metal-organic compounds
[Benzyl(2-pyridylmethylidene)amine]dichloridomercury(II)
aDepartment of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University, Busan 609-735, Republic of Korea, and bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr
The HgII ion in the title complex, [HgCl2(C13H12N2)], adopts a distorted tetrahedral geometry being coordinated by two Cl anions and by two N atoms of the benzyl(2-pyridylmethylene)amine ligand. The Cl—Hg—Cl plane is twisted at 70.1 (1)° from the mean plane of the chelate ring. In the intermolecular π–π interactions [centroid–centroid distance = 3.793 (3) Å] between the aromatic rings link the molecules into zigzag chains extending along [010].
Related literature
For chemosensors of mercury ions, see: Zhou et al. (2010). For electroluminescent devices, see: Fan et al. (2009). For the crystal structures and luminescence of related Hg complexes, see: Kim et al. (2008, 2010); Seo et al. (2009a,b).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810035889/cv2760sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810035889/cv2760Isup2.hkl
All of the reagents and solvents were commercially purchased from Aldrich and used without further purification. Benzyl(2-pyridylmethylene)amine (bpma) was synthesized from the reaction of 2-pyridinecarboxylaldehyde and benzylamine. A solution of benzylamine (20 mmol) in methanol (30 ml) was added to a solution of 2-pyridinecarboxylaldehyde (20 mmol) in methanol (30 ml), and the mixture was stirred for 3 h at room temperature. To a stirred solution of bpma was added mercuric chloride (20 mmol) in methanol (30 ml). The solution was stirred for 6 h at room temperature. The white crystals were obtained after recrystallization from methanol solution.
All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.97 Å, and with Uiso(H) = 1.2Ueq(C). The maximal residual peak and minimal residual hole situated at 0.78 and 0.79 Å, respectively, from the Hg1 atom.
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: WinGX (Farrugia, 1999).[HgCl2(C13H12N2)] | F(000) = 872 |
Mr = 467.74 | Dx = 2.245 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5055 reflections |
a = 8.2736 (1) Å | θ = 2.2–27.7° |
b = 11.8828 (2) Å | µ = 11.49 mm−1 |
c = 14.1191 (2) Å | T = 295 K |
β = 94.343 (1)° | Block, colourless |
V = 1384.11 (3) Å3 | 0.22 × 0.2 × 0.18 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2797 reflections with I > 2σ(I) |
ϕ and ω scans | Rint = 0.026 |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | θmax = 28.3°, θmin = 2.2° |
Tmin = 0.094, Tmax = 0.118 | h = −11→11 |
14227 measured reflections | k = −15→15 |
3432 independent reflections | l = −18→18 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.026 | w = 1/[σ2(Fo2) + (0.0212P)2 + 1.9423P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.056 | (Δ/σ)max = 0.001 |
S = 1.03 | Δρmax = 1.03 e Å−3 |
3432 reflections | Δρmin = −1.61 e Å−3 |
163 parameters |
[HgCl2(C13H12N2)] | V = 1384.11 (3) Å3 |
Mr = 467.74 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.2736 (1) Å | µ = 11.49 mm−1 |
b = 11.8828 (2) Å | T = 295 K |
c = 14.1191 (2) Å | 0.22 × 0.2 × 0.18 mm |
β = 94.343 (1)° |
Bruker SMART CCD area-detector diffractometer | 3432 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 2797 reflections with I > 2σ(I) |
Tmin = 0.094, Tmax = 0.118 | Rint = 0.026 |
14227 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.056 | H-atom parameters constrained |
S = 1.03 | Δρmax = 1.03 e Å−3 |
3432 reflections | Δρmin = −1.61 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.16420 (2) | 0.368809 (15) | 0.072427 (10) | 0.04946 (7) | |
N1 | 0.2879 (3) | 0.4688 (2) | 0.1992 (2) | 0.0354 (7) | |
C2 | 0.3837 (5) | 0.5579 (3) | 0.1919 (3) | 0.0457 (9) | |
H2 | 0.4039 | 0.5842 | 0.1319 | 0.055* | |
C3 | 0.4543 (5) | 0.6126 (3) | 0.2713 (4) | 0.0561 (12) | |
H3 | 0.5191 | 0.6756 | 0.2645 | 0.067* | |
C4 | 0.4283 (5) | 0.5735 (4) | 0.3594 (4) | 0.0539 (11) | |
H4 | 0.474 | 0.6096 | 0.4133 | 0.065* | |
C5 | 0.3333 (5) | 0.4797 (4) | 0.3671 (3) | 0.0471 (10) | |
H5 | 0.3157 | 0.4506 | 0.4266 | 0.056* | |
C6 | 0.2642 (4) | 0.4290 (3) | 0.2860 (2) | 0.0341 (7) | |
C7 | 0.1618 (4) | 0.3282 (3) | 0.2917 (3) | 0.0353 (8) | |
H7 | 0.1324 | 0.3039 | 0.3507 | 0.042* | |
N8 | 0.1135 (4) | 0.2744 (2) | 0.2183 (2) | 0.0350 (6) | |
C9 | 0.0108 (5) | 0.1746 (3) | 0.2275 (3) | 0.0430 (9) | |
H9A | −0.0839 | 0.1799 | 0.1828 | 0.052* | |
H9B | −0.0258 | 0.1717 | 0.2911 | 0.052* | |
C10 | 0.1029 (4) | 0.0685 (3) | 0.2085 (3) | 0.0356 (8) | |
C11 | 0.1158 (5) | 0.0304 (3) | 0.1168 (3) | 0.0441 (9) | |
H11 | 0.0678 | 0.0707 | 0.0657 | 0.053* | |
C12 | 0.1996 (5) | −0.0669 (4) | 0.1011 (3) | 0.0519 (10) | |
H12 | 0.2082 | −0.0917 | 0.0392 | 0.062* | |
C13 | 0.2707 (6) | −0.1275 (3) | 0.1754 (4) | 0.0520 (10) | |
H13 | 0.3261 | −0.1937 | 0.164 | 0.062* | |
C14 | 0.2598 (5) | −0.0905 (4) | 0.2664 (3) | 0.0517 (10) | |
H14 | 0.3086 | −0.1312 | 0.3171 | 0.062* | |
C15 | 0.1764 (5) | 0.0073 (3) | 0.2832 (3) | 0.0442 (9) | |
H15 | 0.1696 | 0.0323 | 0.3452 | 0.053* | |
Cl1 | 0.39293 (15) | 0.30109 (10) | −0.00900 (8) | 0.0599 (3) | |
Cl2 | −0.10125 (14) | 0.35992 (11) | −0.00837 (8) | 0.0607 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.05046 (10) | 0.06449 (12) | 0.03322 (8) | −0.00618 (8) | 0.00188 (6) | −0.00268 (7) |
N1 | 0.0322 (15) | 0.0313 (16) | 0.0423 (16) | 0.0000 (12) | −0.0001 (12) | 0.0043 (13) |
C2 | 0.037 (2) | 0.037 (2) | 0.063 (3) | −0.0032 (17) | 0.0030 (18) | 0.0095 (19) |
C3 | 0.034 (2) | 0.029 (2) | 0.102 (4) | −0.0029 (16) | −0.009 (2) | −0.003 (2) |
C4 | 0.052 (2) | 0.042 (2) | 0.065 (3) | 0.003 (2) | −0.016 (2) | −0.014 (2) |
C5 | 0.049 (2) | 0.046 (2) | 0.044 (2) | 0.0038 (19) | −0.0083 (18) | −0.0101 (18) |
C6 | 0.0327 (17) | 0.0312 (18) | 0.0380 (18) | 0.0056 (15) | −0.0002 (14) | −0.0026 (15) |
C7 | 0.0371 (19) | 0.0343 (18) | 0.0351 (18) | 0.0044 (15) | 0.0070 (14) | 0.0033 (15) |
N8 | 0.0356 (15) | 0.0318 (16) | 0.0379 (16) | −0.0032 (13) | 0.0044 (12) | 0.0003 (13) |
C9 | 0.039 (2) | 0.037 (2) | 0.055 (2) | −0.0078 (17) | 0.0115 (17) | −0.0017 (18) |
C10 | 0.0355 (18) | 0.0303 (19) | 0.0414 (19) | −0.0094 (15) | 0.0058 (15) | −0.0001 (15) |
C11 | 0.054 (2) | 0.038 (2) | 0.039 (2) | −0.0025 (18) | −0.0003 (17) | 0.0024 (17) |
C12 | 0.059 (3) | 0.047 (2) | 0.050 (2) | −0.002 (2) | 0.009 (2) | −0.012 (2) |
C13 | 0.055 (2) | 0.031 (2) | 0.072 (3) | 0.0005 (19) | 0.012 (2) | 0.003 (2) |
C14 | 0.055 (3) | 0.040 (2) | 0.059 (3) | −0.005 (2) | −0.003 (2) | 0.014 (2) |
C15 | 0.056 (2) | 0.042 (2) | 0.0353 (19) | −0.0159 (19) | 0.0032 (17) | 0.0016 (17) |
Cl1 | 0.0642 (7) | 0.0605 (7) | 0.0570 (6) | 0.0117 (6) | 0.0186 (5) | 0.0063 (5) |
Cl2 | 0.0559 (6) | 0.0762 (8) | 0.0479 (6) | −0.0078 (6) | −0.0095 (5) | −0.0080 (5) |
Hg1—N1 | 2.321 (3) | C7—H7 | 0.93 |
Hg1—Cl2 | 2.3993 (11) | N8—C9 | 1.470 (5) |
Hg1—N8 | 2.409 (3) | C9—C10 | 1.507 (5) |
Hg1—Cl1 | 2.4249 (11) | C9—H9A | 0.97 |
N1—C2 | 1.331 (5) | C9—H9B | 0.97 |
N1—C6 | 1.342 (4) | C10—C11 | 1.382 (5) |
C2—C3 | 1.387 (6) | C10—C15 | 1.384 (5) |
C2—H2 | 0.93 | C11—C12 | 1.375 (6) |
C3—C4 | 1.359 (7) | C11—H11 | 0.93 |
C3—H3 | 0.93 | C12—C13 | 1.368 (6) |
C4—C5 | 1.373 (6) | C12—H12 | 0.93 |
C4—H4 | 0.93 | C13—C14 | 1.368 (6) |
C5—C6 | 1.379 (5) | C13—H13 | 0.93 |
C5—H5 | 0.93 | C14—C15 | 1.381 (6) |
C6—C7 | 1.473 (5) | C14—H14 | 0.93 |
C7—N8 | 1.258 (5) | C15—H15 | 0.93 |
Cg1···Cg2i | 3.793 (3) | ||
N1—Hg1—Cl2 | 136.35 (8) | C7—N8—C9 | 119.1 (3) |
N1—Hg1—N8 | 71.00 (10) | C7—N8—Hg1 | 113.8 (2) |
Cl2—Hg1—N8 | 99.99 (8) | C9—N8—Hg1 | 126.2 (2) |
N1—Hg1—Cl1 | 102.78 (8) | N8—C9—C10 | 110.9 (3) |
Cl2—Hg1—Cl1 | 118.63 (4) | N8—C9—H9A | 109.5 |
N8—Hg1—Cl1 | 116.32 (8) | C10—C9—H9A | 109.5 |
C2—N1—C6 | 118.7 (3) | N8—C9—H9B | 109.5 |
C2—N1—Hg1 | 125.3 (3) | C10—C9—H9B | 109.5 |
C6—N1—Hg1 | 115.9 (2) | H9A—C9—H9B | 108.1 |
N1—C2—C3 | 121.8 (4) | C11—C10—C15 | 118.7 (4) |
N1—C2—H2 | 119.1 | C11—C10—C9 | 121.1 (4) |
C3—C2—H2 | 119.1 | C15—C10—C9 | 120.2 (3) |
C4—C3—C2 | 119.6 (4) | C12—C11—C10 | 120.2 (4) |
C4—C3—H3 | 120.2 | C12—C11—H11 | 119.9 |
C2—C3—H3 | 120.2 | C10—C11—H11 | 119.9 |
C3—C4—C5 | 118.8 (4) | C13—C12—C11 | 120.8 (4) |
C3—C4—H4 | 120.6 | C13—C12—H12 | 119.6 |
C5—C4—H4 | 120.6 | C11—C12—H12 | 119.6 |
C4—C5—C6 | 119.5 (4) | C14—C13—C12 | 119.7 (4) |
C4—C5—H5 | 120.3 | C14—C13—H13 | 120.1 |
C6—C5—H5 | 120.3 | C12—C13—H13 | 120.1 |
N1—C6—C5 | 121.6 (4) | C13—C14—C15 | 120.1 (4) |
N1—C6—C7 | 117.5 (3) | C13—C14—H14 | 120 |
C5—C6—C7 | 120.9 (3) | C15—C14—H14 | 120 |
N8—C7—C6 | 121.1 (3) | C14—C15—C10 | 120.5 (4) |
N8—C7—H7 | 119.5 | C14—C15—H15 | 119.7 |
C6—C7—H7 | 119.5 | C10—C15—H15 | 119.7 |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [HgCl2(C13H12N2)] |
Mr | 467.74 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 8.2736 (1), 11.8828 (2), 14.1191 (2) |
β (°) | 94.343 (1) |
V (Å3) | 1384.11 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 11.49 |
Crystal size (mm) | 0.22 × 0.2 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.094, 0.118 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14227, 3432, 2797 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.056, 1.03 |
No. of reflections | 3432 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.03, −1.61 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2010), WinGX (Farrugia, 1999).
Acknowledgements
This work was supported by a Korea Research Foundation Grant funded by the Korean government (MOEHRD) (KRF-2006–521-C00083).
References
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fan, B., Yang, Y., Yin, Y., Hasi, W. & Mu, Y. (2009). Inorg. Chem. 48, 6034–6043. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kim, Y.-I., Lee, Y.-S., Seo, H.-J., Nam, K.-S. & Kang, S. K. (2008). Acta Cryst. E64, m358. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kim, Y.-I., Seo, H.-J., Kim, J.-H., Lee, Y.-S. & Kang, S. K. (2010). Acta Cryst. E66, m124. Web of Science CSD CrossRef IUCr Journals Google Scholar
Seo, H.-J., Kim, Y.-I., Lee, Y.-S. & Kang, S. K. (2009a). Acta Cryst. E65, m55. Web of Science CSD CrossRef IUCr Journals Google Scholar
Seo, H.-J., Ryu, J. S., Nam, K.-S., Kang, S. K., Park, S. Y. & Kim, Y.-I. (2009b). Bull. Korean Chem. Soc. 30, 3109–3112. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhou, Y., Zhu, C.-Y., Gao, X.-S., You, X.-Y. & Yao, C. (2010). Org. Lett. 12, 2566–2569. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Luminescent mercury(II) compounds with nitrogen-containing ligands have reported in studies concerning their performance in chemosensors for mercury ions (Zhou et al., 2010) and electroluminescent devices (Fan et al., 2009). As an extension of our work (Kim et al., 2010; Seo et al., 2009a, b; Kim et al., 2008) on luminescent mercury(II) complexes, herein, we report here the crystal structure and luminescent properties of the title HgII chloride complex with benzyl(2-pyridylmethylene)amine (bpma), (I).
In (I) (Fig. 1), the HgII ion is coordinated by two N atoms of bpma ligand and two Cl anions. The angles around Hg atom are in the range of 71.00 (10) – 136.35 (8)°, suggesting the coordination geometry around the Hg atom is described as a distorted tetrahedron. The Cl—Hg—Cl plane is twisted at 70.1 (1)° from the mean plane of the chelate ring. The phenyl ring on the bpma ligand is twisted out of the pyridine plane, and form a dihedral angel of 67.9 (1)°. In the crystal structure, there are weak π-π interactions between the aromatic rings of the discrete units (Table 1), which link the molecules into zigzag chains extended in direction [010] (Fig. 2).
The title complex exhibited an emission (λmax,PL = 426 nm in DMF) upon 280 nm excitation with the quantum yield of 2.9%, which was contributed from the intra-ligand (IL) 1(π-π*) transition.