0222 (10)
C10.1029 (19)0.0826 (16)0.0531 (12)0.0017 (14)0.0109 (12)0.0182 (11)
C120.0571 (11)0.0532 (10)0.0569 (10)0.0092 (8)0.0031 (8)0.0242 (8)
C140.0500 (10)0.0679 (12)0.0459 (9)0.0011 (8)0.0007 (7)0.0139 (8)
C130.0573 (11)0.0707 (12)0.0551 (10)0.0127 (9)0.0032 (9)0.0251 (9)
C70.0432 (9)0.0458 (9)0.0496 (9)0.0051 (7)0.0050 (7)0.0194 (7)
C90.0425 (9)0.0446 (9)0.0515 (9)0.0056 (7)0.0108 (7)0.0175 (7)
C80.0414 (9)0.0490 (9)0.0555 (10)0.0071 (7)0.0040 (7)0.0195 (8)
O10.0508 (7)0.0434 (6)0.0553 (7)0.0009 (5)0.0033 (5)0.0206 (5)
O20.0647 (8)0.0437 (7)0.0688 (8)0.0083 (6)0.0041 (6)0.0182 (6)
O30.0662 (9)0.0812 (11)0.0629 (9)0.0018 (7)0.0170 (7)0.0113 (8)
C160.0807 (16)0.0814 (16)0.0677 (14)0.0132 (13)0.0115 (12)0.0041 (12)
Geometric parameters (Å, º) top
Cl1—C21.744 (2)C1—H10.9300
C15—C141.376 (3)C12—C131.370 (3)
C15—C101.402 (2)C12—H110.9300
C15—H140.9300C14—O31.366 (2)
C10—C111.392 (2)C14—C131.395 (3)
C10—C91.476 (2)C13—H120.9300
C11—O11.371 (2)C7—O11.449 (2)
C11—C121.393 (2)C7—C81.515 (2)
C5—C61.381 (3)C7—H70.9800
C5—C41.380 (3)C9—O21.219 (2)
C5—C71.503 (2)C9—C81.502 (2)
C4—C31.383 (3)C8—H8B0.9700
C4—H40.9300C8—H8A0.9700
C3—C21.367 (4)O3—C161.418 (3)
C3—H30.9300C16—H15A0.9600
C2—C11.373 (4)C16—H15B0.9600
C6—C11.383 (3)C16—H15C0.9600
C6—H60.9300
C14—C15—C10120.12 (17)C15—C14—O3125.69 (19)
C14—C15—H14119.9C15—C14—C13119.31 (17)
C10—C15—H14119.9O3—C14—C13115.00 (18)
C11—C10—C15119.75 (16)C12—C13—C14121.37 (17)
C11—C10—C9119.71 (15)C12—C13—H12119.3
C15—C10—C9120.51 (15)C14—C13—H12119.3
O1—C11—C10122.90 (15)O1—C7—C5108.13 (13)
O1—C11—C12117.23 (15)O1—C7—C8109.43 (14)
C10—C11—C12119.86 (16)C5—C7—C8112.84 (14)
C6—C5—C4118.74 (19)O1—C7—H7108.8
C6—C5—C7119.48 (18)C5—C7—H7108.8
C4—C5—C7121.74 (16)C8—C7—H7108.8
C5—C4—C3120.9 (2)O2—C9—C10122.50 (16)
C5—C4—H4119.5O2—C9—C8122.51 (16)
C3—C4—H4119.5C10—C9—C8114.97 (14)
C2—C3—C4119.2 (2)C7—C8—C9111.46 (14)
C2—C3—H3120.4C7—C8—H8B109.3
C4—C3—H3120.4C9—C8—H8B109.3
C3—C2—C1121.2 (2)C7—C8—H8A109.3
C3—C2—Cl1119.3 (2)C9—C8—H8A109.3
C1—C2—Cl1119.45 (19)H8B—C8—H8A108.0
C5—C6—C1120.8 (2)C11—O1—C7112.96 (12)
C5—C6—H6119.6C14—O3—C16117.73 (18)
C1—C6—H6119.6O3—C16—H15A109.5
C2—C1—C6119.1 (2)O3—C16—H15B109.5
C2—C1—H1120.4H15A—C16—H15B109.5
C6—C1—H1120.4O3—C16—H15C109.5
C13—C12—C11119.55 (18)H15A—C16—H15C109.5
C13—C12—H11120.2H15B—C16—H15C109.5
C11—C12—H11120.2
C14—C15—C10—C110.1 (3)C15—C14—C13—C121.5 (3)
C14—C15—C10—C9178.06 (16)O3—C14—C13—C12178.56 (19)
C15—C10—C11—O1177.30 (15)C6—C5—C7—O1142.77 (18)
C9—C10—C11—O14.6 (2)C4—C5—C7—O139.4 (2)
C15—C10—C11—C121.9 (3)C6—C5—C7—C896.0 (2)
C9—C10—C11—C12176.21 (15)C4—C5—C7—C881.8 (2)
C6—C5—C4—C31.1 (3)C11—C10—C9—O2175.33 (17)
C7—C5—C4—C3178.99 (18)C15—C10—C9—O22.8 (3)
C5—C4—C3—C20.6 (3)C11—C10—C9—C83.1 (2)
C4—C3—C2—C10.7 (4)C15—C10—C9—C8178.80 (15)
C4—C3—C2—Cl1178.13 (16)O1—C7—C8—C957.54 (18)
C4—C5—C6—C10.4 (3)C5—C7—C8—C9177.98 (14)
C7—C5—C6—C1178.3 (2)O2—C9—C8—C7154.04 (17)
C3—C2—C1—C61.4 (4)C10—C9—C8—C727.6 (2)
Cl1—C2—C1—C6177.40 (19)C10—C11—O1—C726.7 (2)
C5—C6—C1—C20.9 (4)C12—C11—O1—C7152.50 (16)
O1—C11—C12—C13177.23 (17)C5—C7—O1—C11179.56 (13)
C10—C11—C12—C132.0 (3)C8—C7—O1—C1157.17 (18)
C10—C15—C14—O3178.47 (18)C15—C14—O3—C163.6 (3)
C10—C15—C14—C131.6 (3)C13—C14—O3—C16176.6 (2)
C11—C12—C13—C140.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.982.503.260 (2)135
C8—H8B···Cg1ii0.972.693.5709 (18)151
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H13ClO3
Mr288.71
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.0188 (3), 12.0138 (7), 12.3708 (7)
α, β, γ (°)108.035 (5), 98.379 (4), 91.820 (5)
V3)699.33 (7)
Z2
Radiation typeCu Kα
µ (mm1)2.46
Crystal size (mm)0.40 × 0.35 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur with a Ruby (Gemini Cu) detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.590, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4431, 2733, 2318
Rint0.018
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.156, 1.62
No. of reflections2733
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.39

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.982.503.260 (2)134.7
C8—H8B···Cg1ii0.972.693.5709 (18)151
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z.
 

Acknowledgements

BN thanks the UGC for a SAP Chemical grant. HSY thanks UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrito, I., Bórquez, J., Loyola, L. A. & López-Rodríguez, M. (2008). Acta Cryst. E64, o285.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrooks, G. T. (1998). Pestic. Sci. 22, 41–50.  CrossRef Web of Science Google Scholar
First citationButcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Samshad (2007). Acta Cryst. E63, o3412–o3413.  Google Scholar
First citationChenera, B., West, M. L., Finkelstein, J. A. & Dreyer, G. B. J. (1993). J. Org. Chem. 58, 5605–5606.  CrossRef CAS Web of Science Google Scholar
First citationEllis, G. P. (1997). Chromenes, Chromanones and Chromones. New York: John Wiley and Sons Inc.  Google Scholar
First citationGabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91–126. Budapest: Akademiai Kiado.  Google Scholar
First citationHao, L., Chen, J. & Zhang, X. (2010). Acta Cryst. E66, o1564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1022–1024.  Google Scholar
First citationHyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.  Google Scholar
First citationKooijman, H., Spek, A. L., Kleijn, H., van Maanen, H. L., Jastrzebski, J. T. B. H. & van Kozikowski, A. P. (1984). Acc. Chem. Res. 17, 410–416.  CrossRef Web of Science Google Scholar
First citationLi, H.-Q., Xiao, Z.-P., Han, Y., Fang, R.-Q. & Zhu, H.-L. (2007). Acta Cryst. E63, o3923.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, C.-B., Chen, Y.-H., Zhou, X.-Y., Ding, L. & Wen, H.-L. (2007). Acta Cryst. E63, o90–o91.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNallasivam, A., Nethaji, M., Vembu, N., Ragunathan, V. & Sulochana, N. (2009). Acta Cryst. E65, o504–o505.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationValenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349–360.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2546-o2547
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds