organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Ethyl 2-cyano-3-[5-nitro-2-(pyrrolidin-1-yl)phen­yl]acrylate

aLaboratoire de Cristallographie et Physique Moléculaire, UFR–SSMT, Université de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire, and bLaboratoire de Chimie Organique Structurale, UFR–SSMT, Université de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire
*Correspondence e-mail: marcellin.yapo@univ-cocody.ci

(Received 6 August 2010; accepted 18 August 2010; online 4 September 2010)

The title compound, C16H17N3O4, was prepared by the reaction of 5-nitro-2-(pyrrolidin-1-yl)benzaldehyde and ethyl cyano­acetate. The mol­ecular structure adopts an E conformation with respect to the C=C double bond. The five-membered ring has a half-chair conformation, with puckering parameters Q(2)= 0.399 (2) Å and φ = 93.1 (3)°. In the crystal, inversion dimers , linked by pairs of C—H⋯O inter­actions, are further connected through C—H⋯N hydrogen bonds. Weak slipped π-π inter­actions occur between symmetry-related benzene rings [centroid–centroid distance = 3.785 (1)Å].

Related literature

For related structures, see: Yapo et al. (2010[Yapo, Y. M., Konan, K. M., Adjou, A., Timotou, A. & Tenon, J. A. (2010). Acta Cryst. E66, o1735.]); Zhang et al. (2009a[Zhang, D., Zhang, X. & Guo, L. (2009a). Acta Cryst. E65, o90.],b[Zhang, S.-J., Zheng, X.-M. & Hu, W.-X. (2009b). Acta Cryst. E65, o2351.]). For reference bond lengths, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3O4

  • Mr = 315.33

  • Triclinic, [P \overline 1]

  • a = 8.4137 (3) Å

  • b = 9.9517 (4) Å

  • c = 10.3731 (5) Å

  • α = 73.065 (1)°

  • β = 71.388 (2)°

  • γ = 72.523 (4)°

  • V = 766.56 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 223 K

  • 0.15 × 0.05 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 12261 measured reflections

  • 3925 independent reflections

  • 2436 reflections with I > 3σ(I)

  • Rint = 0.04

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.098

  • S = 1.01

  • 2436 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H152⋯O2i 0.98 2.50 3.356 (2) 145
C16—H163⋯N3ii 0.98 2.60 3.574 (3) 172
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Recently, the synthesis and structure of tricyclic quinoline derivative have been widely investigated (Yapo et al., 2010). We report herein the crystal structure of the title compound C16H17N3O4 (I). In fact, it is an intermediate compound on which chemical reactions will be made to obtain tricyclic quinoline derivative containing in its molecular structure two coupled rings: quinoline ring and pyrrolidine ring.

The molecular structure of the title complex displays a E conformation with respect to the C11C12 double bond. The bond distance C12— C13=1.436 (2)Å agrees with recently reported structures (Zhang et al., 2009a; Zhang et al., 2009b) and is characteristic of single bond occuring between carbone sp1 and carbone sp2 [C(sp1)—C(sp2)]. All other bond lengths and angles are not unusual (Allen, 2002).

The pyrrolidine ring has half-chair conformation with puckering parameters Q(2)= 0.399 (2)Å and ϕ= 93.1 (3)° (Cremer & Pople, 1975)

In the crystal packing, centrosymmetrically related molecules are linked by intermolecular C—H···O hydrogen bonding interactions building pseudo dimers which are further connected through C-H···N hydrogen bonds (Table 1 and Figure 2). Weak π-π interactions occur between symmetry related phenyl rings (Centroid-to-centroid = 3.785 (1)Å, interplanar distance= 3.509Å and a slippage of 1.417Å with symmetry code: (i) 2-x,1-y,-z).

Related literature top

For related structures, see: Yapo et al. (2010); Zhang et al. (2009a,b). For reference bond lengths, see: Allen (2002). For ring conformation analysis, see: Cremer & Pople (1975).

Experimental top

To a solution of 5-nitro-2-(pyrrolidin-1-yl)benzaldehyde (2, 9.03 mmol) in anhydrous ethanol (25 ml), ethyl cyanoacetate (2.1 ml, 10.1 mmol) was added. Maintained at room temperature and under magnetic agitation, triethylamine (3 ml) was dropped into the solution. The reaction mixture was maintained at room temperature for 30 min then heated to ethanol reflux during 2 h. After cooling, the precipitate was filtred and then washed with ethanol to obtain yellow crystals in 77% yield. The melting point is 457–458 K.

Refinement top

The H atoms were geometrically positioned and treated as riding with C—H in the range 0.93–0.98Å and Uiso(H) in the range 1.2–1.5 times Ueq of the parent atom.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Molecular view of the title complex with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitary radii.
[Figure 2] Fig. 2. Partial packing view showing the hydrogen bond pattern. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z ]
(E)-Ethyl 2-cyano-3-[5-nitro-2-(pyrrolidin-1-yl)phenyl]acrylate top
Crystal data top
C16H17N3O4Z = 2
Mr = 315.33F(000) = 332
Triclinic, P1Dx = 1.366 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4137 (3) ÅCell parameters from 12261 reflections
b = 9.9517 (4) Åθ = 4–29°
c = 10.3731 (5) ŵ = 0.10 mm1
α = 73.065 (1)°T = 223 K
β = 71.388 (2)°Prism, yellow
γ = 72.523 (4)°0.15 × 0.05 × 0.05 mm
V = 766.56 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.04
Graphite monochromatorθmax = 29.1°, θmin = 2.1°
ϕ & ω scansh = 011
12261 measured reflectionsk = 1213
3925 independent reflectionsl = 1214
2436 reflections with I > 3σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(F2) + (0.04P)2 + 0.41P]
where P = [max(Fo2,0) + 2Fc2]/3
S = 1.01(Δ/σ)max = 0.000211
2436 reflectionsΔρmax = 0.29 e Å3
208 parametersΔρmin = 0.19 e Å3
0 restraints
Crystal data top
C16H17N3O4γ = 72.523 (4)°
Mr = 315.33V = 766.56 (6) Å3
Triclinic, P1Z = 2
a = 8.4137 (3) ÅMo Kα radiation
b = 9.9517 (4) ŵ = 0.10 mm1
c = 10.3731 (5) ÅT = 223 K
α = 73.065 (1)°0.15 × 0.05 × 0.05 mm
β = 71.388 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2436 reflections with I > 3σ(I)
12261 measured reflectionsRint = 0.04
3925 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
2436 reflectionsΔρmin = 0.19 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.24506 (16)0.75552 (14)0.34637 (12)0.0392
C60.6744 (2)0.54044 (17)0.08814 (16)0.0272
O30.38346 (18)0.74040 (16)0.50501 (13)0.0501
N10.58761 (18)0.70320 (15)0.12042 (14)0.0318
C110.5357 (2)0.61576 (17)0.18686 (16)0.0288
C100.8072 (2)0.48737 (19)0.14342 (18)0.0349
O21.03617 (19)0.19215 (16)0.22812 (15)0.0536
C140.3815 (2)0.71447 (18)0.39891 (17)0.0335
C50.6844 (2)0.58161 (18)0.05898 (16)0.0281
C70.7910 (2)0.41913 (18)0.13881 (17)0.0302
C80.9117 (2)0.33592 (18)0.05070 (18)0.0323
N21.0334 (2)0.21267 (17)0.10625 (17)0.0405
C120.5355 (2)0.63394 (17)0.31088 (16)0.0295
O11.1330 (2)0.13387 (17)0.02781 (17)0.0640
C130.6834 (2)0.5867 (2)0.36710 (18)0.0355
N30.7983 (2)0.5498 (2)0.41549 (19)0.0528
C90.9177 (2)0.3684 (2)0.09019 (18)0.0361
C10.6073 (3)0.7384 (2)0.27297 (18)0.0420
C40.4900 (2)0.83167 (19)0.06191 (18)0.0374
C160.0507 (3)0.8668 (2)0.3594 (2)0.0538
C150.0917 (3)0.8417 (3)0.4249 (2)0.0524
C20.4880 (3)0.8854 (2)0.2995 (2)0.0520
C30.4940 (3)0.9553 (2)0.18931 (19)0.0458
H1110.42990.65790.16010.0408*
H1010.81120.50970.24020.0501*
H710.78500.39220.23550.0416*
H911.00050.30590.14850.0499*
H110.72910.74130.32210.0611*
H120.57710.66460.30010.0612*
H410.54540.84310.00250.0516*
H420.36870.82430.01260.0529*
H1610.15160.93100.40460.0975*
H1620.01690.90980.25940.0977*
H1630.07940.77440.37420.0981*
H1510.11900.93660.42020.0740*
H1520.06630.78750.52210.0730*
H210.52890.94030.39270.0751*
H220.36980.87900.28550.0754*
H310.60320.98980.21800.0663*
H320.39391.03460.17430.0659*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0392 (7)0.0457 (8)0.0277 (6)0.0026 (6)0.0057 (5)0.0162 (5)
C60.0280 (8)0.0315 (9)0.0230 (8)0.0089 (7)0.0040 (6)0.0078 (6)
O30.0563 (9)0.0652 (10)0.0332 (7)0.0074 (7)0.0099 (6)0.0257 (7)
N10.0394 (8)0.0349 (8)0.0223 (7)0.0071 (6)0.0101 (6)0.0070 (6)
C110.0311 (8)0.0297 (9)0.0234 (8)0.0071 (7)0.0044 (6)0.0054 (6)
C100.0393 (10)0.0416 (10)0.0250 (8)0.0098 (8)0.0041 (7)0.0132 (7)
O20.0579 (9)0.0499 (9)0.0435 (8)0.0042 (7)0.0192 (7)0.0063 (6)
C140.0419 (10)0.0331 (9)0.0239 (8)0.0076 (7)0.0058 (7)0.0076 (7)
C50.0286 (8)0.0332 (9)0.0254 (8)0.0107 (7)0.0053 (6)0.0085 (7)
C70.0320 (9)0.0330 (9)0.0259 (8)0.0091 (7)0.0056 (7)0.0073 (7)
C80.0298 (9)0.0312 (9)0.0349 (9)0.0063 (7)0.0060 (7)0.0091 (7)
N20.0365 (9)0.0372 (9)0.0431 (9)0.0042 (7)0.0065 (7)0.0099 (7)
C120.0349 (9)0.0290 (8)0.0238 (8)0.0086 (7)0.0063 (7)0.0045 (6)
O10.0590 (9)0.0562 (10)0.0616 (10)0.0174 (8)0.0105 (8)0.0274 (8)
C130.0427 (10)0.0390 (10)0.0266 (9)0.0133 (8)0.0060 (8)0.0086 (7)
N30.0521 (11)0.0654 (12)0.0484 (10)0.0155 (9)0.0213 (9)0.0120 (9)
C90.0359 (10)0.0375 (10)0.0345 (9)0.0089 (8)0.0015 (7)0.0149 (8)
C10.0566 (12)0.0467 (11)0.0233 (9)0.0082 (9)0.0149 (8)0.0069 (8)
C40.0435 (10)0.0360 (10)0.0300 (9)0.0026 (8)0.0103 (8)0.0090 (7)
C160.0431 (11)0.0587 (14)0.0599 (14)0.0028 (10)0.0097 (10)0.0260 (11)
C150.0436 (12)0.0621 (14)0.0447 (12)0.0086 (10)0.0054 (9)0.0295 (10)
C20.0677 (14)0.0514 (12)0.0346 (10)0.0045 (10)0.0237 (10)0.0036 (9)
C30.0582 (13)0.0381 (11)0.0362 (10)0.0049 (9)0.0159 (9)0.0027 (8)
Geometric parameters (Å, º) top
O4—C141.330 (2)C12—C131.436 (2)
O4—C151.462 (2)C13—N31.145 (2)
C6—C111.460 (2)C9—H910.963
C6—C51.442 (2)C1—C21.511 (3)
C6—C71.394 (2)C1—H110.993
O3—C141.207 (2)C1—H120.982
N1—C51.350 (2)C4—C31.520 (3)
N1—C11.483 (2)C4—H410.976
N1—C41.477 (2)C4—H420.999
C11—C121.350 (2)C16—C151.483 (3)
C11—H1110.955C16—H1610.971
C10—C51.426 (2)C16—H1620.983
C10—C91.363 (2)C16—H1630.977
C10—H1010.955C15—H1511.021
O2—N21.227 (2)C15—H1520.984
C14—C121.484 (2)C2—C31.521 (3)
C7—C81.377 (2)C2—H210.972
C7—H710.948C2—H220.977
C8—N21.448 (2)C3—H311.003
C8—C91.389 (2)C3—H320.972
N2—O11.233 (2)
C14—O4—C15114.97 (14)N1—C1—H11109.3
C11—C6—C5121.29 (14)C2—C1—H11111.6
C11—C6—C7119.04 (14)N1—C1—H12110.4
C5—C6—C7119.46 (14)C2—C1—H12113.0
C5—N1—C1120.85 (14)H11—C1—H12108.5
C5—N1—C4127.13 (13)N1—C4—C3103.67 (14)
C1—N1—C4110.08 (13)N1—C4—H41110.4
C6—C11—C12129.25 (16)C3—C4—H41111.7
C6—C11—H111115.4N1—C4—H42110.9
C12—C11—H111115.3C3—C4—H42110.4
C5—C10—C9122.08 (16)H41—C4—H42109.6
C5—C10—H101118.2C15—C16—H161109.4
C9—C10—H101119.7C15—C16—H162110.6
O4—C14—O3124.77 (16)H161—C16—H162109.5
O4—C14—C12112.45 (14)C15—C16—H163108.3
O3—C14—C12122.77 (16)H161—C16—H163108.3
C6—C5—C10116.84 (15)H162—C16—H163110.7
C6—C5—N1124.27 (15)C16—C15—O4107.71 (16)
C10—C5—N1118.89 (15)C16—C15—H151111.3
C6—C7—C8120.77 (15)O4—C15—H151107.9
C6—C7—H71119.6C16—C15—H152111.9
C8—C7—H71119.6O4—C15—H152107.8
C7—C8—N2119.31 (15)H151—C15—H152110.0
C7—C8—C9120.95 (16)C1—C2—C3103.20 (15)
N2—C8—C9119.74 (15)C1—C2—H21111.2
C8—N2—O2119.06 (15)C3—C2—H21111.1
C8—N2—O1118.37 (16)C1—C2—H22112.1
O2—N2—O1122.55 (16)C3—C2—H22109.2
C14—C12—C11122.22 (15)H21—C2—H22109.9
C14—C12—C13113.25 (14)C2—C3—C4102.37 (16)
C11—C12—C13124.43 (16)C2—C3—H31110.2
C12—C13—N3178.06 (19)C4—C3—H31111.5
C8—C9—C10119.72 (16)C2—C3—H32110.2
C8—C9—H91119.1C4—C3—H32111.6
C10—C9—H91121.2H31—C3—H32110.7
N1—C1—C2103.93 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H152···O2i0.982.503.356 (2)145
C16—H163···N3ii0.982.603.574 (3)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H17N3O4
Mr315.33
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)8.4137 (3), 9.9517 (4), 10.3731 (5)
α, β, γ (°)73.065 (1), 71.388 (2), 72.523 (4)
V3)766.56 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.15 × 0.05 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 3σ(I)] reflections
12261, 3925, 2436
Rint0.04
(sin θ/λ)max1)0.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.098, 1.01
No. of reflections2436
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.19

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), CRYSTALS (Betteridge et al., 2003), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H152···O2i0.982.503.356 (2)145
C16—H163···N3ii0.982.603.574 (3)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

Acknowledgements

The authors wish to thank the Laboratoire de Physique des Inter­actions Ioniques et Moléculaires of Provence University (France) for the use of the diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYapo, Y. M., Konan, K. M., Adjou, A., Timotou, A. & Tenon, J. A. (2010). Acta Cryst. E66, o1735.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, D., Zhang, X. & Guo, L. (2009a). Acta Cryst. E65, o90.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-J., Zheng, X.-M. & Hu, W.-X. (2009b). Acta Cryst. E65, o2351.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds