organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(carb­­oxy­meth­yl)piperazine-1,4-diium bis­­(di­hydrogen phosphate) dihydrate

aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 2 September 2010; accepted 10 September 2010; online 15 September 2010)

In the title salt, C8H16N2O42+·2H2PO4·2H2O, the piperazine ring is located around an inversion center and adopts a chair conformation. The dihydrogen phosphate anions and free water mol­ecules are linked via O—H⋯O hydrogen bonds into two-dimensional hydrogen-bonding layers, which are further connected through O—H⋯O and N—H⋯O hydrogen bonds involving the protonated piperazine into a three-dimensional supra­molecular network.

Related literature

For related structures, see: Yang et al. (2008[Yang, J., Lu, N., Zhang, G., Cheng, L. & Gou, S. H. (2008). Polyhedron, 27, 2119-2126.]). For potential applications of optical, electrical, magnetic and microporous materials, see: Evans & Lin (2002[Evans, O. R. & Lin, W. B. (2002). Acc. Chem. Res. 35, 511-522.]); Zhang & Chen (2006[Zhang, J. P. & Chen, X. M. (2006). Chem. Commun. pp. 1689-1699.]).

[Scheme 1]

Experimental

Crystal data
  • C8H16N2O42+·2H2PO4·2H2O

  • Mr = 434.23

  • Monoclinic, P 21 /c

  • a = 8.716 (3) Å

  • b = 8.992 (3) Å

  • c = 12.991 (4) Å

  • β = 123.310 (17)°

  • V = 850.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 120 K

  • 0.54 × 0.44 × 0.41 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.840, Tmax = 0.875

  • 3998 measured reflections

  • 1668 independent reflections

  • 1552 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.09

  • 1668 reflections

  • 121 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.84 1.69 2.5324 (18) 177
N1—H1⋯O5i 0.93 1.74 2.658 (2) 170
O4—H4⋯O1W 0.84 1.74 2.5729 (19) 172
O6—H6⋯O5ii 0.84 1.74 2.5700 (17) 169
O1W—H1WA⋯O6iii 0.85 2.08 2.868 (2) 155
O1W—H1WB⋯O3iv 0.85 2.02 2.8633 (19) 169
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+2, -y+1, -z+2; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recent years have witnessed an explosion of great interest in hybrid organic-inorganic framework solids not only for their intriguing architectures and topologies, but also for their potential applications in optical, electrical, magnetic, and microporous materials (Evans et al. 2002; Zhang et al. 2006). We have synthesized two series of hybrid organic-inorganic frameworks with 1,4-piperazinediacetic acid and lanthanide sulfates (Yang et al. 2008). Our aim is to obtain similar hybrid solids by using phosphates instead of sulfates. However, we fail to synthesize the aimed compounds and obtain a three-dimensional supramolecular network, C8H24N2O14P2 (1.2H2PO4.2H2O).

The title compound, is a dihydrogen phosphate, in which 1 is a protonated piperazine derivative and the piperazine ring located around inversion center adopts chair conformation (Fig. 1). The asymmetric unit of the title compound, contains half a protonated 1,4-piperazinediacetic acid, a dihydrogen phosphate and a free water molecule. In the carboxylates of protonated 1,4-piperazinediacetic acid, the distance of the C=O bonds is 1.209 (2) Å, which is shorter than those of C—O bond (1.311 (2) Å) and considered to have full double-bond character.

In the compound, the dihydrogen phosphates and free water molecules are linked to each other, via O—H···O hydrogen bonds into a two-dimensional hydrogen bonding layers (Table 1, Fig. 2), which are further connected through O—H···O and N—H···O hydrogen bonds involving the protonated 1,4-piperazinediacetic acid into a three-dimensional supramolecular network.

Related literature top

For related structures, see: Yang et al. (2008). For potential applications in optical, electrical, magnetic, and microporous materials, see: Evans & Lin (2002); Zhang & Chen (2006).

Experimental top

A mixture of H2pda.2H2O (0.024 g, 0.1 mmol), Nd2O3 (0.034 g, 0.1 mmol), H3PO4 (0.1 ml), and water (6 ml) were heated ina 15 ml Teflon-lined vessel at 160 ° for 3 days, followed by slow cooling (5 ° h-1) to room temperature. After filtration, colorless block crystals were collected and dried in air (0.025 g, yield ca 57% based on H2pda).

Refinement top

All H atoms attached to C, N and O(hydroxyl) atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene), N—H = 0.93 Å and O—H= 0.84 Å with Uiso(H) = 1.2Ueq(C or N) or Uiso(H) = 1.5Ueq(O). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.40 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last cycle of refinement, they were treated as riding on their parent O atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular view of compound (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Partial packing view of compound ( I ), showing the two-dimensional network formed by the hydrogen bonds showed as dashed lines, involving the dihydrogen phosphate and the water molecules. [Symmetry codes:(iv) -x+2, -y+1,-z+2; (v) -x+2, y+1/2, -z+3/2]
1,4-Bis(carboxymethyl)piperazine-1,4-diium bis(dihydrogen phosphate) dihydrate top
Crystal data top
C8H16N2O42+·2H2PO4·2H2OF(000) = 456
Mr = 434.23Dx = 1.695 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 782 reflections
a = 8.716 (3) Åθ = 2.4–28.0°
b = 8.992 (3) ŵ = 0.33 mm1
c = 12.991 (4) ÅT = 120 K
β = 123.310 (17)°Block, colourless
V = 850.9 (5) Å30.54 × 0.44 × 0.41 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
1668 independent reflections
Radiation source: fine-focus sealed tube1552 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scanθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 108
Tmin = 0.840, Tmax = 0.875k = 1110
3998 measured reflectionsl = 1016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.4175P]
where P = (Fo2 + 2Fc2)/3
1668 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C8H16N2O42+·2H2PO4·2H2OV = 850.9 (5) Å3
Mr = 434.23Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.716 (3) ŵ = 0.33 mm1
b = 8.992 (3) ÅT = 120 K
c = 12.991 (4) Å0.54 × 0.44 × 0.41 mm
β = 123.310 (17)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1668 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1552 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.875Rint = 0.022
3998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.09Δρmax = 0.49 e Å3
1668 reflectionsΔρmin = 0.54 e Å3
121 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69897 (17)0.37509 (13)0.33962 (11)0.0187 (3)
O20.64019 (19)0.56082 (13)0.42897 (12)0.0213 (3)
H20.68980.50390.49030.032*
N10.57511 (19)0.53648 (15)0.12844 (13)0.0131 (3)
H10.69240.49810.16220.016*
C10.6431 (2)0.49837 (19)0.33891 (15)0.0156 (4)
C20.5654 (2)0.60289 (19)0.22984 (15)0.0158 (3)
H2A0.43600.62570.19910.019*
H2B0.63530.69730.25660.019*
C30.5428 (2)0.65335 (18)0.03654 (15)0.0159 (3)
H3A0.63320.73460.07850.019*
H3B0.41840.69580.00060.019*
C40.4392 (2)0.41261 (19)0.06352 (16)0.0163 (4)
H4A0.31310.45130.02680.020*
H4B0.46080.33430.12370.020*
P10.92100 (6)0.43880 (4)0.74544 (4)0.01286 (17)
O30.79926 (16)0.38920 (13)0.61380 (11)0.0174 (3)
O40.80098 (16)0.51844 (14)0.78556 (12)0.0200 (3)
H40.86500.58200.84000.030*
O51.07757 (15)0.54245 (12)0.77465 (11)0.0160 (3)
O61.00826 (16)0.29822 (13)0.83100 (11)0.0172 (3)
H60.96900.22070.78790.026*
O1W0.9695 (2)0.73039 (16)0.94132 (13)0.0289 (3)
H1WA1.01200.72211.01760.043*
H1WB1.05050.77400.93490.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0218 (6)0.0160 (6)0.0182 (6)0.0027 (5)0.0109 (5)0.0009 (5)
O20.0306 (8)0.0185 (6)0.0159 (6)0.0063 (5)0.0134 (6)0.0025 (5)
N10.0134 (7)0.0124 (6)0.0139 (7)0.0002 (5)0.0078 (6)0.0002 (5)
C10.0140 (8)0.0159 (8)0.0163 (8)0.0012 (6)0.0080 (7)0.0011 (6)
C20.0187 (8)0.0139 (8)0.0160 (8)0.0018 (6)0.0103 (7)0.0006 (6)
C30.0197 (8)0.0118 (7)0.0162 (8)0.0006 (6)0.0098 (7)0.0013 (6)
C40.0170 (8)0.0159 (8)0.0150 (8)0.0041 (6)0.0082 (7)0.0003 (6)
P10.0137 (3)0.0112 (3)0.0146 (3)0.00065 (14)0.0084 (2)0.00046 (14)
O30.0194 (6)0.0157 (6)0.0149 (6)0.0001 (5)0.0081 (5)0.0004 (5)
O40.0180 (6)0.0201 (6)0.0253 (7)0.0030 (5)0.0142 (6)0.0076 (5)
O50.0141 (6)0.0120 (6)0.0230 (7)0.0003 (4)0.0109 (5)0.0017 (5)
O60.0226 (6)0.0115 (6)0.0154 (6)0.0025 (5)0.0092 (5)0.0014 (4)
O1W0.0355 (8)0.0347 (8)0.0219 (7)0.0153 (6)0.0192 (6)0.0104 (6)
Geometric parameters (Å, º) top
O1—C11.209 (2)C3—H3B0.9900
O2—C11.311 (2)C4—C3i1.513 (2)
O2—H20.8400C4—H4A0.9900
N1—C21.490 (2)C4—H4B0.9900
N1—C31.497 (2)P1—O31.5022 (13)
N1—C41.503 (2)P1—O51.5186 (12)
N1—H10.9300P1—O41.5740 (12)
C1—C21.515 (2)P1—O61.5759 (13)
C2—H2A0.9900O4—H40.8400
C2—H2B0.9900O6—H60.8400
C3—C4i1.513 (2)O1W—H1WA0.8499
C3—H3A0.9900O1W—H1WB0.8505
C1—O2—H2109.5N1—C3—H3B109.6
C2—N1—C3110.29 (12)C4i—C3—H3B109.6
C2—N1—C4112.53 (13)H3A—C3—H3B108.1
C3—N1—C4109.14 (13)N1—C4—C3i110.54 (13)
C2—N1—H1108.3N1—C4—H4A109.5
C3—N1—H1108.3C3i—C4—H4A109.5
C4—N1—H1108.3N1—C4—H4B109.5
O1—C1—O2126.25 (16)C3i—C4—H4B109.5
O1—C1—C2123.19 (15)H4A—C4—H4B108.1
O2—C1—C2110.56 (14)O3—P1—O5116.28 (7)
N1—C2—C1111.40 (13)O3—P1—O4109.25 (7)
N1—C2—H2A109.3O5—P1—O4107.91 (7)
C1—C2—H2A109.3O3—P1—O6109.29 (7)
N1—C2—H2B109.3O5—P1—O6107.26 (7)
C1—C2—H2B109.3O4—P1—O6106.41 (7)
H2A—C2—H2B108.0P1—O4—H4109.5
N1—C3—C4i110.32 (14)P1—O6—H6109.5
N1—C3—H3A109.6H1WA—O1W—H1WB107.5
C4i—C3—H3A109.6
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.841.692.5324 (18)177
N1—H1···O5ii0.931.742.658 (2)170
O4—H4···O1W0.841.742.5729 (19)172
O6—H6···O5iii0.841.742.5700 (17)169
O1W—H1WA···O6iv0.852.082.868 (2)155
O1W—H1WB···O3v0.852.022.8633 (19)169
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+2, y1/2, z+3/2; (iv) x+2, y+1, z+2; (v) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H16N2O42+·2H2PO4·2H2O
Mr434.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)8.716 (3), 8.992 (3), 12.991 (4)
β (°) 123.310 (17)
V3)850.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.54 × 0.44 × 0.41
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.840, 0.875
No. of measured, independent and
observed [I > 2σ(I)] reflections
3998, 1668, 1552
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.09
No. of reflections1668
No. of parameters121
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.54

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.841.692.5324 (18)177.2
N1—H1···O5i0.931.742.658 (2)170.2
O4—H4···O1W0.841.742.5729 (19)171.6
O6—H6···O5ii0.841.742.5700 (17)168.5
O1W—H1WA···O6iii0.852.082.868 (2)154.6
O1W—H1WB···O3iv0.852.022.8633 (19)168.6
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y1/2, z+3/2; (iii) x+2, y+1, z+2; (iv) x+2, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEvans, O. R. & Lin, W. B. (2002). Acc. Chem. Res. 35, 511–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Lu, N., Zhang, G., Cheng, L. & Gou, S. H. (2008). Polyhedron, 27, 2119–2126.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J. P. & Chen, X. M. (2006). Chem. Commun. pp. 1689–1699.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds