organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[3-(4-Chloro­phen­yl)-6-methyl-1,6-di­hydro-1,2,4,5-tetra­zin-1-yl]ethanone

aDepartment of Biological & Chemical Engineering, Taizhou Vocational & Technical College, Taizhou, 318000, People's Republic of China
*Correspondence e-mail: xufeng901@126.com

(Received 18 September 2010; accepted 21 September 2010; online 30 September 2010)

In the title compound, C11H11ClN4O, the tetra­zine ring adopts a non-symmetrical boat conformation. The crystal packing exhibits relatively short inter­molecular C⋯N contacts of 3.118 (3) Å.

Related literature

For related structures, see: Hu et al. (2004[Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177-1181.], 2005[Hu, W. X., Shi, H. B., Yuan, Q. & &Sun, Y. Q. (2005). J. Chem. Res. pp. 291-293.]); Jennison et al. (1986[Jennison, C. P. R., Mackay, D., Watson, K. N. & Taylor, N. J. (1986). J. Org. Chem. 51, 3043-3051.]); Stam et al. (1982[Stam, C. H., Counotte-Potman, A. D. & Van der Plas, H. C. (1982). J. Org. Chem. 47, 2856-2858.]); Xu et al. (2010[Xu, F., Yang, Z. Z., Hu, W. X. & Xi, L. M. (2010). Chin. J. Org. Chem. 30, 260-265.]); Yang et al. (2010[Yang, Z., Xu, F. & Chen, H. (2010). Acta Cryst. E66, o969.]). For applications of 1,2,4,5-tetra­zine derivatives, see: Sauer (1996[Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901-955. Oxford: Elsevier.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11ClN4O

  • Mr = 250.69

  • Orthorhombic, P b c a

  • a = 15.165 (3) Å

  • b = 8.0452 (15) Å

  • c = 19.349 (4) Å

  • V = 2360.7 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 93 K

  • 0.47 × 0.40 × 0.37 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • 17617 measured reflections

  • 2705 independent reflections

  • 2599 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.152

  • S = 1.01

  • 2705 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,2,4,5-Tetrazine derivatives have high potential for biological activity, possessing a wide spectrum of antiviral and antitumor properties. They have been widely used in pesticides and herbicides (Sauer,1996). Dihydro-1,2,4,5- tetrazine has four isomers, namely 1,2-, 1,4-, 1,6- and 3,6-dihydro-1,2,4,5- tetrazines. The 1,6-dihydro structures (Stam et al., 1982; Jennison et al., 1986) were found, by X-ray diffraction, to be homoaromatic. In continuation of our work on the structure-activity relationship of 1,6-dihydro-1,2,4,5-tetrazine derivatives (Hu et al., 2004, 2005), we have obtained the title compound, (I) (Fig.1).

In the tetrazine ring of (I), atoms N1, N2, N3 and N4 are coplanar, while atoms C7 and C8 deviate from the plane by 0.254 (3) and 0.621 (3) Å, respectively. The N2/C7/N3 and N1/C8/N4 planes make dihedral angles of 7.61 (2)° and 44.04 (2)°, respectively, with the N1/N2/N3/N4 plane, the tetrazine ring adopts an unsymmetrical boat conformation. The benzene ring make dihedral angle of 18.5 (2)° with the N1/N2/N3/N4 plane. N1 is almost sp2 hybridized due to the angles around it add up to 359.9 (2)°. Compairing with similar situations in 3-phenyl-6-ethyl- 1,6-dihydro-1,2,4,5-tetrazine (Stam et al., 1982), N-(2-methylphenyl)-3-phenyl-6-methyl-1,6-dihydro-1,2,4,5-tetrazine (Xu et al.,2010), 1-acetyl-3,6-dimethyl-1,2,4,5-tetrazine (Jennison et al.,1986) and 1-[3-(4-Methoxyphenyl)-6-methyl-1,6-dihydro-1,2,4,5- tetrazin-1-yl]propanone (Yang et al., 2010), one can state that the molecule in (I) is homoaromatic.

Related literature top

For related structures, see: Hu et al. (2004, 2005); Jennison et al. (1986); Stam et al. (1982); Xu et al. (2010); Yang et al. (2010). For applications of 1,2,4,5-tetrazine derivatives, see: Sauer (1996).

Experimental top

3-(4-Chlorophenyl)-6-methyl-1,6-dihydro-1,2,4,5-tetrazine (3.0 mmol), chloroform (10 ml) and pyridine(0.25 ml,3.1 mmol) were mixed. Acetyl chloride(3.0 mmol) in chloroform (10 ml) was added dropwise with stirring at room temperature. After the starting 1,6-dihydro-1,2,4,5-tetrazine was completely consumed (the reaction courses was monitored by TLC,dichloromethane system), evaporation of the chloroform, crude 1-acetyl-3-(4-chlorophenyl)-6-methyl- 1,6-dihydro-1,2,4,5-tetrazine was obtained and purified by preparative thin-layer chromatography over silica gel GF254(2 mm) (dichloromethane: petroleum ether=1:1). The solution of the compound in anhydrous ethanol was concentrated gradually at room temperature to afford single crystals, which was suitable for X-ray diffraction. (M. P. 352–354 K).1H NMR (CDCl3) δ p.p.m.: 8.10 (d,2H, J = 8.0 Hz), 7.49 (d,2H, J = 8.0 Hz), 6.87 (q,1H, J = 6.7 Hz), 2.49(s,3H), 1.05(d,3H, J = 6.4 Hz).

Refinement top

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angles were refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined in riding mode, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), shown with 30% probability displacement ellipsoids.
1-[3-(4-Chlorophenyl)-6-methyl-1,6-dihydro-1,2,4,5-tetrazin-1-yl]ethanone top
Crystal data top
C11H11ClN4OF(000) = 1040
Mr = 250.69Dx = 1.411 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6560 reflections
a = 15.165 (3) Åθ = 3.1–27.5°
b = 8.0452 (15) ŵ = 0.31 mm1
c = 19.349 (4) ÅT = 93 K
V = 2360.7 (8) Å3Block, orange
Z = 80.47 × 0.40 × 0.37 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2599 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.038
Graphite monochromatorθmax = 27.5°, θmin = 3.4°
Detector resolution: 28.5714 pixels mm-1h = 1519
phi and ω scansk = 710
17617 measured reflectionsl = 2525
2705 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 1.56P]
where P = (Fo2 + 2Fc2)/3
2705 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C11H11ClN4OV = 2360.7 (8) Å3
Mr = 250.69Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.165 (3) ŵ = 0.31 mm1
b = 8.0452 (15) ÅT = 93 K
c = 19.349 (4) Å0.47 × 0.40 × 0.37 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2599 reflections with I > 2σ(I)
17617 measured reflectionsRint = 0.038
2705 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.01Δρmax = 0.28 e Å3
2705 reflectionsΔρmin = 0.23 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.92289 (3)0.63612 (7)0.27240 (2)0.02638 (19)
O10.28242 (9)0.51349 (19)0.42261 (8)0.0260 (4)
N10.42522 (10)0.5869 (2)0.41004 (8)0.0165 (3)
N20.50513 (10)0.5506 (2)0.38219 (8)0.0167 (3)
N30.56159 (11)0.7128 (2)0.47435 (8)0.0191 (4)
N40.48695 (11)0.7527 (2)0.49690 (9)0.0203 (4)
C10.73156 (13)0.6887 (3)0.41229 (10)0.0226 (4)
H10.72610.72620.45860.027*
C20.81377 (13)0.6872 (3)0.38052 (10)0.0234 (4)
H20.86470.72290.40500.028*
C30.82041 (13)0.6332 (2)0.31290 (10)0.0194 (4)
C40.74733 (13)0.5800 (3)0.27600 (9)0.0202 (4)
H40.75310.54280.22960.024*
C50.66569 (13)0.5822 (3)0.30804 (10)0.0200 (4)
H50.61490.54720.28320.024*
C60.65710 (12)0.6353 (2)0.37632 (10)0.0168 (4)
C70.56927 (13)0.6386 (2)0.40816 (10)0.0164 (4)
C80.41462 (13)0.7456 (2)0.44422 (10)0.0184 (4)
H80.35640.74750.46850.022*
C90.42014 (14)0.8936 (3)0.39576 (12)0.0251 (5)
H9A0.47570.88900.36990.030*
H9B0.41790.99660.42270.030*
H9C0.37050.89060.36340.030*
C100.35516 (13)0.4761 (2)0.40099 (10)0.0192 (4)
C110.37533 (13)0.3182 (2)0.36325 (11)0.0217 (4)
H11A0.32680.23930.36970.026*
H11B0.43000.27000.38140.026*
H11C0.38250.34180.31390.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0169 (3)0.0416 (4)0.0206 (3)0.00189 (19)0.00381 (16)0.00357 (19)
O10.0156 (7)0.0260 (8)0.0363 (8)0.0012 (6)0.0001 (6)0.0006 (6)
N10.0153 (8)0.0168 (8)0.0175 (8)0.0002 (6)0.0009 (6)0.0000 (6)
N20.0153 (8)0.0174 (8)0.0174 (8)0.0010 (6)0.0005 (6)0.0019 (6)
N30.0181 (8)0.0232 (9)0.0158 (8)0.0004 (6)0.0016 (6)0.0013 (6)
N40.0195 (8)0.0231 (8)0.0184 (8)0.0015 (7)0.0008 (6)0.0024 (6)
C10.0195 (10)0.0334 (11)0.0148 (8)0.0025 (8)0.0011 (7)0.0034 (8)
C20.0161 (9)0.0357 (12)0.0186 (9)0.0050 (8)0.0018 (7)0.0049 (8)
C30.0158 (9)0.0237 (10)0.0186 (9)0.0000 (7)0.0024 (7)0.0008 (7)
C40.0200 (10)0.0251 (10)0.0153 (8)0.0012 (8)0.0005 (7)0.0035 (7)
C50.0178 (9)0.0247 (10)0.0175 (9)0.0008 (8)0.0015 (7)0.0027 (7)
C60.0163 (9)0.0170 (9)0.0172 (9)0.0010 (7)0.0002 (7)0.0005 (6)
C70.0170 (10)0.0172 (9)0.0150 (9)0.0015 (7)0.0008 (6)0.0004 (6)
C80.0178 (9)0.0191 (9)0.0184 (9)0.0024 (7)0.0010 (7)0.0025 (7)
C90.0264 (11)0.0180 (10)0.0309 (11)0.0030 (8)0.0019 (8)0.0014 (8)
C100.0174 (9)0.0205 (10)0.0198 (9)0.0011 (7)0.0027 (7)0.0042 (7)
C110.0208 (10)0.0182 (9)0.0263 (10)0.0036 (8)0.0034 (7)0.0007 (7)
Geometric parameters (Å, º) top
Cl1—C31.741 (2)C4—C51.385 (3)
O1—C101.218 (2)C4—H40.9500
N1—N21.358 (2)C5—C61.395 (3)
N1—C101.398 (3)C5—H50.9500
N1—C81.447 (2)C6—C71.468 (3)
N2—C71.304 (2)C8—C91.518 (3)
N3—N41.255 (2)C8—H81.0000
N3—C71.418 (2)C9—H9A0.9800
N4—C81.499 (2)C9—H9B0.9800
C1—C21.390 (3)C9—H9C0.9800
C1—C61.394 (3)C10—C111.497 (3)
C1—H10.9500C11—H11A0.9800
C2—C31.382 (3)C11—H11B0.9800
C2—H20.9500C11—H11C0.9800
C3—C41.386 (3)
N2—N1—C10119.42 (16)N2—C7—N3121.02 (17)
N2—N1—C8118.06 (15)N2—C7—C6120.36 (17)
C10—N1—C8122.38 (16)N3—C7—C6117.48 (16)
C7—N2—N1113.33 (16)N1—C8—N4105.26 (15)
N4—N3—C7119.73 (16)N1—C8—C9113.80 (16)
N3—N4—C8114.46 (16)N4—C8—C9110.49 (16)
C2—C1—C6120.20 (17)N1—C8—H8109.1
C2—C1—H1119.9N4—C8—H8109.1
C6—C1—H1119.9C9—C8—H8109.1
C3—C2—C1119.11 (18)C8—C9—H9A109.5
C3—C2—H2120.4C8—C9—H9B109.5
C1—C2—H2120.4H9A—C9—H9B109.5
C2—C3—C4121.77 (18)C8—C9—H9C109.5
C2—C3—Cl1119.14 (15)H9A—C9—H9C109.5
C4—C3—Cl1119.08 (15)H9B—C9—H9C109.5
C5—C4—C3118.70 (17)O1—C10—N1119.20 (18)
C5—C4—H4120.7O1—C10—C11124.23 (18)
C3—C4—H4120.7N1—C10—C11116.56 (17)
C4—C5—C6120.77 (18)C10—C11—H11A109.5
C4—C5—H5119.6C10—C11—H11B109.5
C6—C5—H5119.6H11A—C11—H11B109.5
C1—C6—C5119.45 (17)C10—C11—H11C109.5
C1—C6—C7121.32 (17)H11A—C11—H11C109.5
C5—C6—C7119.21 (17)H11B—C11—H11C109.5
C10—N1—N2—C7163.54 (16)N4—N3—C7—C6163.93 (18)
C8—N1—N2—C720.6 (2)C1—C6—C7—N2162.04 (18)
C7—N3—N4—C811.1 (3)C5—C6—C7—N219.9 (3)
C6—C1—C2—C30.4 (3)C1—C6—C7—N35.9 (3)
C1—C2—C3—C40.2 (3)C5—C6—C7—N3172.22 (17)
C1—C2—C3—Cl1178.44 (17)N2—N1—C8—N454.1 (2)
C2—C3—C4—C50.3 (3)C10—N1—C8—N4130.11 (17)
Cl1—C3—C4—C5178.33 (16)N2—N1—C8—C967.0 (2)
C3—C4—C5—C60.6 (3)C10—N1—C8—C9108.8 (2)
C2—C1—C6—C50.7 (3)N3—N4—C8—N147.4 (2)
C2—C1—C6—C7178.79 (19)N3—N4—C8—C975.8 (2)
C4—C5—C6—C10.8 (3)N2—N1—C10—O1175.83 (17)
C4—C5—C6—C7178.96 (19)C8—N1—C10—O10.1 (3)
N1—N2—C7—N322.6 (2)N2—N1—C10—C112.9 (2)
N1—N2—C7—C6169.92 (16)C8—N1—C10—C11178.63 (17)
N4—N3—C7—N228.2 (3)

Experimental details

Crystal data
Chemical formulaC11H11ClN4O
Mr250.69
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)93
a, b, c (Å)15.165 (3), 8.0452 (15), 19.349 (4)
V3)2360.7 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.47 × 0.40 × 0.37
Data collection
DiffractometerRigaku AFC10/Saturn724+
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17617, 2705, 2599
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.152, 1.01
No. of reflections2705
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.23

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

We are very grateful to the Science Foundation for the Excellent Youth Scholars of the Department of Education of Zhejiang Province and the Educational Commission of Zhejiang Province of China (grant No. Y201018289).

References

First citationHu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177–1181.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, W. X., Shi, H. B., Yuan, Q. & &Sun, Y. Q. (2005). J. Chem. Res. pp. 291–293.  Google Scholar
First citationJennison, C. P. R., Mackay, D., Watson, K. N. & Taylor, N. J. (1986). J. Org. Chem. 51, 3043–3051.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901–955. Oxford: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStam, C. H., Counotte-Potman, A. D. & Van der Plas, H. C. (1982). J. Org. Chem. 47, 2856–2858.  CSD CrossRef CAS Google Scholar
First citationXu, F., Yang, Z. Z., Hu, W. X. & Xi, L. M. (2010). Chin. J. Org. Chem. 30, 260–265.  CAS Google Scholar
First citationYang, Z., Xu, F. & Chen, H. (2010). Acta Cryst. E66, o969.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds