organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(1-Phenyl­ethyl­­idene)carbonohydrazide

aDongchang College, Liaocheng University, Liaocheng 250059, People's Republic of China
*Correspondence e-mail: konglingqian08@163.com

(Received 2 September 2010; accepted 25 September 2010; online 30 September 2010)

The title compound, C9H12N4O, crystallizes with two independent mol­ecules in the asymmetric unit. In the crystal, inter­molecular N—H⋯O and N—H⋯N hydrogen bonds link the mol­ecules into paired ribbons propagated in [100]. The crystal studied was a twin (twin law [\overline{1}]00/0[\overline{1}]0/001) with a minor component of 25%.

Related literature

For applications of carbonohydrazide derivatives, see: Esmail & Kurzer (1977[Esmail, R. & Kurzer, F. (1977). Tetrahedron, 33, 2007-2012.]); Loncle et al. (2004[Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.]). For a related structure, see: Meyers et al. (1995[Meyers, C. Y., Kolb, V. M. & Robinson, P. D. (1995). Acta Cryst. C51, 775-777.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12N4O

  • Mr = 192.23

  • Monoclinic, P 21 /c

  • a = 9.7744 (8) Å

  • b = 7.3163 (7) Å

  • c = 28.2761 (3) Å

  • β = 90.796 (1)°

  • V = 2021.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.43 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.987

  • 9568 measured reflections

  • 3568 independent reflections

  • 1412 reflections with I > 2σ(I)

  • Rint = 0.111

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.186

  • S = 0.84

  • 3568 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N8i 0.86 2.19 2.982 (4) 152
N4—H4C⋯O2ii 0.89 2.29 3.055 (5) 144
N3—H3⋯O2 0.86 2.13 2.895 (4) 148
N6—H6A⋯N4 0.86 2.17 2.972 (4) 156
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carbonohydrazide derivatives are popular ligands in coordination chemistry due to the strong coordinative ability (Esmail et al., 1977). Meanwhile, they have also attracted much attention due to interesting bioactivity such as antibacteriale antifungal, anticonvulsant, anticancer activities (Loncle et al., 2004). Herewith we present the crystal structure of the title compound, (I), which is a carbonohydrazide derivative.

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the reported compound (Meyers et al., 1995). The C=N bond lengths in the molecule are 1.282 (5) °, 1.272 (5)° (C2=N5, C1=N11), respectively, showing the double-bond character. The dihedral angle between the benzene ring (C12—C17) and the plane of C11/N1/N2 is 19.17 (27) °, while the dihedral angle between the benzene ring (C3—C8) and the plane of C2/N5/N6 is 14.87 (31) °.

Intermolecular N—H···O and N—H···N hydrogen bonds (Table 1) link the molecules into paired ribbons propagated in direction [100].

Related literature top

For applications of carbonohydrazide derivatives, see: Esmail et al. (1977); Loncle et al. (2004). For a related structure, see: Meyers et al. (1995).

Experimental top

Acetophenone (10.0 mmol) and carbohydrazide (10.0 mmol) were mixed in 50 ml flash under sovlent-free condtions. After stirring 2 h at 373 K, the resulting mixture was cooled to room temperature, and recrystalized from ethanol, and afforded the title compound as a crystalline solid. Elemental analysis: calculated for C9H12N4O: C 56.24, H 6.29, N 29.15%; found: C 56.13, H 6.24, N 29.31%.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H = 0.86–0.90 Å and C—H = 0.93 - 0.96 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5 Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.
1-(1-Phenylethylidene)carbonohydrazide top
Crystal data top
C9H12N4OF(000) = 816
Mr = 192.23Dx = 1.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.7744 (8) ÅCell parameters from 839 reflections
b = 7.3163 (7) Åθ = 2.5–26.2°
c = 28.2761 (3) ŵ = 0.09 mm1
β = 90.796 (1)°T = 293 K
V = 2021.9 (3) Å3Block, colourless
Z = 80.43 × 0.17 × 0.15 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3568 independent reflections
Radiation source: fine-focus sealed tube1412 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.111
phi and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1011
Tmin = 0.963, Tmax = 0.987k = 88
9568 measured reflectionsl = 3323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.0777P)2]
where P = (Fo2 + 2Fc2)/3
3568 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C9H12N4OV = 2021.9 (3) Å3
Mr = 192.23Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.7744 (8) ŵ = 0.09 mm1
b = 7.3163 (7) ÅT = 293 K
c = 28.2761 (3) Å0.43 × 0.17 × 0.15 mm
β = 90.796 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3568 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1412 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.987Rint = 0.111
9568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 0.84Δρmax = 0.26 e Å3
3568 reflectionsΔρmin = 0.24 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8472 (3)0.1813 (5)0.45497 (9)0.0877 (10)
O20.3489 (2)0.2384 (4)0.50884 (9)0.0731 (9)
N10.6814 (3)0.3386 (5)0.55616 (12)0.0627 (9)
N20.7850 (3)0.3042 (5)0.52501 (12)0.0655 (10)
H20.86810.33300.53200.079*
N30.6226 (3)0.1926 (5)0.47282 (11)0.0746 (11)
H30.56070.23050.49180.089*
N40.5831 (3)0.0984 (6)0.43144 (11)0.0793 (11)
H4A0.63470.13500.40750.119*
H4C0.59480.02100.43600.119*
N50.1757 (3)0.0963 (5)0.40633 (11)0.0578 (9)
N60.2815 (3)0.1455 (5)0.43539 (11)0.0610 (9)
H6A0.36420.14130.42540.073*
N70.1225 (3)0.2228 (5)0.49114 (11)0.0762 (11)
H7A0.08020.11600.48490.091*
N80.0871 (3)0.2698 (6)0.53820 (12)0.0931 (13)
H8A0.11970.18690.55840.140*
H8C0.12390.37820.54480.140*
C10.2557 (4)0.2014 (6)0.48027 (15)0.0612 (11)
C20.2023 (4)0.0482 (5)0.36361 (14)0.0559 (10)
C30.0833 (4)0.0052 (6)0.33345 (14)0.0583 (11)
C40.0951 (5)0.0984 (6)0.29212 (15)0.0735 (12)
H40.18240.12640.28170.088*
C50.0154 (6)0.1537 (7)0.26486 (17)0.0882 (15)
H50.00200.21530.23650.106*
C60.1446 (6)0.1168 (8)0.27995 (18)0.0965 (17)
H60.22030.15740.26260.116*
C70.1616 (5)0.0192 (8)0.32097 (18)0.1011 (17)
H70.24940.01100.33060.121*
C80.0505 (5)0.0345 (7)0.34802 (15)0.0789 (14)
H80.06390.09760.37610.095*
C90.3434 (4)0.0465 (6)0.34318 (14)0.0776 (13)
H9A0.39350.15130.35430.116*
H9B0.33680.04980.30930.116*
H9C0.39030.06290.35290.116*
C100.7539 (4)0.2242 (6)0.48324 (16)0.0670 (12)
C110.7111 (4)0.4054 (6)0.59662 (15)0.0609 (11)
C120.5943 (5)0.4406 (6)0.62839 (16)0.0696 (12)
C130.4626 (5)0.4533 (7)0.60913 (17)0.0916 (16)
H130.44960.43930.57670.110*
C140.3502 (6)0.4868 (8)0.6376 (2)0.119 (2)
H140.26310.49440.62410.143*
C150.3676 (7)0.5084 (9)0.6855 (2)0.126 (2)
H150.29260.53260.70450.151*
C160.4968 (8)0.4940 (8)0.7055 (2)0.116 (2)
H160.50930.50490.73810.139*
C170.6091 (6)0.4628 (6)0.67616 (17)0.0891 (15)
H170.69630.45710.68970.107*
C180.8554 (4)0.4505 (6)0.61330 (15)0.0754 (13)
H18A0.90430.33930.61980.113*
H18B0.85170.52300.64160.113*
H18C0.90150.51780.58910.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0453 (16)0.145 (3)0.073 (2)0.0036 (17)0.0070 (15)0.0160 (19)
O20.0450 (15)0.106 (2)0.0682 (19)0.0043 (15)0.0040 (14)0.0133 (17)
N10.062 (2)0.070 (3)0.057 (2)0.0059 (18)0.0080 (18)0.0016 (19)
N20.0499 (19)0.088 (3)0.058 (2)0.0044 (18)0.0016 (17)0.012 (2)
N30.044 (2)0.114 (3)0.066 (2)0.0049 (19)0.0020 (16)0.025 (2)
N40.055 (2)0.115 (3)0.068 (2)0.002 (2)0.0024 (17)0.015 (2)
N50.055 (2)0.062 (2)0.056 (2)0.0020 (17)0.0064 (17)0.0019 (18)
N60.0501 (19)0.080 (3)0.054 (2)0.0011 (17)0.0018 (16)0.0103 (19)
N70.054 (2)0.111 (3)0.064 (2)0.011 (2)0.0074 (17)0.020 (2)
N80.056 (2)0.152 (4)0.072 (3)0.002 (2)0.0065 (18)0.015 (3)
C10.041 (2)0.079 (3)0.064 (3)0.003 (2)0.003 (2)0.002 (2)
C20.061 (3)0.049 (3)0.057 (3)0.000 (2)0.004 (2)0.001 (2)
C30.071 (3)0.054 (3)0.050 (2)0.002 (2)0.003 (2)0.006 (2)
C40.087 (3)0.066 (3)0.068 (3)0.004 (3)0.005 (3)0.006 (3)
C50.116 (4)0.078 (4)0.069 (3)0.006 (3)0.016 (3)0.010 (3)
C60.105 (4)0.104 (5)0.079 (4)0.031 (4)0.027 (3)0.003 (3)
C70.078 (4)0.146 (5)0.079 (4)0.013 (3)0.011 (3)0.004 (4)
C80.071 (3)0.104 (4)0.062 (3)0.011 (3)0.009 (2)0.009 (3)
C90.074 (3)0.092 (4)0.067 (3)0.001 (3)0.011 (2)0.009 (3)
C100.050 (3)0.089 (3)0.062 (3)0.009 (2)0.001 (2)0.006 (3)
C110.071 (3)0.055 (3)0.057 (3)0.005 (2)0.000 (2)0.001 (2)
C120.079 (3)0.063 (3)0.067 (3)0.002 (2)0.006 (2)0.002 (2)
C130.086 (4)0.102 (4)0.088 (4)0.006 (3)0.029 (3)0.021 (3)
C140.098 (4)0.153 (6)0.106 (4)0.001 (4)0.031 (4)0.032 (4)
C150.114 (5)0.156 (6)0.109 (5)0.011 (4)0.052 (4)0.028 (4)
C160.153 (6)0.122 (5)0.074 (4)0.010 (5)0.034 (4)0.016 (3)
C170.119 (4)0.083 (4)0.067 (3)0.009 (3)0.012 (3)0.005 (3)
C180.078 (3)0.067 (3)0.080 (3)0.007 (2)0.009 (2)0.005 (2)
Geometric parameters (Å, º) top
O1—C101.260 (4)C5—C61.365 (6)
O2—C11.239 (4)C5—H50.9300
N1—C111.274 (4)C6—C71.374 (7)
N1—N21.374 (4)C6—H60.9300
N2—C101.349 (5)C7—C81.377 (6)
N2—H20.8600C7—H70.9300
N3—C101.333 (5)C8—H80.9300
N3—N41.407 (4)C9—H9A0.9600
N3—H30.8600C9—H9B0.9600
N4—H4A0.8900C9—H9C0.9600
N4—H4C0.8900C11—C121.485 (5)
N5—C21.288 (4)C11—C181.518 (5)
N5—N61.361 (4)C12—C171.366 (5)
N6—C11.360 (5)C12—C131.393 (6)
N6—H6A0.8600C13—C141.393 (6)
N7—C11.351 (4)C13—H130.9300
N7—N81.422 (4)C14—C151.373 (7)
N7—H7A0.9000C14—H140.9300
N8—H8A0.8900C15—C161.380 (8)
N8—H8C0.8900C15—H150.9300
C2—C31.485 (5)C16—C171.404 (7)
C2—C91.503 (5)C16—H160.9300
C3—C41.359 (5)C17—H170.9300
C3—C81.407 (5)C18—H18A0.9600
C4—C51.378 (6)C18—H18B0.9600
C4—H40.9300C18—H18C0.9600
C11—N1—N2119.1 (3)C8—C7—H7119.6
C10—N2—N1118.8 (3)C7—C8—C3120.5 (4)
C10—N2—H2120.6C7—C8—H8119.8
N1—N2—H2120.6C3—C8—H8119.8
C10—N3—N4121.4 (3)C2—C9—H9A109.5
C10—N3—H3119.3C2—C9—H9B109.5
N4—N3—H3119.3H9A—C9—H9B109.5
N3—N4—H4A109.4C2—C9—H9C109.5
N3—N4—H4C109.1H9A—C9—H9C109.5
H4A—N4—H4C109.5H9B—C9—H9C109.5
C2—N5—N6118.5 (3)O1—C10—N3121.3 (4)
C1—N6—N5119.6 (3)O1—C10—N2120.5 (4)
C1—N6—H6A120.2N3—C10—N2118.2 (4)
N5—N6—H6A120.2N1—C11—C12116.3 (4)
C1—N7—N8119.3 (3)N1—C11—C18124.2 (4)
C1—N7—H7A107.2C12—C11—C18119.6 (4)
N8—N7—H7A106.0C17—C12—C13117.6 (4)
N7—N8—H8A110.3C17—C12—C11123.1 (4)
N7—N8—H8C107.9C13—C12—C11119.3 (4)
H8A—N8—H8C109.5C14—C13—C12121.2 (5)
O2—C1—N7121.9 (4)C14—C13—H13119.4
O2—C1—N6122.0 (3)C12—C13—H13119.4
N7—C1—N6116.0 (3)C15—C14—C13120.2 (6)
N5—C2—C3116.4 (4)C15—C14—H14119.9
N5—C2—C9124.1 (3)C13—C14—H14119.9
C3—C2—C9119.5 (4)C14—C15—C16119.7 (5)
C4—C3—C8116.5 (4)C14—C15—H15120.2
C4—C3—C2123.4 (4)C16—C15—H15120.2
C8—C3—C2120.1 (4)C15—C16—C17119.3 (5)
C3—C4—C5123.6 (5)C15—C16—H16120.4
C3—C4—H4118.2C17—C16—H16120.4
C5—C4—H4118.2C12—C17—C16122.0 (5)
C6—C5—C4119.2 (5)C12—C17—H17119.0
C6—C5—H5120.4C16—C17—H17119.0
C4—C5—H5120.4C11—C18—H18A109.5
C5—C6—C7119.3 (5)C11—C18—H18B109.5
C5—C6—H6120.3H18A—C18—H18B109.5
C7—C6—H6120.3C11—C18—H18C109.5
C6—C7—C8120.9 (5)H18A—C18—H18C109.5
C6—C7—H7119.6H18B—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N8i0.862.192.982 (4)152
N4—H4C···O2ii0.892.293.055 (5)144
N3—H3···O20.862.132.895 (4)148
N6—H6A···N40.862.172.972 (4)156
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H12N4O
Mr192.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.7744 (8), 7.3163 (7), 28.2761 (3)
β (°) 90.796 (1)
V3)2021.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.963, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
9568, 3568, 1412
Rint0.111
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.186, 0.84
No. of reflections3568
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.24

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N8i0.862.192.982 (4)152.1
N4—H4C···O2ii0.892.293.055 (5)144.1
N3—H3···O20.862.132.895 (4)147.5
N6—H6A···N40.862.172.972 (4)155.7
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.
 

Acknowledgements

This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. LG0801).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEsmail, R. & Kurzer, F. (1977). Tetrahedron, 33, 2007–2012.  CrossRef CAS Web of Science Google Scholar
First citationLoncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeyers, C. Y., Kolb, V. M. & Robinson, P. D. (1995). Acta Cryst. C51, 775–777.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds