organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis­[1-(2-hy­dr­oxy­phen­yl)ethyl­­idene]carbonohydrazide di­methyl­formamide monosolvate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: dulingyun@lcu.edu.cn

(Received 5 September 2010; accepted 19 September 2010; online 30 September 2010)

In the title compound, C17H18N4O3·C3H7NO, the main disubstituted urea and solvate mol­ecules are linked by pairs of N—H⋯O hydrogen bonds. In the main mol­ecules, the benzene rings form a dihedral angle of 15.59 (13)° a;nd two intra­molecular O—H⋯N hydrogen bonds influence the mol­ecular conformation. In the crystal structure, weak inter­molecular C—H⋯O inter­actions link the hydrogen-bonded pairs into chains along the b axis. The chains associate via C—H⋯π inter­actions.

Related literature

For a related structure, see: Zukerman-Schpector et al. (2009[Zukerman-Schpector, J., Affan, M. A., Foo, S. W. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o2951.]). For the bioactivity of carbonohydrazide derivatives, see: Loncle et al. (2004[Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.]); Li et al. (2004[Li, M. X., Cai, P., Duan, C. Y., Lu, F., Xie, J. & Meng, Q. J. (2004). Inorg. Chem. 43, 5174-5176.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N4O3·C3H7NO

  • Mr = 399.45

  • Monoclinic, P 21 /c

  • a = 16.6372 (15) Å

  • b = 7.5880 (9) Å

  • c = 16.2967 (14) Å

  • β = 94.472 (1)°

  • V = 2051.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.47 × 0.46 × 0.23 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.979

  • 10277 measured reflections

  • 3596 independent reflections

  • 1712 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.165

  • S = 1.04

  • 3596 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.86 2.02 2.805 (3) 151
N3—H3⋯O4 0.86 2.09 2.858 (4) 148
O2—H2A⋯N2 0.82 1.83 2.548 (3) 145
O3—H3A⋯N4 0.82 1.83 2.546 (3) 145
C6—H6⋯O1i 0.93 2.57 3.241 (4) 129
C10—H10ACgii 0.96 2.66 3.536 (4) 153
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carbonohydrazide derivatives exhibit various bioactivities such as antibacteriale antifungal, anticonvulsant and anticancer activities (Loncle et al., 2004; Li et al., 2004). Herewith we present the crystal structure of the title compound (I), which is a new carbonohydrazide derivative.

Crystals of (I) comprise equal quantities of a disubstituted urea molecule (M) and a solvent N,N-dimethylformamide molecule (Fig. 1). The bond lengths and angles of the title compound are normal and correspond to those observed in N'',N'''-bis (1-(2-hydroxyphenyl)ethylidene)carbonohydrazide dimethyl sulfoxide solvate (Zukerman-Schpector et al., 2009). The molecular conformation of M is influenced by two intramolecular O—H···N hydrogen bonds (Table 1). Two benzene rings - C4-C9 and C12-C17, respectively - form a dihedral angle of 15.59 (13)°.

In the crystal structure, one M molecule and solvate molecule are paired via N—H···O hydrogen bonds (Table 1). Weak intermolecular C—H···O interactions (Table 1) link hydrogen-bonded pairs into chains along the b axis. The chains associate via C—H···π interactions (Table 1).

Related literature top

For a related structure, see: Zukerman-Schpector et al. (2009). For the bioactivity of carbonohydrazide derivatives, see: Loncle et al. (2004); Li et al. (2004).

Experimental top

2-Hydroxylacetophenone (10.0 mmol) and carbohydrazide (5.0 mmol) were mixed in 50 ml flash After stirring 3 h at 373 K, the resulting mixture was cooled to room temperature, and recrystalized from DMF, and afforded the title compound as a crystalline solid. Elemental analysis: calculated for C20H25N5O4: C 60.14, H 6.31, N 17.53%; found: C 60.23, H 6.45, N 17.64%.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86 and C—H = 0.93–0.96 Å, O—H= 0.82 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5 Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound showing the atomic numbering scheme and 30% probability displacement ellipsoids.
1,5-Bis[1-(2-hydroxyphenyl)ethylidene]carbonohydrazide dimethylformamide monosolvate top
Crystal data top
C17H18N4O3·C3H7NOF(000) = 848
Mr = 399.45Dx = 1.294 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.6372 (15) ÅCell parameters from 1764 reflections
b = 7.5880 (9) Åθ = 2.5–21.7°
c = 16.2967 (14) ŵ = 0.09 mm1
β = 94.472 (1)°T = 298 K
V = 2051.1 (4) Å3Block, colourless
Z = 40.47 × 0.46 × 0.23 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3596 independent reflections
Radiation source: fine-focus sealed tube1712 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1319
Tmin = 0.958, Tmax = 0.979k = 99
10277 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.8303P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3596 reflectionsΔρmax = 0.22 e Å3
263 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0049 (10)
Crystal data top
C17H18N4O3·C3H7NOV = 2051.1 (4) Å3
Mr = 399.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.6372 (15) ŵ = 0.09 mm1
b = 7.5880 (9) ÅT = 298 K
c = 16.2967 (14) Å0.47 × 0.46 × 0.23 mm
β = 94.472 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3596 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1712 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.979Rint = 0.059
10277 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
3596 reflectionsΔρmin = 0.17 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.15121 (15)0.6195 (3)0.48890 (15)0.0541 (7)
H10.15630.62540.54170.065*
N20.08378 (15)0.6805 (3)0.44431 (15)0.0491 (7)
N30.27455 (15)0.4912 (4)0.49563 (15)0.0555 (8)
H30.27560.50150.54830.067*
N40.33674 (15)0.4171 (3)0.45841 (15)0.0510 (7)
N50.23936 (17)0.5436 (4)0.78637 (16)0.0602 (8)
O10.20609 (13)0.5357 (3)0.37093 (14)0.0717 (8)
O20.02424 (14)0.7754 (4)0.30242 (13)0.0772 (8)
H2A0.05920.73620.33570.116*
O30.38946 (14)0.3282 (4)0.32185 (14)0.0826 (8)
H3A0.35770.37290.35180.124*
O40.22303 (16)0.6047 (4)0.65032 (15)0.0825 (9)
C10.20997 (19)0.5488 (4)0.4450 (2)0.0511 (9)
C20.0191 (2)0.7253 (5)0.57328 (18)0.0606 (10)
H2B0.04830.62430.59500.091*
H2C0.03610.71720.58630.091*
H2D0.04280.83050.59730.091*
C30.02260 (19)0.7313 (4)0.48137 (18)0.0445 (8)
C40.04633 (18)0.7964 (4)0.42688 (19)0.0455 (8)
C50.04176 (19)0.8178 (4)0.3417 (2)0.0516 (9)
C60.1065 (2)0.8871 (5)0.2935 (2)0.0620 (10)
H60.10230.90330.23740.074*
C70.1762 (2)0.9319 (5)0.3270 (2)0.0706 (11)
H70.21930.97790.29400.085*
C80.1824 (2)0.9086 (5)0.4098 (3)0.0792 (12)
H80.22990.93810.43300.095*
C90.1183 (2)0.8417 (5)0.4584 (2)0.0634 (10)
H90.12350.82640.51430.076*
C100.40492 (19)0.3582 (5)0.59426 (19)0.0617 (10)
H10A0.42330.47210.61320.093*
H10B0.44260.26990.61480.093*
H10C0.35310.33460.61390.093*
C110.39830 (18)0.3552 (4)0.50206 (19)0.0470 (8)
C120.46219 (18)0.2798 (4)0.4551 (2)0.0485 (8)
C130.4547 (2)0.2668 (5)0.3684 (2)0.0588 (9)
C140.5149 (2)0.1875 (5)0.3275 (2)0.0756 (12)
H140.50820.17470.27060.091*
C150.5839 (2)0.1277 (5)0.3690 (3)0.0799 (12)
H150.62440.07720.34040.096*
C160.5933 (2)0.1423 (5)0.4528 (3)0.0738 (11)
H160.64040.10210.48130.089*
C170.5336 (2)0.2159 (4)0.4947 (2)0.0610 (10)
H170.54100.22370.55170.073*
C180.1982 (2)0.5477 (5)0.7144 (2)0.0700 (11)
H180.14580.50410.71160.084*
C190.3198 (2)0.6151 (6)0.7959 (2)0.0948 (14)
H19A0.33800.63990.74270.142*
H19B0.35530.53110.82390.142*
H19C0.31950.72180.82750.142*
C200.2055 (2)0.4702 (6)0.8576 (2)0.0931 (14)
H20A0.15030.43810.84360.140*
H20B0.20800.55610.90100.140*
H20C0.23560.36760.87570.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0494 (16)0.072 (2)0.0391 (15)0.0127 (15)0.0055 (13)0.0015 (14)
N20.0449 (16)0.0560 (18)0.0448 (16)0.0048 (14)0.0071 (14)0.0012 (13)
N30.0466 (16)0.077 (2)0.0421 (15)0.0101 (15)0.0048 (13)0.0037 (15)
N40.0432 (15)0.0593 (18)0.0493 (17)0.0022 (14)0.0032 (13)0.0033 (14)
N50.0661 (19)0.073 (2)0.0406 (17)0.0032 (17)0.0014 (15)0.0090 (15)
O10.0632 (15)0.106 (2)0.0436 (15)0.0167 (14)0.0101 (12)0.0117 (14)
O20.0669 (16)0.117 (2)0.0473 (14)0.0275 (15)0.0014 (13)0.0008 (14)
O30.0693 (17)0.125 (2)0.0517 (15)0.0146 (16)0.0044 (13)0.0063 (15)
O40.099 (2)0.107 (2)0.0418 (15)0.0096 (17)0.0026 (14)0.0109 (15)
C10.0455 (19)0.058 (2)0.048 (2)0.0022 (17)0.0055 (17)0.0060 (18)
C20.064 (2)0.068 (2)0.049 (2)0.0049 (19)0.0020 (17)0.0008 (18)
C30.049 (2)0.042 (2)0.0421 (19)0.0037 (16)0.0026 (16)0.0045 (15)
C40.0480 (19)0.0426 (19)0.045 (2)0.0011 (16)0.0012 (16)0.0055 (16)
C50.051 (2)0.058 (2)0.044 (2)0.0062 (17)0.0033 (17)0.0065 (17)
C60.067 (2)0.068 (3)0.048 (2)0.007 (2)0.0143 (19)0.0001 (18)
C70.058 (2)0.081 (3)0.070 (3)0.019 (2)0.015 (2)0.005 (2)
C80.053 (2)0.103 (3)0.080 (3)0.022 (2)0.004 (2)0.006 (3)
C90.057 (2)0.078 (3)0.055 (2)0.011 (2)0.0026 (19)0.001 (2)
C100.061 (2)0.070 (2)0.053 (2)0.0082 (19)0.0060 (17)0.0022 (19)
C110.0440 (19)0.047 (2)0.049 (2)0.0037 (16)0.0047 (16)0.0020 (16)
C120.045 (2)0.046 (2)0.054 (2)0.0063 (16)0.0020 (17)0.0011 (17)
C130.053 (2)0.065 (2)0.057 (2)0.0051 (19)0.0014 (19)0.0055 (19)
C140.070 (3)0.093 (3)0.066 (3)0.004 (2)0.017 (2)0.012 (2)
C150.068 (3)0.074 (3)0.101 (4)0.006 (2)0.028 (3)0.004 (3)
C160.055 (2)0.072 (3)0.094 (3)0.012 (2)0.004 (2)0.011 (2)
C170.055 (2)0.058 (2)0.070 (2)0.0031 (19)0.001 (2)0.0056 (19)
C180.070 (3)0.075 (3)0.064 (3)0.000 (2)0.001 (2)0.001 (2)
C190.072 (3)0.132 (4)0.078 (3)0.003 (3)0.009 (2)0.010 (3)
C200.116 (3)0.100 (3)0.066 (3)0.013 (3)0.024 (3)0.025 (2)
Geometric parameters (Å, º) top
N1—C11.365 (4)C7—C81.372 (5)
N1—N21.369 (3)C7—H70.9300
N1—H10.8600C8—C91.375 (5)
N2—C31.283 (4)C8—H80.9302
N3—N41.361 (3)C9—H90.9300
N3—C11.374 (4)C10—C111.498 (4)
N3—H30.8600C10—H10A0.9600
N4—C111.289 (4)C10—H10B0.9600
N5—C181.311 (4)C10—H10C0.9600
N5—C191.440 (4)C11—C121.473 (4)
N5—C201.441 (4)C12—C171.394 (4)
O1—C11.208 (3)C12—C131.411 (4)
O2—C51.352 (3)C13—C141.384 (5)
O2—H2A0.8200C14—C151.364 (5)
O3—C131.358 (4)C14—H140.9300
O3—H3A0.8200C15—C161.367 (5)
O4—C181.232 (4)C15—H150.9299
C2—C31.504 (4)C16—C171.368 (5)
C2—H2B0.9600C16—H160.9300
C2—H2C0.9600C17—H170.9300
C2—H2D0.9600C18—H180.9300
C3—C41.480 (4)C19—H19A0.9600
C4—C91.382 (4)C19—H19B0.9600
C4—C51.405 (4)C19—H19C0.9600
C5—C61.387 (4)C20—H20A0.9600
C6—C71.363 (5)C20—H20B0.9600
C6—H60.9300C20—H20C0.9600
C1—N1—N2116.4 (3)C11—C10—H10A109.5
C1—N1—H1121.8C11—C10—H10B109.5
N2—N1—H1121.8H10A—C10—H10B109.5
C3—N2—N1120.0 (3)C11—C10—H10C109.5
N4—N3—C1116.7 (3)H10A—C10—H10C109.5
N4—N3—H3121.6H10B—C10—H10C109.5
C1—N3—H3121.6N4—C11—C12115.4 (3)
C11—N4—N3120.2 (3)N4—C11—C10122.7 (3)
C18—N5—C19120.2 (3)C12—C11—C10121.8 (3)
C18—N5—C20121.3 (3)C17—C12—C13116.4 (3)
C19—N5—C20118.5 (3)C17—C12—C11121.2 (3)
C5—O2—H2A109.5C13—C12—C11122.4 (3)
C13—O3—H3A109.5O3—C13—C14117.2 (3)
O1—C1—N1124.8 (3)O3—C13—C12122.7 (3)
O1—C1—N3123.5 (3)C14—C13—C12120.1 (3)
N1—C1—N3111.6 (3)C15—C14—C13121.2 (4)
C3—C2—H2B109.5C15—C14—H14119.4
C3—C2—H2C109.5C13—C14—H14119.4
H2B—C2—H2C109.5C14—C15—C16119.7 (4)
C3—C2—H2D109.5C14—C15—CG159.7 (2)
H2B—C2—H2D109.5C14—C15—H15120.2
H2C—C2—H2D109.5C16—C15—H15120.2
N2—C3—C4115.1 (3)C15—C16—C17120.0 (4)
N2—C3—C2123.6 (3)C15—C16—H16120.0
C4—C3—C2121.3 (3)C17—C16—H16120.0
C9—C4—C5116.9 (3)C16—C17—C12122.5 (4)
C9—C4—C3120.9 (3)C16—C17—H17118.8
C5—C4—C3122.2 (3)C12—C17—H17118.8
O2—C5—C6116.4 (3)O4—C18—N5125.4 (4)
O2—C5—C4123.3 (3)O4—C18—H18117.3
C6—C5—C4120.3 (3)N5—C18—H18117.3
C7—C6—C5121.0 (3)N5—C19—H19A109.5
C7—C6—H6119.5N5—C19—H19B109.5
C5—C6—H6119.5H19A—C19—H19B109.5
C6—C7—C8119.6 (3)N5—C19—H19C109.5
C6—C7—H7120.2H19A—C19—H19C109.5
C8—C7—H7120.2H19B—C19—H19C109.5
C7—C8—C9120.0 (4)N5—C20—H20A109.5
C7—C8—H8120.0N5—C20—H20B109.5
C9—C8—H8120.0H20A—C20—H20B109.5
C8—C9—C4122.2 (3)N5—C20—H20C109.5
C8—C9—H9118.9H20A—C20—H20C109.5
C4—C9—H9118.9H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.862.022.805 (3)151
N3—H3···O40.862.092.858 (4)148
O2—H2A···N20.821.832.548 (3)145
O3—H3A···N40.821.832.546 (3)145
C6—H6···O1i0.932.573.241 (4)129
C10—H10A···Cgii0.962.663.536 (4)153
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H18N4O3·C3H7NO
Mr399.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)16.6372 (15), 7.5880 (9), 16.2967 (14)
β (°) 94.472 (1)
V3)2051.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.47 × 0.46 × 0.23
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.958, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
10277, 3596, 1712
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.165, 1.04
No. of reflections3596
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.17

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.862.022.805 (3)151.3
N3—H3···O40.862.092.858 (4)148.2
O2—H2A···N20.821.832.548 (3)144.6
O3—H3A···N40.821.832.546 (3)145.1
C6—H6···O1i0.932.573.241 (4)128.9
C10—H10A···Cgii0.962.663.536 (4)152.6
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge financial support by the Science Foundation of China (grant No. 20877037).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, M. X., Cai, P., Duan, C. Y., Lu, F., Xie, J. & Meng, Q. J. (2004). Inorg. Chem. 43, 5174–5176.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLoncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Affan, M. A., Foo, S. W. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o2951.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds