organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Fluconazolium picrate

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 6 September 2010; accepted 10 September 2010; online 15 September 2010)

The title compound, C13H13F2N6O+·C6H2N3O7, is the first structurally characterized salt of the cation of fluconazole [systematic name 2-(2,4-difluorophenyl)-1,3-bis(1H-1,2,4-triazol-1-yl)propan-2-ol], a synthetic anti­fungal agent. In the crystal, the components are linked by O—H⋯O hydrogen bonding between the hy­droxy group of the fluconazolium cation and the C=O(−) group of the picrate anion. This complex is additionally stabilized by secondary, but relatively short, C—H⋯O inter­actions. The dimers thus formed are connected by N—H⋯N cation–cation hydrogen bonds into helices running along [010]. Neighboring helices of opposite handedness are joined by weak anion–anion C—H⋯O(nitro) inter­actions. In the cation, the mean planes of the three rings are approximately, within ca 25°, parallel to the central C—O bond. In the picrate anion two nitro groups, in turn, are almost coplanar with the ring plane [forming dihedral angles of 6.5 (2) and 3.8 (2)°] while the third nitro group is significantly twisted [by 46.79 (13)°].

Related literature

For the anti­fungal properties of fluconazole, see: Brammer et al. (1990[Brammer, K. W., Farrow, P. R. & Faulkner, J. K. (1990). Rev. Infect. Dis. 12, S318-S326.]); Caira et al. (2003[Caira, M. R., Alkhamis, A. & Obaidat, R. M. (2003). J. Pharm. Sci. 93, 601-611.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13F2N6O+·C6H2N3O7

  • Mr = 535.40

  • Monoclinic, P 21 /c

  • a = 5.647 (1) Å

  • b = 17.347 (2) Å

  • c = 22.571 (2) Å

  • β = 94.27 (1)°

  • V = 2204.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100 K

  • 0.2 × 0.2 × 0.15 mm

Data collection
  • Kuma KM-4-CCD four-circle diffractometer

  • 18260 measured reflections

  • 5165 independent reflections

  • 3576 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.082

  • S = 0.99

  • 5165 reflections

  • 403 parameters

  • All H-atom parameters refined

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O41 0.970 (14) 2.480 (13) 3.1698 (16) 127.9 (10)
O2—H2⋯O41 0.828 (17) 1.913 (17) 2.7365 (13) 173.0 (16)
C15—H15⋯O462 0.940 (15) 2.408 (13) 3.0231 (17) 122.8 (11)
C1—H1B⋯O2i 0.938 (13) 2.549 (12) 3.2306 (16) 129.8 (10)
N14—H14⋯N34ii 0.893 (19) 1.851 (19) 2.7301 (16) 167.8 (17)
C26—H26⋯N12iii 0.938 (14) 2.456 (14) 3.3118 (18) 151.6 (11)
C43—H43⋯O442iv 0.972 (18) 2.472 (16) 3.280 (2) 140.4 (13)
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z; (iv) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989[Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Fluconazole is a synthetic antifungal agent that can be used for the treatment of a variety of Candida albicans and other fungal infections. It is currently the most widely used antifungal drug for maintenance therapy because it can be given orally, lacks major side effects, penetrates the central nervous system, and has broad efficiacy against most pathogenic yeasts, including Cryptococcus neoformans (Brammer et al., 1990). The preparation and crystal characterization of one of the polymorphs, a monohydrate, and an ethyl acetate solvate of the fluconazole is reported (Caira et al., 2003).

In the Cambridge Structural Database (Allen, 2002; version 5.31) there are 33 crystal structures of the metal complexes involving coordinated fluconazole molecule, three mentioned above structures of neutral fluconazole (including two solvates, a hydrate and an ethyl acetate), but the structure reported here is the first report on the protonated fluconazole, fluconazolium picrate (hereinafter referred to as 1, Scheme 1).

Figure 1 shows the perspective view of both charged components of 1. The fluconazolium cation is asymmetric (despite the possible symmetric conformation); both triazole rings are differently orientated with respect to the phenyl ring. The torsion angles C21—C2—N1—N11 and C21—C2—N3—N31 are -58.50 (13)° and 175.23 (10)°, respectively. The overall conformation of the cation might be described by mutual orientation of three planar fragments, a triazolinium ring (A), a 2,4-difluorophenyl ring (B) and the triazole ring (C). All these fragments are approximately planar, the largest deviations from the planarity are, maybe unexpectedly, obeserved within the phenyl ring (0.0120 (9) Å). The least squares planes make the dihedral angles of 52.51 (5)° (A/B), 24.53 (7)° (B/C) and 69.70 (6)° (A/C). As in the neutral fluconazole (Caira et al., 2003) all these planes are approximately (within ca 25°) parallel to the central C—O bond. In the picrate anion, the six-membered ring is within 0.0082 (10)Å planar, and two of three nitro groups are almost coplanar with the ring plane (dihedral angles of 6.5 (2)° for the NO2 group para with respect to the C=O group, and 3.8 (2)° for one of the ortho groups), while the other ortho- group is significantly twisted, by an angle of 46.79 (13)°. The C—O bond of 1.2529 (15) Å, is longer than the typical C=O double bond, reflecting the anionic character of this, more appropriately described as C=O(-), bond.

The place of protonation is unequivocaly determined as N14. It is proved by (i) the location of the hydrogen atom in the difference Fourier map, and its subsequent succesful refinement, as well as by (ii) the geometrical characteristics of the nitrogen atoms.

The ionic components are joined by the O—H···O hydrogen bond and additionally by secondary - but relatively short CH···O(nitro) contact (Figure 1). The geometrical details of hydrogen bonds are given in Table 1. In the crystal structure the cations are organized into the chains along the b-direction by means of N—H···N and C—H···O hydrogen bonds. The main structural motif is therefore a helix of cations with the anions attached subsequently to both sides of the helix (Fig. 2). It might be noted that the neighboring helical chains (which elements are related by 21 screw along y) of different screwness, are only loosely connected, by C—H···O hydrogen bonds between the picrate anions(Fig. 3).

Related literature top

For the antifungal properties o ffluconazole, see: Brammer et al. (1990); Caira et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound was synthesized by mixing equimolar amounts (1:1) of fluconazole (2 mmol) in 10 ml me thanol and picric acid (2 mmol) in 10 ml of methanol. The solution was stirred well and allowed to evaporate slowly at room temperature. Crystals suitable for single-crystal X-ray diffraction were grown from methanol solvent. The melting range was found to be 409 - 412 K.

Refinement top

Hydrogen atoms were located in the difference Fourier maps and isotropically refined.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of the compound I together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii and hydrogen bond between the ionic species is shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing as seen approximately along [100] direction; hydrogen bonds are shown as dashed lines. Symmetry codes: (i) 1 - x,-y,1 - z; (ii) x,1/2 - y,-1/2 + z; (iii) 1 - x,1/2 + y,3/2 - z; (iv) 1 - x,1 - y,1 - z; (v) x,1 + y,z; (vi) x,3/2 - y,-1/2 + z; (vii) 1 - x,3/2+y,3/2 - z.
Fluconazolium picrate top
Crystal data top
C13H13F2N6O+·C6H2N3O7F(000) = 1096
Mr = 535.40Dx = 1.613 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4361 reflections
a = 5.647 (1) Åθ = 3–22°
b = 17.347 (2) ŵ = 0.14 mm1
c = 22.571 (2) ÅT = 100 K
β = 94.27 (1)°Block, colourless
V = 2204.9 (5) Å30.2 × 0.2 × 0.15 mm
Z = 4
Data collection top
Kuma KM-4-CCD four-circle
diffractometer
3576 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 29.1°, θmin = 3.0°
ω scanh = 77
18260 measured reflectionsk = 2022
5165 independent reflectionsl = 3029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082All H-atom parameters refined
S = 0.99 w = 1/[σ2(Fo2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
5165 reflections(Δ/σ)max = 0.004
403 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H13F2N6O+·C6H2N3O7V = 2204.9 (5) Å3
Mr = 535.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.647 (1) ŵ = 0.14 mm1
b = 17.347 (2) ÅT = 100 K
c = 22.571 (2) Å0.2 × 0.2 × 0.15 mm
β = 94.27 (1)°
Data collection top
Kuma KM-4-CCD four-circle
diffractometer
3576 reflections with I > 2σ(I)
18260 measured reflectionsRint = 0.023
5165 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.082All H-atom parameters refined
S = 0.99Δρmax = 0.25 e Å3
5165 reflectionsΔρmin = 0.24 e Å3
403 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8252 (2)0.11241 (8)0.86298 (6)0.0140 (3)
H1A0.824 (2)0.0864 (9)0.8249 (6)0.016 (3)*
H1B0.965 (2)0.1014 (8)0.8865 (6)0.009 (3)*
N110.81990 (17)0.19482 (7)0.85106 (4)0.0137 (2)
N120.91454 (19)0.24730 (7)0.89174 (5)0.0196 (3)
C130.8628 (2)0.31378 (10)0.86711 (6)0.0202 (3)
H130.905 (3)0.3619 (11)0.8832 (7)0.030 (4)*
N140.74046 (18)0.30535 (7)0.81341 (5)0.0171 (3)
H140.679 (3)0.3395 (11)0.7870 (8)0.039 (5)*
C150.7157 (2)0.23020 (9)0.80471 (6)0.0161 (3)
H150.632 (2)0.2046 (9)0.7730 (7)0.022 (4)*
C20.6062 (2)0.08837 (8)0.89546 (5)0.0134 (3)
H20.416 (3)0.0969 (11)0.8248 (8)0.035 (5)*
O20.39596 (14)0.10601 (6)0.86009 (4)0.0158 (2)
C210.5940 (2)0.13196 (8)0.95392 (5)0.0132 (3)
C220.7674 (2)0.12590 (8)1.00064 (5)0.0145 (3)
F220.95997 (12)0.08001 (5)0.99397 (3)0.01995 (19)
C230.7581 (2)0.16294 (9)1.05430 (6)0.0192 (3)
H230.875 (2)0.1575 (9)1.0836 (6)0.014 (3)*
C240.5627 (2)0.20856 (9)1.06083 (6)0.0235 (3)
F240.54335 (15)0.24419 (6)1.11362 (4)0.0393 (3)
C250.3861 (2)0.21871 (10)1.01644 (6)0.0237 (3)
H250.256 (3)0.2508 (9)1.0228 (6)0.023 (4)*
C260.4056 (2)0.18052 (9)0.96320 (6)0.0183 (3)
H260.288 (2)0.1884 (9)0.9323 (6)0.017 (4)*
C30.6093 (2)0.00119 (8)0.90877 (5)0.0159 (3)
H3B0.749 (2)0.0154 (9)0.9330 (6)0.022 (4)*
H3A0.461 (2)0.0115 (9)0.9300 (6)0.026 (4)*
N310.60104 (17)0.04584 (7)0.85546 (4)0.0152 (2)
N320.80503 (19)0.07447 (7)0.83446 (5)0.0204 (3)
C330.7233 (2)0.11090 (9)0.78608 (6)0.0209 (3)
H330.822 (2)0.1390 (10)0.7617 (6)0.025 (4)*
N340.48410 (19)0.10769 (7)0.77458 (5)0.0195 (3)
C350.4149 (2)0.06607 (9)0.81927 (5)0.0174 (3)
H350.266 (3)0.0524 (9)0.8276 (6)0.023 (4)*
C410.4057 (2)0.08645 (9)0.69270 (5)0.0187 (3)
O410.49841 (15)0.08294 (6)0.74481 (4)0.0215 (2)
C420.4803 (3)0.03606 (9)0.64625 (6)0.0244 (3)
N420.6721 (2)0.01813 (9)0.66116 (5)0.0302 (3)
O4210.6440 (2)0.08584 (7)0.64488 (5)0.0382 (3)
O4220.85228 (19)0.00575 (7)0.68870 (5)0.0404 (3)
C430.3793 (3)0.03392 (11)0.58915 (7)0.0343 (4)
H430.440 (3)0.0046 (11)0.5629 (7)0.037 (5)*
C440.1963 (3)0.08515 (10)0.57331 (6)0.0337 (4)
N440.0919 (3)0.08703 (10)0.51239 (6)0.0498 (5)
O4410.0825 (4)0.12829 (10)0.50103 (6)0.0829 (6)
O4420.1825 (2)0.04704 (9)0.47547 (5)0.0610 (5)
C450.1132 (3)0.13529 (10)0.61371 (6)0.0278 (4)
H450.013 (3)0.1690 (11)0.6027 (7)0.031 (4)*
C460.2145 (2)0.13681 (9)0.67108 (6)0.0204 (3)
N460.11696 (19)0.19341 (8)0.70967 (5)0.0229 (3)
O4610.05047 (19)0.23362 (8)0.68997 (5)0.0437 (3)
O4620.20457 (16)0.20171 (7)0.76060 (4)0.0285 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0138 (6)0.0110 (7)0.0171 (6)0.0019 (5)0.0003 (5)0.0008 (6)
N110.0122 (5)0.0143 (6)0.0146 (5)0.0004 (5)0.0004 (4)0.0002 (5)
N120.0211 (6)0.0169 (7)0.0198 (6)0.0036 (5)0.0053 (4)0.0005 (5)
C130.0238 (7)0.0162 (8)0.0199 (7)0.0017 (6)0.0037 (5)0.0002 (6)
N140.0185 (6)0.0153 (7)0.0170 (5)0.0017 (5)0.0015 (4)0.0033 (5)
C150.0162 (6)0.0168 (8)0.0151 (6)0.0008 (6)0.0006 (5)0.0010 (6)
C20.0119 (6)0.0147 (8)0.0133 (6)0.0009 (5)0.0020 (4)0.0013 (5)
O20.0129 (4)0.0220 (6)0.0121 (4)0.0011 (4)0.0023 (3)0.0008 (4)
C210.0130 (6)0.0121 (7)0.0147 (6)0.0036 (5)0.0014 (4)0.0008 (5)
C220.0134 (6)0.0112 (8)0.0191 (6)0.0003 (5)0.0014 (5)0.0025 (5)
F220.0174 (4)0.0204 (5)0.0211 (4)0.0064 (3)0.0048 (3)0.0015 (3)
C230.0172 (7)0.0225 (9)0.0170 (6)0.0023 (6)0.0038 (5)0.0008 (6)
C240.0258 (7)0.0251 (10)0.0197 (7)0.0018 (6)0.0022 (5)0.0099 (6)
F240.0361 (5)0.0550 (7)0.0259 (4)0.0109 (5)0.0038 (4)0.0226 (5)
C250.0177 (7)0.0251 (9)0.0283 (7)0.0050 (6)0.0007 (5)0.0084 (7)
C260.0149 (7)0.0202 (9)0.0194 (6)0.0011 (6)0.0027 (5)0.0016 (6)
C30.0198 (7)0.0151 (8)0.0123 (6)0.0018 (6)0.0016 (5)0.0007 (6)
N310.0161 (5)0.0136 (7)0.0156 (5)0.0010 (5)0.0000 (4)0.0002 (5)
N320.0186 (6)0.0182 (7)0.0245 (6)0.0024 (5)0.0017 (4)0.0030 (5)
C330.0240 (7)0.0172 (8)0.0217 (7)0.0015 (6)0.0027 (5)0.0026 (6)
N340.0233 (6)0.0161 (7)0.0189 (6)0.0032 (5)0.0000 (4)0.0015 (5)
C350.0176 (7)0.0167 (8)0.0177 (6)0.0020 (6)0.0005 (5)0.0001 (6)
C410.0228 (7)0.0180 (8)0.0157 (6)0.0094 (6)0.0036 (5)0.0012 (6)
O410.0247 (5)0.0227 (6)0.0165 (5)0.0004 (4)0.0019 (4)0.0013 (4)
C420.0338 (8)0.0197 (9)0.0209 (7)0.0073 (7)0.0102 (6)0.0005 (6)
N420.0391 (8)0.0252 (9)0.0291 (7)0.0068 (7)0.0202 (6)0.0009 (6)
O4210.0653 (8)0.0211 (7)0.0307 (6)0.0015 (6)0.0194 (5)0.0041 (5)
O4220.0281 (6)0.0334 (8)0.0617 (8)0.0049 (5)0.0165 (5)0.0012 (6)
C430.0612 (11)0.0253 (10)0.0181 (7)0.0176 (9)0.0147 (7)0.0043 (7)
C440.0629 (11)0.0245 (10)0.0130 (7)0.0170 (8)0.0031 (6)0.0042 (7)
N440.0945 (13)0.0355 (11)0.0178 (7)0.0309 (10)0.0070 (7)0.0025 (7)
O4410.1649 (16)0.0369 (10)0.0378 (8)0.0117 (11)0.0534 (9)0.0016 (7)
O4420.0873 (10)0.0801 (12)0.0165 (6)0.0488 (9)0.0104 (6)0.0097 (7)
C450.0388 (9)0.0231 (10)0.0204 (7)0.0132 (7)0.0053 (6)0.0088 (7)
C460.0247 (7)0.0213 (9)0.0151 (6)0.0082 (6)0.0005 (5)0.0010 (6)
N460.0196 (6)0.0293 (8)0.0193 (6)0.0016 (5)0.0012 (4)0.0051 (6)
O4610.0400 (6)0.0577 (10)0.0319 (6)0.0229 (6)0.0079 (5)0.0049 (6)
O4620.0275 (5)0.0390 (8)0.0183 (5)0.0075 (5)0.0022 (4)0.0036 (5)
Geometric parameters (Å, º) top
C1—N111.4546 (18)C3—H3B0.971 (14)
C1—C21.5414 (17)C3—H3A1.018 (14)
C1—H1A0.970 (14)N31—C351.3297 (16)
C1—H1B0.938 (13)N31—N321.3710 (15)
N11—C151.3136 (16)N32—C331.3152 (18)
N11—N121.3728 (16)C33—N341.3577 (18)
N12—C131.304 (2)C33—H330.945 (15)
C13—N141.3577 (17)N34—C351.3230 (18)
C13—H130.934 (18)C35—H350.909 (14)
N14—C151.3240 (19)C41—O411.2529 (15)
N14—H140.893 (19)C41—C461.445 (2)
C15—H150.940 (15)C41—C421.451 (2)
C2—O21.4140 (14)C42—C431.370 (2)
C2—C211.5267 (17)C42—N421.454 (2)
C2—C31.542 (2)N42—O4221.2245 (17)
O2—H20.828 (17)N42—O4211.2373 (18)
C21—C261.3850 (19)C43—C441.390 (3)
C21—C221.3886 (17)C43—H430.972 (18)
C22—F221.3652 (15)C44—C451.368 (2)
C22—C231.3753 (19)C44—N441.456 (2)
C23—C241.375 (2)N44—O4421.225 (2)
C23—H230.904 (13)N44—O4411.229 (2)
C24—F241.3539 (16)C45—C461.3766 (19)
C24—C251.371 (2)C45—H450.942 (17)
C25—C261.384 (2)C46—N461.4483 (19)
C25—H250.940 (15)N46—O4621.2257 (14)
C26—H260.938 (14)N46—O4611.2310 (16)
C3—N311.4515 (16)
N11—C1—C2110.35 (10)N31—C3—C2113.00 (10)
N11—C1—H1A107.1 (9)N31—C3—H3B105.9 (9)
C2—C1—H1A110.0 (8)C2—C3—H3B113.4 (10)
N11—C1—H1B108.0 (9)N31—C3—H3A107.0 (9)
C2—C1—H1B110.4 (8)C2—C3—H3A107.8 (9)
H1A—C1—H1B111.0 (11)H3B—C3—H3A109.5 (12)
C15—N11—N12110.59 (12)C35—N31—N32109.77 (11)
C15—N11—C1127.48 (11)C35—N31—C3129.25 (11)
N12—N11—C1121.76 (10)N32—N31—C3120.95 (10)
C13—N12—N11103.75 (11)C33—N32—N31102.08 (10)
N12—C13—N14111.61 (14)N32—C33—N34114.93 (12)
N12—C13—H13125.6 (10)N32—C33—H33123.1 (9)
N14—C13—H13122.7 (10)N34—C33—H33121.9 (9)
C15—N14—C13106.23 (12)C35—N34—C33102.89 (11)
C15—N14—H14121.5 (12)N34—C35—N31110.32 (12)
C13—N14—H14132.2 (12)N34—C35—H35129.1 (9)
N11—C15—N14107.81 (12)N31—C35—H35120.6 (9)
N11—C15—H15123.8 (10)O41—C41—C46126.56 (13)
N14—C15—H15128.3 (10)O41—C41—C42121.71 (14)
O2—C2—C21106.91 (10)C46—C41—C42111.71 (12)
O2—C2—C1110.03 (10)C43—C42—C41124.96 (15)
C21—C2—C1111.50 (11)C43—C42—N42116.77 (14)
O2—C2—C3108.61 (10)C41—C42—N42118.25 (12)
C21—C2—C3108.55 (10)O422—N42—O421123.71 (15)
C1—C2—C3111.11 (11)O422—N42—C42118.37 (14)
C2—O2—H2109.4 (11)O421—N42—C42117.92 (13)
C26—C21—C22115.93 (12)C42—C43—C44118.30 (16)
C26—C21—C2121.10 (11)C42—C43—H43116.8 (9)
C22—C21—C2122.97 (11)C44—C43—H43124.9 (9)
F22—C22—C23116.91 (11)C45—C44—C43121.37 (14)
F22—C22—C21118.86 (11)C45—C44—N44118.70 (17)
C23—C22—C21124.22 (12)C43—C44—N44119.92 (16)
C24—C23—C22116.55 (12)O442—N44—O441123.84 (15)
C24—C23—H23122.1 (9)O442—N44—C44117.99 (19)
C22—C23—H23121.4 (9)O441—N44—C44118.18 (17)
F24—C24—C25118.83 (13)C44—C45—C46119.99 (17)
F24—C24—C23118.39 (12)C44—C45—H45120.7 (10)
C25—C24—C23122.78 (13)C46—C45—H45119.3 (10)
C24—C25—C26118.19 (13)C45—C46—C41123.64 (14)
C24—C25—H25119.9 (9)C45—C46—N46115.37 (14)
C26—C25—H25121.9 (9)C41—C46—N46121.00 (11)
C25—C26—C21122.29 (12)O462—N46—O461121.17 (13)
C25—C26—H26118.5 (9)O462—N46—C46119.90 (12)
C21—C26—H26119.2 (9)O461—N46—C46118.91 (11)
C2—C1—N11—C1587.38 (14)C35—N31—N32—C330.22 (15)
C2—C1—N11—N1287.44 (13)C3—N31—N32—C33178.32 (12)
C15—N11—N12—C130.40 (13)N31—N32—C33—N340.08 (16)
C1—N11—N12—C13176.01 (11)N32—C33—N34—C350.09 (17)
N11—N12—C13—N140.19 (14)C33—N34—C35—N310.23 (16)
N12—C13—N14—C150.09 (15)N32—N31—C35—N340.30 (16)
N12—N11—C15—N140.47 (13)C3—N31—C35—N34178.20 (13)
C1—N11—C15—N14175.77 (11)O41—C41—C42—C43176.56 (14)
C13—N14—C15—N110.34 (13)C46—C41—C42—C431.9 (2)
N11—C1—C2—O259.95 (14)O41—C41—C42—N421.6 (2)
N11—C1—C2—C2158.50 (13)C46—C41—C42—N42179.93 (12)
N11—C1—C2—C3179.73 (10)C43—C42—N42—O422133.86 (14)
O2—C2—C21—C262.59 (17)C41—C42—N42—O42247.81 (17)
C1—C2—C21—C26117.71 (13)C43—C42—N42—O42145.70 (18)
C3—C2—C21—C26119.58 (13)C41—C42—N42—O421132.63 (13)
O2—C2—C21—C22177.43 (12)C41—C42—C43—C442.1 (2)
C1—C2—C21—C2262.27 (17)N42—C42—C43—C44179.72 (14)
C3—C2—C21—C2260.44 (16)C42—C43—C44—C451.7 (2)
C26—C21—C22—F22178.86 (11)C42—C43—C44—N44177.23 (14)
C2—C21—C22—F221.12 (19)C45—C44—N44—O442173.29 (15)
C26—C21—C22—C231.7 (2)C43—C44—N44—O4425.7 (2)
C2—C21—C22—C23178.30 (13)C45—C44—N44—O4417.0 (2)
F22—C22—C23—C24179.51 (12)C43—C44—N44—O441174.00 (17)
C21—C22—C23—C240.1 (2)C43—C44—C45—C461.4 (2)
C22—C23—C24—F24178.05 (13)N44—C44—C45—C46177.58 (14)
C22—C23—C24—C251.2 (2)C44—C45—C46—C411.3 (2)
F24—C24—C25—C26178.53 (14)C44—C45—C46—N46178.46 (13)
C23—C24—C25—C260.7 (2)O41—C41—C46—C45176.88 (14)
C24—C25—C26—C211.1 (2)C42—C41—C46—C451.5 (2)
C22—C21—C26—C252.2 (2)O41—C41—C46—N463.3 (2)
C2—C21—C26—C25177.80 (14)C42—C41—C46—N46178.31 (12)
O2—C2—C3—N3159.34 (13)C45—C46—N46—O462176.14 (13)
C21—C2—C3—N31175.23 (10)C41—C46—N46—O4623.67 (19)
C1—C2—C3—N3161.82 (13)C45—C46—N46—O4612.31 (19)
C2—C3—N31—C3581.53 (16)C41—C46—N46—O461177.88 (13)
C2—C3—N31—N3296.16 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O410.970 (14)2.480 (13)3.1698 (16)127.9 (10)
O2—H2···O410.828 (17)1.913 (17)2.7365 (13)173.0 (16)
C15—H15···O4620.940 (15)2.408 (13)3.0231 (17)122.8 (11)
C1—H1B···O2i0.938 (13)2.549 (12)3.2306 (16)129.8 (10)
N14—H14···N34ii0.893 (19)1.851 (19)2.7301 (16)167.8 (17)
C26—H26···N12iii0.938 (14)2.456 (14)3.3118 (18)151.6 (11)
C43—H43···O442iv0.972 (18)2.472 (16)3.280 (2)140.4 (13)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x1, y, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H13F2N6O+·C6H2N3O7
Mr535.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.647 (1), 17.347 (2), 22.571 (2)
β (°) 94.27 (1)
V3)2204.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.2 × 0.2 × 0.15
Data collection
DiffractometerKuma KM-4-CCD four-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18260, 5165, 3576
Rint0.023
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.082, 0.99
No. of reflections5165
No. of parameters403
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.25, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O410.970 (14)2.480 (13)3.1698 (16)127.9 (10)
O2—H2···O410.828 (17)1.913 (17)2.7365 (13)173.0 (16)
C15—H15···O4620.940 (15)2.408 (13)3.0231 (17)122.8 (11)
C1—H1B···O2i0.938 (13)2.549 (12)3.2306 (16)129.8 (10)
N14—H14···N34ii0.893 (19)1.851 (19)2.7301 (16)167.8 (17)
C26—H26···N12iii0.938 (14)2.456 (14)3.3118 (18)151.6 (11)
C43—H43···O442iv0.972 (18)2.472 (16)3.280 (2)140.4 (13)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x1, y, z; (iv) x+1, y, z+1.
 

Acknowledgements

CSC thanks the University of Mysore for research facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrammer, K. W., Farrow, P. R. & Faulkner, J. K. (1990). Rev. Infect. Dis. 12, S318–S326.  CrossRef PubMed Web of Science Google Scholar
First citationCaira, M. R., Alkhamis, A. & Obaidat, R. M. (2003). J. Pharm. Sci. 93, 601–611.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds