metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­­[4-(methyl­sulfan­yl)benzoato-κO]bis­­(pyridine-κN)copper(II)

aCollege of Chemistry and Chemical Engineering, Nantong University, Nantong 226009, People's Republic of China
*Correspondence e-mail: jgq3518@163.com

(Received 22 August 2010; accepted 1 September 2010; online 8 September 2010)

In the title mol­ecule, [Cu(C8H7O2S)2(C5H5N)2(H2O)], the CuII ion is penta­coordinated in a distorted square-pyramidal geometry by two O atoms of two 4-(methyl­sulfan­yl)benzoate anions and two N atoms of two pyridine ligands and a water O atom situated at the apical site. In the crystal structure, O—H⋯O hydrogen bonds link mol­ecules into chains along the b axis.

Related literature

For the pharmacological properties of thio­amino acid for treating copper intoxication, see: Tran-Ho et al. (1997[Tran-Ho, L.-C., May, P. M. & Hefter, G. T. (1997). J. Inorg. Biochem. 68, 225-231.]). For the catalytic properties of copper(II) complexes, see: Kawasaki & Katsuki (1997[Kawasaki, K. & Katsuki, T. (1997). Tetrahedron, 53, 6337-6350.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H7O2S)2(C5H5N)2(H2O)]

  • Mr = 574.15

  • Monoclinic, P 21 /c

  • a = 25.676 (5) Å

  • b = 6.0030 (11) Å

  • c = 17.026 (3) Å

  • β = 97.753 (4)°

  • V = 2600.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 293 K

  • 0.22 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.885, Tmax = 0.903

  • 14401 measured reflections

  • 4822 independent reflections

  • 3640 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.106

  • S = 1.00

  • 4822 reflections

  • 332 parameters

  • 20 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3i 0.83 (2) 1.88 (2) 2.701 (3) 170 (3)
O1W—H1WB⋯O1i 0.83 (2) 1.89 (2) 2.721 (3) 173 (3)
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of metal-organic complexes have attracted intense attention in recent years owing to their potential practical applications, such as biological activities, magnetism and catalysis (for the catalytic properties of copper (II) complexes, see Kawasaki et al. (1997)). Also the pharmacological properties of thioamino acid derivatives for treating copper intoxication are well-known (Tran-Ho et al., 1997). In order to achieve supramolecular transition metal complexes by self-assembly, and to explore the relationship between the structure and the biological properties, as one part of our systematic work, in this paper, we report on the synthesis and crystal structure of the title compound, (I) (Fig. 1).

In (I), the CuII ion has a square- pyramidal environment being coordinated by two carboxylate O atoms from the two coordinating 4-(methylsulfanyl)benzoate ligands and two N atoms from the two pyridine ligands, and an O atom from the water molecule. A long apical Cu—OH2 bond of 2.243 (2) Å is due to the Jahn-Teller effect. In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules translated along axis b into chains (Fig. 2).

Related literature top

For the pharmacological properties of thioamino acid for treating copper intoxication, see: Tran-Ho et al. (1997). For the catalytic properties of copper(II) complexes, see: Kawasaki & Katsuki (1997).

Experimental top

4-(methylsulfanyl) benzoic acid (0.35 g, 2 mmol) was dissolved in pydine (5 ml) and then Cu(NO3)2.3H2O (0.240 g, 1 mmol) was added. After refluxing for 2 h, the solvent was removed in vacuo. The resulting mixture was dissolved in CH2Cl2 and single crystals were obtained by diffusion ethyl ether into the filtrate.

Refinement top

Carbon-bound H atoms were positioned geometrically, with C—H = 0.96Å for methyl groups and 0.93 Å for aromatic rings, and refined using a riding model, with Uiso (H) = 1.2-1.5 Ueq (C). The water' H atoms were located on a difference map and isotropically refined.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing showing a hydrogen-bonded (dashed lones) chain.
Aquabis[4-(methylsulfanyl)benzoato-κO]bis(pyridine-κN)copper(II) top
Crystal data top
[Cu(C8H7O2S)2(C5H5N)2(H2O)]F(000) = 1188
Mr = 574.15Dx = 1.467 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4039 reflections
a = 25.676 (5) Åθ = 2.4–27.2°
b = 6.0030 (11) ŵ = 1.04 mm1
c = 17.026 (3) ÅT = 293 K
β = 97.753 (4)°Prism, blue
V = 2600.3 (8) Å30.22 × 0.16 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4822 independent reflections
Radiation source: fine-focus sealed tube3640 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
phi and ω scansθmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3031
Tmin = 0.885, Tmax = 0.903k = 57
14401 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0646P)2]
where P = (Fo2 + 2Fc2)/3
4822 reflections(Δ/σ)max = 0.003
332 parametersΔρmax = 0.28 e Å3
20 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu(C8H7O2S)2(C5H5N)2(H2O)]V = 2600.3 (8) Å3
Mr = 574.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 25.676 (5) ŵ = 1.04 mm1
b = 6.0030 (11) ÅT = 293 K
c = 17.026 (3) Å0.22 × 0.16 × 0.10 mm
β = 97.753 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4822 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3640 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.903Rint = 0.034
14401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03520 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.28 e Å3
4822 reflectionsΔρmin = 0.32 e Å3
332 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.743521 (11)0.02678 (5)0.137765 (17)0.03387 (12)
S10.45561 (3)0.03164 (14)0.19282 (5)0.0620 (2)
S21.05166 (4)0.0851 (2)0.41678 (7)0.0901 (4)
C10.50925 (10)0.0745 (5)0.11836 (15)0.0409 (6)
C20.51918 (10)0.2719 (5)0.07666 (17)0.0464 (7)
H20.49610.39120.08640.056*
C30.56350 (10)0.2922 (4)0.02033 (15)0.0415 (6)
H30.56990.42620.00660.050*
C40.59820 (9)0.1168 (4)0.00363 (14)0.0341 (5)
C50.58709 (10)0.0812 (5)0.04404 (16)0.0434 (6)
H50.60940.20230.03270.052*
C60.54381 (11)0.1033 (5)0.10060 (16)0.0475 (7)
H60.53750.23790.12720.057*
C70.41908 (12)0.2863 (6)0.1935 (2)0.0723 (10)
H7A0.38870.27760.23290.108*
H7B0.40820.30940.14230.108*
H7C0.44080.40840.20560.108*
C80.64799 (9)0.1484 (5)0.05272 (14)0.0371 (6)
C90.98963 (11)0.0843 (5)0.35707 (17)0.0519 (7)
C100.97517 (11)0.2785 (5)0.31685 (18)0.0564 (8)
H100.99840.39800.32000.068*
C110.92676 (10)0.2969 (5)0.27216 (17)0.0493 (7)
H110.91710.43070.24680.059*
C120.89200 (9)0.1183 (5)0.26422 (15)0.0378 (6)
C130.90713 (11)0.0767 (5)0.30264 (16)0.0447 (6)
H130.88450.19840.29760.054*
C140.95556 (11)0.0948 (5)0.34880 (17)0.0539 (8)
H140.96520.22830.37440.065*
C151.06228 (15)0.1976 (8)0.4476 (3)0.1061 (16)
H15A1.09670.21200.47720.159*
H15B1.03630.24030.48030.159*
H15C1.05960.29240.40180.159*
C160.83848 (10)0.1431 (5)0.21525 (16)0.0440 (6)
C170.77130 (11)0.1691 (5)0.01263 (17)0.0519 (6)
H17A0.74780.28010.00250.062*
C180.79446 (12)0.1837 (5)0.08029 (17)0.0555 (6)
H18A0.78700.30290.11480.067*
C190.82878 (12)0.0210 (5)0.09659 (18)0.0556 (6)
H19A0.84430.02570.14280.067*
C200.83972 (12)0.1497 (6)0.04289 (17)0.0590 (8)
H200.86340.26140.05170.071*
C210.81514 (11)0.1524 (5)0.02388 (17)0.0533 (8)
H210.82280.26820.05990.064*
C220.67778 (10)0.1574 (5)0.25511 (15)0.0442 (6)
H220.66890.26700.21710.053*
C230.65702 (11)0.1699 (5)0.32568 (17)0.0507 (7)
H230.63490.28700.33490.061*
C240.66933 (12)0.0074 (5)0.38224 (17)0.0513 (7)
H240.65590.01300.43020.062*
C250.70184 (12)0.1627 (5)0.36627 (17)0.0535 (8)
H250.71050.27570.40310.064*
C260.72176 (11)0.1645 (5)0.29452 (15)0.0462 (7)
H260.74400.27990.28420.055*
N10.78083 (8)0.0024 (3)0.03984 (13)0.0399 (5)
N20.71013 (8)0.0062 (3)0.23945 (12)0.0381 (5)
O10.66052 (7)0.3399 (3)0.07546 (11)0.0523 (5)
O20.67505 (7)0.0256 (3)0.07148 (11)0.0448 (5)
O30.82353 (9)0.3270 (4)0.19108 (17)0.0859 (8)
O40.81221 (7)0.0363 (3)0.20312 (11)0.0444 (5)
O1W0.74339 (8)0.4003 (4)0.13501 (13)0.0558 (6)
H1WA0.7665 (10)0.495 (4)0.148 (2)0.067*
H1WB0.7188 (10)0.478 (5)0.1131 (18)0.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02653 (17)0.0401 (2)0.03353 (19)0.00232 (12)0.00137 (12)0.00054 (13)
S10.0502 (5)0.0705 (6)0.0579 (5)0.0065 (4)0.0202 (4)0.0042 (4)
S20.0474 (5)0.1133 (9)0.0982 (8)0.0033 (5)0.0316 (5)0.0246 (6)
C10.0335 (13)0.0487 (17)0.0383 (14)0.0056 (12)0.0030 (11)0.0035 (12)
C20.0362 (14)0.0432 (16)0.0563 (17)0.0065 (12)0.0066 (12)0.0001 (13)
C30.0377 (14)0.0403 (15)0.0449 (15)0.0017 (12)0.0007 (11)0.0066 (12)
C40.0277 (12)0.0388 (15)0.0357 (13)0.0005 (11)0.0033 (10)0.0010 (11)
C50.0412 (15)0.0377 (16)0.0491 (16)0.0042 (12)0.0020 (12)0.0006 (12)
C60.0491 (17)0.0372 (16)0.0541 (17)0.0052 (13)0.0004 (13)0.0070 (12)
C70.0495 (18)0.091 (3)0.070 (2)0.0060 (18)0.0178 (16)0.0078 (18)
C80.0288 (12)0.0525 (18)0.0295 (13)0.0012 (12)0.0020 (10)0.0004 (11)
C90.0363 (15)0.068 (2)0.0481 (17)0.0031 (14)0.0054 (12)0.0142 (15)
C100.0419 (16)0.060 (2)0.065 (2)0.0138 (14)0.0010 (14)0.0139 (16)
C110.0425 (15)0.0414 (17)0.0617 (19)0.0044 (13)0.0017 (13)0.0033 (13)
C120.0308 (13)0.0425 (15)0.0397 (14)0.0015 (11)0.0029 (11)0.0050 (11)
C130.0395 (15)0.0477 (17)0.0451 (16)0.0044 (13)0.0012 (12)0.0029 (12)
C140.0459 (17)0.058 (2)0.0548 (18)0.0042 (14)0.0053 (14)0.0064 (14)
C150.069 (3)0.121 (4)0.116 (4)0.032 (3)0.032 (2)0.003 (3)
C160.0338 (14)0.0492 (18)0.0476 (16)0.0039 (13)0.0003 (12)0.0055 (13)
C170.0516 (13)0.0577 (15)0.0475 (13)0.0102 (11)0.0108 (11)0.0042 (11)
C180.0569 (13)0.0613 (15)0.0499 (13)0.0086 (11)0.0129 (11)0.0094 (11)
C190.0542 (13)0.0644 (15)0.0506 (13)0.0081 (11)0.0157 (11)0.0053 (11)
C200.0530 (18)0.074 (2)0.0526 (18)0.0221 (16)0.0170 (15)0.0016 (15)
C210.0448 (16)0.060 (2)0.0546 (18)0.0162 (14)0.0063 (14)0.0073 (14)
C220.0423 (15)0.0474 (17)0.0421 (15)0.0053 (13)0.0028 (12)0.0003 (12)
C230.0491 (17)0.0527 (19)0.0514 (18)0.0027 (14)0.0108 (14)0.0084 (14)
C240.0525 (17)0.063 (2)0.0395 (15)0.0116 (15)0.0114 (13)0.0025 (13)
C250.0577 (18)0.058 (2)0.0436 (17)0.0038 (15)0.0017 (14)0.0129 (13)
C260.0455 (16)0.0506 (18)0.0409 (16)0.0058 (13)0.0000 (12)0.0047 (12)
N10.0318 (11)0.0475 (14)0.0391 (12)0.0038 (9)0.0001 (9)0.0010 (9)
N20.0329 (11)0.0453 (14)0.0348 (11)0.0004 (9)0.0003 (9)0.0005 (9)
O10.0463 (11)0.0509 (13)0.0545 (12)0.0128 (9)0.0120 (9)0.0022 (9)
O20.0319 (9)0.0566 (12)0.0432 (11)0.0077 (8)0.0049 (8)0.0044 (8)
O30.0617 (15)0.0459 (15)0.136 (2)0.0108 (11)0.0391 (15)0.0075 (13)
O40.0307 (9)0.0524 (12)0.0477 (11)0.0057 (8)0.0039 (8)0.0022 (8)
O1W0.0399 (11)0.0351 (12)0.0856 (16)0.0016 (8)0.0157 (11)0.0048 (10)
Geometric parameters (Å, º) top
Cu1—O41.9550 (18)C13—C141.383 (4)
Cu1—O21.9567 (18)C13—H130.9300
Cu1—N22.037 (2)C14—H140.9300
Cu1—N12.039 (2)C15—H15A0.9600
Cu1—O1W2.243 (2)C15—H15B0.9600
S1—C11.761 (3)C15—H15C0.9600
S1—C71.793 (4)C16—O31.222 (3)
S2—C91.770 (3)C16—O41.272 (3)
S2—C151.786 (5)C17—N11.342 (3)
C1—C21.387 (4)C17—C181.369 (4)
C1—C61.395 (4)C17—H17A0.9300
C2—C31.391 (3)C18—C191.368 (4)
C2—H20.9300C18—H18A0.9300
C3—C41.384 (3)C19—C201.377 (4)
C3—H30.9300C19—H19A0.9300
C4—C51.384 (4)C20—C211.373 (4)
C4—C81.503 (3)C20—H200.9300
C5—C61.375 (4)C21—N11.333 (3)
C5—H50.9300C21—H210.9300
C6—H60.9300C22—N21.336 (3)
C7—H7A0.9600C22—C231.381 (4)
C7—H7B0.9600C22—H220.9300
C7—H7C0.9600C23—C241.377 (4)
C8—O11.241 (3)C23—H230.9300
C8—O21.271 (3)C24—C251.369 (4)
C9—C101.377 (4)C24—H240.9300
C9—C141.381 (4)C25—C261.387 (4)
C10—C111.371 (4)C25—H250.9300
C10—H100.9300C26—N21.340 (3)
C11—C121.390 (4)C26—H260.9300
C11—H110.9300O1W—H1WA0.826 (18)
C12—C131.371 (4)O1W—H1WB0.832 (18)
C12—C161.515 (3)
O4—Cu1—O2178.45 (8)C9—C14—C13120.3 (3)
O4—Cu1—N288.21 (8)C9—C14—H14119.8
O2—Cu1—N292.39 (8)C13—C14—H14119.8
O4—Cu1—N188.89 (8)S2—C15—H15A109.5
O2—Cu1—N190.73 (8)S2—C15—H15B109.5
N2—Cu1—N1171.03 (8)H15A—C15—H15B109.5
O4—Cu1—O1W88.93 (7)S2—C15—H15C109.5
O2—Cu1—O1W89.59 (7)H15A—C15—H15C109.5
N2—Cu1—O1W94.51 (8)H15B—C15—H15C109.5
N1—Cu1—O1W93.91 (8)O3—C16—O4125.0 (3)
C1—S1—C7103.76 (14)O3—C16—C12119.6 (3)
C9—S2—C15104.84 (17)O4—C16—C12115.3 (2)
C2—C1—C6118.4 (2)N1—C17—C18123.2 (3)
C2—C1—S1124.4 (2)N1—C17—H17A118.4
C6—C1—S1117.2 (2)C18—C17—H17A118.4
C1—C2—C3120.3 (2)C17—C18—C19119.3 (3)
C1—C2—H2119.9C17—C18—H18A120.3
C3—C2—H2119.9C19—C18—H18A120.3
C4—C3—C2121.3 (2)C18—C19—C20118.4 (3)
C4—C3—H3119.4C18—C19—H19A120.8
C2—C3—H3119.4C20—C19—H19A120.8
C3—C4—C5117.9 (2)C21—C20—C19118.9 (3)
C3—C4—C8120.2 (2)C21—C20—H20120.6
C5—C4—C8121.8 (2)C19—C20—H20120.6
C6—C5—C4121.6 (3)N1—C21—C20123.4 (3)
C6—C5—H5119.2N1—C21—H21118.3
C4—C5—H5119.2C20—C21—H21118.3
C5—C6—C1120.6 (3)N2—C22—C23122.5 (3)
C5—C6—H6119.7N2—C22—H22118.8
C1—C6—H6119.7C23—C22—H22118.8
S1—C7—H7A109.5C24—C23—C22119.4 (3)
S1—C7—H7B109.5C24—C23—H23120.3
H7A—C7—H7B109.5C22—C23—H23120.3
S1—C7—H7C109.5C25—C24—C23118.5 (3)
H7A—C7—H7C109.5C25—C24—H24120.7
H7B—C7—H7C109.5C23—C24—H24120.7
O1—C8—O2124.9 (2)C24—C25—C26119.2 (3)
O1—C8—C4118.6 (2)C24—C25—H25120.4
O2—C8—C4116.4 (2)C26—C25—H25120.4
C10—C9—C14118.9 (3)N2—C26—C25122.5 (3)
C10—C9—S2116.4 (2)N2—C26—H26118.8
C14—C9—S2124.7 (3)C25—C26—H26118.8
C11—C10—C9120.5 (3)C21—N1—C17116.7 (2)
C11—C10—H10119.8C21—N1—Cu1120.20 (19)
C9—C10—H10119.8C17—N1—Cu1123.01 (18)
C10—C11—C12120.9 (3)C22—N2—C26117.9 (2)
C10—C11—H11119.5C22—N2—Cu1123.94 (18)
C12—C11—H11119.5C26—N2—Cu1118.18 (18)
C13—C12—C11118.4 (2)C8—O2—Cu1124.47 (17)
C13—C12—C16121.6 (2)C16—O4—Cu1119.04 (17)
C11—C12—C16120.0 (2)Cu1—O1W—H1WA133 (2)
C12—C13—C14120.9 (3)Cu1—O1W—H1WB125 (2)
C12—C13—H13119.5H1WA—O1W—H1WB102 (3)
C14—C13—H13119.5
C7—S1—C1—C23.5 (3)C23—C24—C25—C260.8 (4)
C7—S1—C1—C6176.4 (2)C24—C25—C26—N20.5 (4)
C6—C1—C2—C31.9 (4)C20—C21—N1—C171.1 (4)
S1—C1—C2—C3178.1 (2)C20—C21—N1—Cu1176.6 (2)
C1—C2—C3—C40.9 (4)C18—C17—N1—C210.7 (4)
C2—C3—C4—C50.9 (4)C18—C17—N1—Cu1176.9 (2)
C2—C3—C4—C8175.2 (2)O4—Cu1—N1—C2157.5 (2)
C3—C4—C5—C61.7 (4)O2—Cu1—N1—C21121.0 (2)
C8—C4—C5—C6174.3 (2)N2—Cu1—N1—C21128.6 (5)
C4—C5—C6—C10.7 (4)O1W—Cu1—N1—C2131.4 (2)
C2—C1—C6—C51.1 (4)O4—Cu1—N1—C17125.0 (2)
S1—C1—C6—C5178.9 (2)O2—Cu1—N1—C1756.5 (2)
C3—C4—C8—O19.3 (4)N2—Cu1—N1—C1753.8 (6)
C5—C4—C8—O1166.5 (2)O1W—Cu1—N1—C17146.2 (2)
C3—C4—C8—O2172.8 (2)C23—C22—N2—C261.0 (4)
C5—C4—C8—O211.3 (3)C23—C22—N2—Cu1178.0 (2)
C15—S2—C9—C10171.5 (3)C25—C26—N2—C220.4 (4)
C15—S2—C9—C148.7 (3)C25—C26—N2—Cu1178.7 (2)
C14—C9—C10—C112.9 (5)O4—Cu1—N2—C22123.9 (2)
S2—C9—C10—C11176.9 (2)O2—Cu1—N2—C2257.5 (2)
C9—C10—C11—C122.2 (4)N1—Cu1—N2—C2252.7 (6)
C10—C11—C12—C130.4 (4)O1W—Cu1—N2—C22147.3 (2)
C10—C11—C12—C16179.4 (3)O4—Cu1—N2—C2655.2 (2)
C11—C12—C13—C140.6 (4)O2—Cu1—N2—C26123.38 (19)
C16—C12—C13—C14178.3 (2)N1—Cu1—N2—C26126.4 (5)
C10—C9—C14—C131.8 (4)O1W—Cu1—N2—C2633.6 (2)
S2—C9—C14—C13177.9 (2)O1—C8—O2—Cu12.0 (4)
C12—C13—C14—C90.1 (4)C4—C8—O2—Cu1175.66 (15)
C13—C12—C16—O3169.9 (3)O4—Cu1—O2—C8167 (3)
C11—C12—C16—O39.0 (4)N2—Cu1—O2—C880.3 (2)
C13—C12—C16—O49.7 (4)N1—Cu1—O2—C891.3 (2)
C11—C12—C16—O4171.4 (2)O1W—Cu1—O2—C8174.8 (2)
N1—C17—C18—C190.6 (5)O3—C16—O4—Cu12.5 (4)
C17—C18—C19—C201.5 (5)C12—C16—O4—Cu1178.00 (16)
C18—C19—C20—C211.2 (5)O2—Cu1—O4—C16151 (3)
C19—C20—C21—N10.1 (5)N2—Cu1—O4—C1696.6 (2)
N2—C22—C23—C240.7 (4)N1—Cu1—O4—C1674.9 (2)
C22—C23—C24—C250.2 (4)O1W—Cu1—O4—C16168.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3i0.83 (2)1.88 (2)2.701 (3)170 (3)
O1W—H1WB···O1i0.83 (2)1.89 (2)2.721 (3)173 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H7O2S)2(C5H5N)2(H2O)]
Mr574.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)25.676 (5), 6.0030 (11), 17.026 (3)
β (°) 97.753 (4)
V3)2600.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.22 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.885, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
14401, 4822, 3640
Rint0.034
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.106, 1.00
No. of reflections4822
No. of parameters332
No. of restraints20
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.32

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3i0.826 (18)1.884 (19)2.701 (3)170 (3)
O1W—H1WB···O1i0.832 (18)1.894 (19)2.721 (3)173 (3)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province (grant No. 08KJB430012) and the Science and Technology Projects Fund of Nantong City (grant No. K2008001).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKawasaki, K. & Katsuki, T. (1997). Tetrahedron, 53, 6337–6350.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTran-Ho, L.-C., May, P. M. & Hefter, G. T. (1997). J. Inorg. Biochem. 68, 225–231.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds