organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Meth­­oxy­phen­yl)pyrido[2,3-b]pyrazine

aSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, People's Republic of China
*Correspondence e-mail: zhao_submit@yahoo.com.cn

(Received 13 September 2010; accepted 22 September 2010; online 30 September 2010)

In the title mol­ecule, C14H11N3O, the benzene ring is twisted by 14.0 (2)° from the plane through the fused ring system. In the crystal, ππ inter­actions [centroid–centroid distances = 3.609 (1), 3.639 (1) and 3.735 (1) Å] form stacks of mol­ecules propagating along the b axis. The crystal packing is further stabilized by weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds.

Related literature

For a related structure, see: Koch et al. (2009[Koch, P., Schollmeyer, D. & Laufer, S. (2009). Acta Cryst. E65, o2512.]). For the pharma­cological properties of quinoxaline compounds, see: Kleim et al. (1995[Kleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rosner, M., Rubsamen Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., Winkler, I. & Riess, G. (1995). Antimicrob. Agents Chemother. 39, 2253-2257.]); Abasolo et al. (1987[Abasolo, M. I., Gaozza, C. H. & Fernandez, B. M. (1987). J. Heterocycl. Chem. 24, 1771-1775.]); Rodrigo et al. (2002[Rodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem. 8, 137-143.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O

  • Mr = 237.26

  • Monoclinic, P 21 /c

  • a = 6.4486 (13) Å

  • b = 7.3265 (15) Å

  • c = 24.216 (6) Å

  • β = 99.31 (3)°

  • V = 1129.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 153 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.982, Tmax = 0.989

  • 9650 measured reflections

  • 2677 independent reflections

  • 2221 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.146

  • S = 1.09

  • 2677 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N3i 0.95 2.54 3.361 (2) 145
C3—H3⋯O1ii 0.95 2.44 3.123 (2) 129
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Functionalized quinoxalines represent an important class of nitrogen-containing heterocycle which display a broad spectrum of biological activity. Similar structure had been reported by Koch (Koch et al., 2009). Quinoxaline derivatives were found to exhibit antimicrobial (Kleim et al. 1995), antitumor (Abasolo et al.,1987), and antituberculous activity (Rodrigo et al., 2002). Here, we report the synthesis and crystal structure of the title compound, (I) (Fig. 1).

The molecular structure of title compound (I) is as shown in Fig.1. The dihedral angle between the pyrido[2,3-b]pyrazine ring and benzene ring is 14.0 (2)°. The O atom attached to the phenyl ring don't deviate the phenyl ring with an r.m.s deviation of 0.0047 (3) Å. As a result of π-π conjugation, the Csp2-O bond [O1—C9 = 1.3656 (13) Å] is significantly shorter than the Csp3-O bond [O1—C14 = 1.4266 (15) Å]. The crystal structure is stabilized by weak C—H···N and C—H···O intermolecular interactions and π-π interactions between the Cg1 (centroid of N1/C1—C5) and Cg2 (centroid of C1/C2/N3/C6/C7/N2). Selected geometric parameters are shown in Table 1.

Related literature top

For a related structure, see: Koch et al. (2009). For the pharmacological properties of quinoxaline compounds, see: Kleim et al. (1995); Abasolo et al. (1987); Rodrigo et al. (2002).

Experimental top

A suspension of 2-(4-methoxyphenyl)-2-oxoacetaldehyde (2.0 mmol) and pyridine-2,3-diamine (3.0 mmol) in ethanol (5 ml) was stirred at room temperature. The reaction progress was monitored via TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as light yellow solid in 93% yield. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).

Refinement top

All H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2-1.5Ueq of the parent atom.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
3-(4-Methoxyphenyl)pyrido[2,3-b]pyrazine top
Crystal data top
C14H11N3OF(000) = 496
Mr = 237.26Dx = 1.396 Mg m3
Monoclinic, P21/cMelting point: 428 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.4486 (13) ÅCell parameters from 3162 reflections
b = 7.3265 (15) Åθ = 2.6–27.9°
c = 24.216 (6) ŵ = 0.09 mm1
β = 99.31 (3)°T = 153 K
V = 1129.0 (4) Å3Prism, colourless
Z = 40.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2677 independent reflections
Radiation source: rotating anode2221 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.034
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 1.7°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 99
Tmin = 0.982, Tmax = 0.989l = 1931
9650 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0916P)2 + 0.0926P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2677 reflectionsΔρmax = 0.39 e Å3
165 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.194 (16)
Crystal data top
C14H11N3OV = 1129.0 (4) Å3
Mr = 237.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.4486 (13) ŵ = 0.09 mm1
b = 7.3265 (15) ÅT = 153 K
c = 24.216 (6) Å0.20 × 0.18 × 0.12 mm
β = 99.31 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2677 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2221 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.989Rint = 0.034
9650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.09Δρmax = 0.39 e Å3
2677 reflectionsΔρmin = 0.27 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71204 (14)0.63090 (12)0.31035 (3)0.0269 (3)
N11.25315 (15)0.85321 (13)0.01789 (4)0.0217 (3)
N21.03617 (15)0.75236 (12)0.07944 (4)0.0194 (3)
N30.73020 (15)0.63878 (13)0.01163 (4)0.0212 (3)
C11.06896 (17)0.77325 (15)0.02545 (5)0.0180 (3)
C20.91672 (17)0.71404 (15)0.02001 (5)0.0187 (3)
C30.95826 (18)0.73760 (16)0.07480 (5)0.0221 (3)
H30.86030.69790.10610.027*
C41.14169 (19)0.81838 (16)0.08199 (5)0.0237 (3)
H41.17340.83770.11850.028*
C51.28488 (19)0.87344 (16)0.03427 (5)0.0228 (3)
H51.41270.92880.04020.027*
C60.70072 (18)0.62433 (15)0.04042 (5)0.0211 (3)
H60.57150.57530.04770.025*
C70.85538 (17)0.67952 (15)0.08691 (5)0.0181 (3)
C80.81251 (17)0.65886 (15)0.14497 (5)0.0193 (3)
C90.93848 (19)0.75321 (17)0.18866 (5)0.0245 (3)
H91.05130.82660.18060.029*
C100.90077 (19)0.74085 (17)0.24297 (5)0.0253 (3)
H100.98650.80630.27190.030*
C110.73669 (19)0.63212 (15)0.25539 (5)0.0210 (3)
C120.61082 (19)0.53616 (16)0.21299 (5)0.0235 (3)
H120.49930.46160.22130.028*
C130.65008 (18)0.55069 (16)0.15829 (5)0.0227 (3)
H130.56400.48520.12940.027*
C140.5489 (2)0.52103 (19)0.32631 (5)0.0320 (3)
H14A0.41210.56710.30810.048*
H14B0.55640.52600.36700.048*
H14C0.56620.39450.31470.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0318 (5)0.0324 (5)0.0180 (5)0.0071 (4)0.0082 (3)0.0017 (3)
N10.0205 (5)0.0225 (5)0.0226 (5)0.0010 (4)0.0050 (4)0.0004 (4)
N20.0200 (5)0.0199 (5)0.0185 (5)0.0010 (4)0.0034 (4)0.0008 (4)
N30.0191 (5)0.0233 (5)0.0204 (5)0.0008 (4)0.0013 (4)0.0005 (4)
C10.0182 (5)0.0172 (5)0.0186 (6)0.0012 (4)0.0024 (4)0.0007 (4)
C20.0189 (5)0.0167 (5)0.0203 (6)0.0017 (4)0.0026 (4)0.0005 (4)
C30.0245 (6)0.0225 (6)0.0185 (6)0.0018 (4)0.0008 (4)0.0003 (4)
C40.0280 (6)0.0241 (6)0.0201 (6)0.0021 (5)0.0069 (4)0.0019 (5)
C50.0218 (6)0.0223 (6)0.0253 (6)0.0002 (4)0.0069 (4)0.0002 (4)
C60.0183 (5)0.0229 (6)0.0220 (6)0.0020 (4)0.0029 (4)0.0001 (4)
C70.0185 (5)0.0164 (5)0.0194 (6)0.0005 (4)0.0032 (4)0.0010 (4)
C80.0203 (5)0.0194 (5)0.0183 (6)0.0003 (4)0.0032 (4)0.0011 (4)
C90.0241 (6)0.0278 (6)0.0218 (6)0.0078 (5)0.0046 (4)0.0012 (4)
C100.0277 (6)0.0283 (7)0.0192 (6)0.0066 (5)0.0015 (5)0.0032 (5)
C110.0244 (6)0.0216 (6)0.0178 (6)0.0007 (4)0.0058 (4)0.0000 (4)
C120.0242 (6)0.0230 (6)0.0247 (6)0.0053 (4)0.0080 (5)0.0017 (5)
C130.0247 (6)0.0229 (6)0.0209 (6)0.0045 (4)0.0048 (4)0.0041 (4)
C140.0340 (7)0.0412 (8)0.0241 (6)0.0085 (6)0.0141 (5)0.0009 (5)
Geometric parameters (Å, º) top
O1—C111.3656 (13)C6—H60.9500
O1—C141.4266 (15)C7—C81.4838 (15)
N1—C51.3203 (15)C8—C131.3924 (16)
N1—C11.3630 (14)C8—C91.4069 (16)
N2—C71.3210 (14)C9—C101.3786 (16)
N2—C11.3662 (14)C9—H90.9500
N3—C61.3089 (15)C10—C111.3955 (16)
N3—C21.3678 (15)C10—H100.9500
C1—C21.4192 (16)C11—C121.3921 (17)
C2—C31.4061 (15)C12—C131.3922 (16)
C3—C41.3588 (17)C12—H120.9500
C3—H30.9500C13—H130.9500
C4—C51.4161 (17)C14—H14A0.9800
C4—H40.9500C14—H14B0.9800
C5—H50.9500C14—H14C0.9800
C6—C71.4361 (16)
Cg1···Cg2i3.639 (1)Cg2···Cg2ii3.735 (1)
Cg1···Cg2ii3.609 (1)
C11—O1—C14118.35 (9)C13—C8—C9118.02 (11)
C5—N1—C1116.75 (10)C13—C8—C7122.69 (10)
C7—N2—C1116.94 (10)C9—C8—C7119.28 (10)
C6—N3—C2116.34 (9)C10—C9—C8121.05 (11)
N1—C1—N2116.73 (10)C10—C9—H9119.5
N1—C1—C2122.39 (11)C8—C9—H9119.5
N2—C1—C2120.88 (10)C9—C10—C11120.00 (11)
N3—C2—C3119.72 (10)C9—C10—H10120.0
N3—C2—C1121.51 (11)C11—C10—H10120.0
C3—C2—C1118.75 (11)O1—C11—C12124.73 (11)
C4—C3—C2118.49 (11)O1—C11—C10115.19 (10)
C4—C3—H3120.8C12—C11—C10120.08 (11)
C2—C3—H3120.8C11—C12—C13119.28 (11)
C3—C4—C5119.06 (11)C11—C12—H12120.4
C3—C4—H4120.5C13—C12—H12120.4
C5—C4—H4120.5C12—C13—C8121.56 (11)
N1—C5—C4124.56 (11)C12—C13—H13119.2
N1—C5—H5117.7C8—C13—H13119.2
C4—C5—H5117.7O1—C14—H14A109.5
N3—C6—C7122.78 (11)O1—C14—H14B109.5
N3—C6—H6118.6H14A—C14—H14B109.5
C7—C6—H6118.6O1—C14—H14C109.5
N2—C7—C6121.51 (11)H14A—C14—H14C109.5
N2—C7—C8118.35 (10)H14B—C14—H14C109.5
C6—C7—C8120.13 (10)
C5—N1—C1—N2179.99 (9)N3—C6—C7—N21.49 (17)
C5—N1—C1—C20.10 (17)N3—C6—C7—C8179.77 (10)
C7—N2—C1—N1178.19 (9)N2—C7—C8—C13166.08 (10)
C7—N2—C1—C21.70 (16)C6—C7—C8—C1315.13 (16)
C6—N3—C2—C3178.71 (10)N2—C7—C8—C914.63 (16)
C6—N3—C2—C10.13 (17)C6—C7—C8—C9164.15 (11)
N1—C1—C2—N3178.12 (9)C13—C8—C9—C100.79 (17)
N2—C1—C2—N31.77 (17)C7—C8—C9—C10178.54 (10)
N1—C1—C2—C30.47 (17)C8—C9—C10—C110.59 (18)
N2—C1—C2—C3179.64 (9)C14—O1—C11—C121.36 (17)
N3—C2—C3—C4177.79 (10)C14—O1—C11—C10179.27 (10)
C1—C2—C3—C40.83 (17)C9—C10—C11—O1179.45 (10)
C2—C3—C4—C50.83 (17)C9—C10—C11—C120.05 (18)
C1—N1—C5—C40.10 (17)O1—C11—C12—C13179.06 (10)
C3—C4—C5—N10.48 (18)C10—C11—C12—C130.28 (17)
C2—N3—C6—C71.43 (16)C11—C12—C13—C80.06 (17)
C1—N2—C7—C60.18 (16)C9—C8—C13—C120.46 (17)
C1—N2—C7—C8178.59 (9)C7—C8—C13—C12178.84 (10)
Symmetry codes: (i) x+2, y+2, z; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N3iii0.952.543.361 (2)145
C3—H3···O1iv0.952.443.123 (2)129
Symmetry codes: (iii) x+1, y+1, z; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H11N3O
Mr237.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)6.4486 (13), 7.3265 (15), 24.216 (6)
β (°) 99.31 (3)
V3)1129.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.982, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
9650, 2677, 2221
Rint0.034
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.146, 1.09
No. of reflections2677
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.27

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N3i0.952.543.361 (2)145.0
C3—H3···O1ii0.952.443.123 (2)129.0
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The author is indebted to Beijing Amber Tech Co. Ltd for the offer of some reagents.

References

First citationAbasolo, M. I., Gaozza, C. H. & Fernandez, B. M. (1987). J. Heterocycl. Chem. 24, 1771–1775.  CrossRef CAS Google Scholar
First citationKleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rosner, M., Rubsamen Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., Winkler, I. & Riess, G. (1995). Antimicrob. Agents Chemother. 39, 2253–2257.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKoch, P., Schollmeyer, D. & Laufer, S. (2009). Acta Cryst. E65, o2512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem. 8, 137–143.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds