organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3,5-Tri­aza­adamantan-7-amine

aDepartment of Chemistry, University of Victoria, PO Box 3065, Victoria, BC V8W 3V6, Canada, and bUniversity of Notre Dame, Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, Notre Dame, IN 46556-5670, USA
*Correspondence e-mail: aoliver2@nd.edu, mcindoe@uvic.ca

(Received 16 September 2010; accepted 20 September 2010; online 25 September 2010)

The title compound, C7H14N4, represents the first structurally characterized, isolated triaza­adamantane. In the crystal structure, weak inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into columns about the crystallographic fourfold axis.

Related literature

For general background to applications of the title compound and its preparation, see: Hodge (1972[Hodge, E. B. (1972). J. Org. Chem., 37, 320-321.]); Karelina et al. (1987[Karelina, V. N., Goncharov, V. M., Mirontseva, T. V., Delektorskii, A. A. & Orekhov, S. V. (1987). USSR Patent SU1359277, December 12, 1987.]); Kuznetsov et al. (2001[Kuznetsov, R. M., Balueva, A. S., Serova, T. M. & Nikonov, G. N. (2001). Russ. J. Gen. Chem. 71, 899-902.]); Nielsen (1975[Nielsen, A. T. (1975). J. Heterocycl. Chem. 12, 161-164.], 1977[Nielsen, A. T. (1977). 7-(N-Methyl-N-Alkylamino)-1,3,5-Triazaadamantanes. US Patent 4012384, March 15, 1977.]); Safar et al. (1975[Safar, M., Galik, V., Kafka, Z. & Landa, S. (1975). Collect. Czech. Chem. Commun. 40, 2179-2182.]). For related structures, see: de Namor et al. (2008[Namor, A. F. D. de, Nwogu, N. A., Zveitcovich-Guerra, J. A., Piro, O. E. & Castellano, E. E. (2008). J. Phys. Chem. B., 113, 4775-4780.]).

[Scheme 1]

Experimental

Crystal data
  • C7H14N4

  • Mr = 154.22

  • Tetragonal, P 42 /n

  • a = 15.5402 (8) Å

  • c = 6.5074 (7) Å

  • V = 1571.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.32 × 0.24 × 0.15 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.]) Tmin = 0.973, Tmax = 0.987

  • 15555 measured reflections

  • 1960 independent reflections

  • 1662 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.122

  • S = 1.52

  • 1960 reflections

  • 106 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯N3i 0.898 (12) 2.335 (13) 3.2316 (13) 176.0 (12)
N11—H11B⋯N11ii 0.895 (14) 2.253 (14) 3.1465 (14) 175.2 (11)
Symmetry codes: (i) x, y, z-1; (ii) [-y+{\script{3\over 2}}, x, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker-Nonius AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker-Nonius AXS, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]) and POV-RAY (Cason, 2003[Cason, C. J. (2003). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia.]); software used to prepare material for publication: XCIF (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, 7-amino-1,3,5-triazaadamantane, 1, is a member of the class of adamantane compounds. To the best of our knowledge there are only two structurally characterized compounds containing the 1,3,5-triazaadamantane moiety (de Namor et al., 2008). However, both of the previously characterized species incorporate 7-nitro-1,3,5-triazaadamantane and are complexed with mercury.

7-Amino-1,3,5-triazaadamantane has been used as a curing agent in a number of processes from providing an alternative fuel source (Nielsen, 1977) to rubber manufacture (Karelina et al., 1987). Further it has been used as a precursor to other adamantane compounds (notably phosphaazaadamantanes, see for example Kuznetsov et al., 2001). The reactivity of the amino functionality has been investigated widely.

In the solid state the compound forms one-dimensional H-bonded (Table 1) chains that run through the lattice parallel to the crystallographic c-axis about the 42 screw-axis (Figure 2). The hydrogen-bonding is only exhibited through contacts from the amino group to neighbouring amino groups. The three N atoms in the azaadamantane portion of the molecule are not involved in any intermolecular contacts.

Related literature top

For general background to applications of the title compound and its preparation, see: Hodge (1972); Karelina et al. (1987); Kuznetsov et al. (2001); Nielsen (1975, 1977); Safar et al. (1975). For related structures, see: de Namor et al. (2008).

Experimental top

7-Amino-1,3,5-triazaadamantane was prepared (Safar et al., 1975) by Pd/C/H2 reduction of 7-nitro-1,3,5-triazaadamantane (Hodge, 1972) in ethanol. NMR data was consistent with literature values (Nielsen, 1975). Single crystals suitable for X-ray crystallography were obtained from cooling a saturated ethanol solution of 7-amino-1,3,5-triazaadamantane to 4°C for one week.

Refinement top

C-bound H atoms were placed in geometrically idealized positions (C—H = 0.99 Å), and refined as riding with Uiso(H) = 1.2Ueq(C) . Amino H-atoms were located on a difference map, and refined with bond restraint N—H = 0.90 (1) Å, and constraint Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: XP (Sheldrick, 2008b) and POV-RAY (Cason, 2003); software used to prepare material for publication: XCIF (Sheldrick, 2008b) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of 1 showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Hydrogen-bonding and packing of 1 viewed along the c-axis. Dotted lines represent hydrogen bonding.
1,3,5-Triazaadamantan-7-amine top
Crystal data top
C7H14N4Dx = 1.304 Mg m3
Mr = 154.22Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 4624 reflections
Hall symbol: -P 4bcθ = 2.6–28.2°
a = 15.5402 (8) ŵ = 0.09 mm1
c = 6.5074 (7) ÅT = 150 K
V = 1571.5 (2) Å3Columnar, colourless
Z = 80.32 × 0.24 × 0.15 mm
F(000) = 672
Data collection top
Bruker APEXII
diffractometer
1960 independent reflections
Radiation source: fine-focus sealed tube1662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 83.33 pixels mm-1θmax = 28.3°, θmin = 1.9°
ω/2θ–scansh = 2020
Absorption correction: numerical
(SADABS; Sheldrick, 2008a)
k = 1920
Tmin = 0.973, Tmax = 0.987l = 88
15555 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.52 w = 1/[σ2(Fo2) + (0.056P)2]
where P = (Fo2 + 2Fc2)/3
1960 reflections(Δ/σ)max = 0.035
106 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C7H14N4Z = 8
Mr = 154.22Mo Kα radiation
Tetragonal, P42/nµ = 0.09 mm1
a = 15.5402 (8) ÅT = 150 K
c = 6.5074 (7) Å0.32 × 0.24 × 0.15 mm
V = 1571.5 (2) Å3
Data collection top
Bruker APEXII
diffractometer
1960 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2008a)
1662 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.987Rint = 0.032
15555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.52Δρmax = 0.28 e Å3
1960 reflectionsΔρmin = 0.17 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The amino H atoms were located from a difference Fourier map and included with refined coordinates and thermal parameters tied to that of N11. All other H atoms were included in geometrically calculated positions with thermal parameters tied to that of the carbon to which they are bonded.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.62365 (6)0.43256 (6)0.53674 (13)0.0254 (2)
C20.62425 (7)0.48052 (7)0.73108 (16)0.0269 (3)
H2A0.61910.43930.84640.032*
H2B0.57340.51890.73520.032*
N30.70245 (6)0.53264 (6)0.76040 (12)0.0251 (2)
C40.77644 (8)0.47390 (7)0.75022 (15)0.0304 (3)
H4A0.77290.43280.86610.037*
H4B0.83000.50770.76730.037*
N50.78167 (6)0.42511 (6)0.55650 (14)0.0283 (2)
C60.78851 (7)0.48753 (7)0.38591 (16)0.0251 (2)
H6A0.79170.45600.25390.030*
H6B0.84220.52120.40140.030*
C70.71110 (6)0.54920 (6)0.38172 (14)0.0199 (2)
C80.62901 (7)0.49473 (7)0.36610 (16)0.0243 (2)
H8A0.57810.53290.36920.029*
H8B0.62870.46340.23370.029*
C90.70056 (7)0.37757 (7)0.53292 (17)0.0297 (3)
H9A0.69610.33460.64480.036*
H9B0.70200.34580.40100.036*
C100.70855 (7)0.59524 (6)0.59025 (14)0.0222 (2)
H10A0.76130.63030.60700.027*
H10B0.65840.63440.59470.027*
N110.71492 (6)0.61249 (6)0.21797 (14)0.0255 (2)
H11A0.7093 (8)0.5886 (8)0.0929 (19)0.031*
H11B0.7652 (9)0.6402 (9)0.2292 (18)0.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0272 (5)0.0259 (5)0.0232 (4)0.0056 (3)0.0002 (3)0.0014 (3)
C20.0300 (6)0.0293 (6)0.0213 (5)0.0041 (4)0.0042 (4)0.0000 (4)
N30.0312 (5)0.0259 (5)0.0181 (4)0.0026 (4)0.0029 (3)0.0000 (3)
C40.0318 (6)0.0313 (6)0.0282 (6)0.0007 (5)0.0092 (4)0.0038 (4)
N50.0273 (5)0.0244 (5)0.0332 (5)0.0036 (3)0.0004 (4)0.0017 (4)
C60.0224 (5)0.0244 (5)0.0285 (5)0.0022 (4)0.0039 (4)0.0012 (4)
C70.0200 (5)0.0217 (5)0.0179 (5)0.0001 (4)0.0004 (3)0.0009 (3)
C80.0238 (5)0.0294 (6)0.0198 (5)0.0038 (4)0.0027 (4)0.0024 (4)
C90.0364 (7)0.0216 (6)0.0312 (6)0.0017 (4)0.0015 (4)0.0014 (4)
C100.0249 (5)0.0216 (5)0.0202 (5)0.0003 (4)0.0017 (4)0.0019 (4)
N110.0300 (5)0.0274 (5)0.0191 (4)0.0016 (4)0.0006 (3)0.0009 (3)
Geometric parameters (Å, º) top
N1—C21.4679 (13)C6—H6A0.9900
N1—C91.4695 (15)C6—H6B0.9900
N1—C81.4742 (13)C7—N111.4514 (12)
C2—N31.4729 (14)C7—C101.5346 (13)
C2—H2A0.9900C7—C81.5343 (14)
C2—H2B0.9900C8—H8A0.9900
N3—C41.4696 (14)C8—H8B0.9900
N3—C101.4769 (12)C9—H9A0.9900
C4—N51.4733 (13)C9—H9B0.9900
C4—H4A0.9900C10—H10A0.9900
C4—H4B0.9900C10—H10B0.9900
N5—C91.4691 (14)N11—H11A0.898 (12)
N5—C61.4780 (13)N11—H11B0.895 (14)
C6—C71.5383 (14)
C2—N1—C9107.74 (8)N11—C7—C10109.53 (8)
C2—N1—C8108.41 (8)N11—C7—C8111.06 (8)
C9—N1—C8108.81 (8)C10—C7—C8107.12 (8)
N1—C2—N3113.33 (8)N11—C7—C6113.78 (8)
N1—C2—H2A108.9C10—C7—C6107.16 (8)
N3—C2—H2A108.9C8—C7—C6107.92 (8)
N1—C2—H2B108.9N1—C8—C7111.01 (8)
N3—C2—H2B108.9N1—C8—H8A109.4
H2A—C2—H2B107.7C7—C8—H8A109.4
C4—N3—C2107.35 (8)N1—C8—H8B109.4
C4—N3—C10108.97 (8)C7—C8—H8B109.4
C2—N3—C10108.54 (8)H8A—C8—H8B108.0
N3—C4—N5113.67 (8)N5—C9—N1113.80 (9)
N3—C4—H4A108.8N5—C9—H9A108.8
N5—C4—H4A108.8N1—C9—H9A108.8
N3—C4—H4B108.8N5—C9—H9B108.8
N5—C4—H4B108.8N1—C9—H9B108.8
H4A—C4—H4B107.7H9A—C9—H9B107.7
C9—N5—C4107.51 (9)N3—C10—C7110.95 (8)
C9—N5—C6108.26 (8)N3—C10—H10A109.4
C4—N5—C6107.99 (8)C7—C10—H10A109.5
N5—C6—C7111.46 (8)N3—C10—H10B109.4
N5—C6—H6A109.3C7—C10—H10B109.5
C7—C6—H6A109.3H10A—C10—H10B108.0
N5—C6—H6B109.3C7—N11—H11A112.4 (8)
C7—C6—H6B109.3C7—N11—H11B107.6 (8)
H6A—C6—H6B108.0H11A—N11—H11B110.9 (11)
C9—N1—C2—N357.51 (11)C9—N1—C8—C757.88 (10)
C8—N1—C2—N360.09 (11)N11—C7—C8—N1177.96 (8)
N1—C2—N3—C457.78 (11)C10—C7—C8—N158.39 (10)
N1—C2—N3—C1059.87 (11)C6—C7—C8—N156.69 (10)
C2—N3—C4—N557.63 (11)C4—N5—C9—N156.62 (11)
C10—N3—C4—N559.73 (11)C6—N5—C9—N159.81 (11)
N3—C4—N5—C957.06 (12)C2—N1—C9—N557.07 (11)
N3—C4—N5—C659.55 (12)C8—N1—C9—N560.27 (11)
C9—N5—C6—C757.55 (11)C4—N3—C10—C758.16 (11)
C4—N5—C6—C758.57 (11)C2—N3—C10—C758.45 (11)
N5—C6—C7—N11179.47 (8)N11—C7—C10—N3178.59 (8)
N5—C6—C7—C1058.25 (10)C8—C7—C10—N358.05 (10)
N5—C6—C7—C856.81 (10)C6—C7—C10—N357.55 (10)
C2—N1—C8—C759.04 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···N3i0.898 (12)2.335 (13)3.2316 (13)176.0 (12)
N11—H11B···N11ii0.895 (14)2.253 (14)3.1465 (14)175.2 (11)
Symmetry codes: (i) x, y, z1; (ii) y+3/2, x, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H14N4
Mr154.22
Crystal system, space groupTetragonal, P42/n
Temperature (K)150
a, c (Å)15.5402 (8), 6.5074 (7)
V3)1571.5 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.24 × 0.15
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionNumerical
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.973, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
15555, 1960, 1662
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.122, 1.52
No. of reflections1960
No. of parameters106
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.17

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), XP (Sheldrick, 2008b) and POV-RAY (Cason, 2003), XCIF (Sheldrick, 2008b) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···N3i0.898 (12)2.335 (13)3.2316 (13)176.0 (12)
N11—H11B···N11ii0.895 (14)2.253 (14)3.1465 (14)175.2 (11)
Symmetry codes: (i) x, y, z1; (ii) y+3/2, x, z+1/2.
 

Acknowledgements

Data were recorded on an instrument supported by the National Science Foundation, Major Research Instrumentation (MRI) Program under grant No. CHE-0521569.

References

First citationBruker (2005). APEX2 and SAINT. Bruker-Nonius AXS, Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2003). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia.  Google Scholar
First citationHodge, E. B. (1972). J. Org. Chem., 37, 320–321.  CrossRef CAS Web of Science Google Scholar
First citationKarelina, V. N., Goncharov, V. M., Mirontseva, T. V., Delektorskii, A. A. & Orekhov, S. V. (1987). USSR Patent SU1359277, December 12, 1987.  Google Scholar
First citationKuznetsov, R. M., Balueva, A. S., Serova, T. M. & Nikonov, G. N. (2001). Russ. J. Gen. Chem. 71, 899–902.  Web of Science CrossRef CAS Google Scholar
First citationNamor, A. F. D. de, Nwogu, N. A., Zveitcovich-Guerra, J. A., Piro, O. E. & Castellano, E. E. (2008). J. Phys. Chem. B., 113, 4775–4780.  Google Scholar
First citationNielsen, A. T. (1975). J. Heterocycl. Chem. 12, 161–164.  CrossRef Google Scholar
First citationNielsen, A. T. (1977). 7-(N-Methyl-N-Alkylamino)-1,3,5-Triazaadamantanes. US Patent 4012384, March 15, 1977.  Google Scholar
First citationSafar, M., Galik, V., Kafka, Z. & Landa, S. (1975). Collect. Czech. Chem. Commun. 40, 2179–2182.  CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds