metal-organic compounds
Bis(di-2-pyridylmethanediol-κ3N,O,N′)nickel(II) dibenzoate
aDepartment of Fine Chemistry, and Eco-Product and Materials Education Center, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea, bDepartment of Forest Resources Development, Korea Forest Research Institute, Suwon 441-350, Republic of Korea, cDepartment of Forest & Environment Resources, Kyungpook National University, Sangju,742-711, Republic of Korea, and dDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@sunt.ac.kr, ymeekim@ewha.ac.kr
The title compound, [Ni(C11H10N2O2)2](C7H5O2)2, consists of an NiII ion coordinated by two tridentate chelating (2-py)2C(OH)2 ligands (py is pyridyl) and two benzoate anions. The NiII ion is located on a twofold rotation axis, and its geometry is distorted octahedral. The gem-diol ligand (2-py)2C(OH)2 adopts an η1:η1:η1 coordination mode. There are O—H⋯O hydrogen bonds between the gem-diol ligands and benzoate anions.
Related literature
For examples of interactions between transition metal ions and biologically active molecules, see: Efthymiou et al. (2006); Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004). For related structures of Cu(II) and Zn(II) benzoates, see: Lee et al. (2008); Yu et al. (2008); Park et al. (2008); Shin et al. (2009); Yu et al. (2010). For the di-2-pyridylketone [(py)2CO] ligand, see: Papaefstathiou & Perlepes (2002); Stoumpos et al. (2009). For related structures, see: Wang et al. (1986); Li et al. (2005); Yu et al. (2009a,b).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053681003669X/dn2601sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681003669X/dn2601Isup2.hkl
36.4 mg (0.125 mmol) of Ni(NO3)2.6H2O and 35.5 mg (0.25 mmol) of C6H5COONH4 were dissolved in 4 ml water and carefully layered by 4 ml solution of a mixture of acetone, methanol and ethanol (1/1/1) of di-2-pyridyl ketone ligand (46.1 mg, 0.25 mmol). Suitable crystals of the title compoundfor X-ray analysis were obtained in a month.
H atoms were placed in calculated positions and treated as riding on their parent atoms with C—H distances of 0.93 Å (phenyl) and 0.84 Å (hydroxyl) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ni(C11H10N2O2)2](C7H5O2)2 | F(000) = 1464 |
Mr = 705.35 | Dx = 1.518 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 526 reflections |
a = 24.065 (8) Å | θ = 2.6–18.8° |
b = 8.681 (3) Å | µ = 0.69 mm−1 |
c = 17.718 (6) Å | T = 173 K |
β = 123.526 (5)° | Block, colourless |
V = 3085.7 (17) Å3 | 0.08 × 0.05 × 0.05 mm |
Z = 4 |
Bruker SMART CCD diffractometer | 3031 independent reflections |
Radiation source: fine-focus sealed tube | 1818 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.095 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | h = −29→28 |
Tmin = 0.959, Tmax = 0.966 | k = −10→9 |
8329 measured reflections | l = −20→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.P)2] where P = (Fo2 + 2Fc2)/3 |
3031 reflections | (Δ/σ)max < 0.001 |
222 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
[Ni(C11H10N2O2)2](C7H5O2)2 | V = 3085.7 (17) Å3 |
Mr = 705.35 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 24.065 (8) Å | µ = 0.69 mm−1 |
b = 8.681 (3) Å | T = 173 K |
c = 17.718 (6) Å | 0.08 × 0.05 × 0.05 mm |
β = 123.526 (5)° |
Bruker SMART CCD diffractometer | 3031 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | 1818 reflections with I > 2σ(I) |
Tmin = 0.959, Tmax = 0.966 | Rint = 0.095 |
8329 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.38 e Å−3 |
3031 reflections | Δρmin = −0.34 e Å−3 |
222 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.54475 (8) | 0.7500 | 0.0218 (2) | |
O1 | 0.42807 (11) | 0.6969 (3) | 0.74041 (15) | 0.0272 (6) | |
H1O | 0.4294 | 0.7180 | 0.7877 | 0.041* | |
O2 | 0.31141 (11) | 0.6882 (3) | 0.65747 (15) | 0.0311 (7) | |
H2O | 0.3095 | 0.6916 | 0.7034 | 0.047* | |
N1 | 0.43794 (14) | 0.3935 (4) | 0.75897 (18) | 0.0240 (8) | |
N2 | 0.43061 (13) | 0.5602 (3) | 0.61309 (17) | 0.0224 (7) | |
C1 | 0.45080 (19) | 0.2545 (5) | 0.7972 (2) | 0.0295 (10) | |
H1 | 0.4945 | 0.2135 | 0.8250 | 0.035* | |
C2 | 0.4030 (2) | 0.1682 (5) | 0.7979 (2) | 0.0340 (10) | |
H2 | 0.4136 | 0.0696 | 0.8257 | 0.041* | |
C3 | 0.33914 (19) | 0.2273 (5) | 0.7573 (2) | 0.0336 (10) | |
H3 | 0.3053 | 0.1696 | 0.7564 | 0.040* | |
C4 | 0.32564 (18) | 0.3714 (5) | 0.7182 (2) | 0.0282 (10) | |
H4 | 0.2823 | 0.4147 | 0.6904 | 0.034* | |
C5 | 0.37576 (16) | 0.4519 (5) | 0.7200 (2) | 0.0231 (9) | |
C6 | 0.36850 (16) | 0.6119 (4) | 0.6785 (2) | 0.0244 (9) | |
C7 | 0.36976 (17) | 0.5939 (4) | 0.5939 (2) | 0.0215 (9) | |
C8 | 0.31530 (18) | 0.6127 (4) | 0.5068 (2) | 0.0278 (9) | |
H8 | 0.2725 | 0.6345 | 0.4949 | 0.033* | |
C9 | 0.32512 (19) | 0.5986 (4) | 0.4372 (2) | 0.0306 (10) | |
H9 | 0.2886 | 0.6117 | 0.3763 | 0.037* | |
C10 | 0.38729 (18) | 0.5658 (5) | 0.4555 (2) | 0.0326 (10) | |
H10 | 0.3944 | 0.5566 | 0.4081 | 0.039* | |
C11 | 0.43897 (17) | 0.5467 (5) | 0.5446 (2) | 0.0286 (9) | |
H11 | 0.4821 | 0.5230 | 0.5580 | 0.034* | |
O21 | 0.42695 (12) | 0.7889 (3) | 0.87550 (16) | 0.0364 (7) | |
O22 | 0.31909 (12) | 0.7353 (3) | 0.80877 (16) | 0.0409 (8) | |
C21 | 0.3730 (2) | 0.7889 (5) | 0.8723 (3) | 0.0306 (10) | |
C22 | 0.37566 (18) | 0.8581 (5) | 0.9521 (2) | 0.0272 (9) | |
C23 | 0.33218 (19) | 0.8072 (5) | 0.9755 (3) | 0.0329 (10) | |
H23 | 0.3011 | 0.7277 | 0.9411 | 0.039* | |
C24 | 0.3337 (2) | 0.8705 (5) | 1.0476 (3) | 0.0382 (11) | |
H24 | 0.3041 | 0.8339 | 1.0632 | 0.046* | |
C25 | 0.3776 (2) | 0.9862 (5) | 1.0971 (3) | 0.0396 (11) | |
H25 | 0.3776 | 1.0312 | 1.1459 | 0.047* | |
C26 | 0.42184 (18) | 1.0377 (5) | 1.0767 (3) | 0.0356 (10) | |
H26 | 0.4527 | 1.1170 | 1.1119 | 0.043* | |
C27 | 0.42110 (18) | 0.9730 (5) | 1.0042 (3) | 0.0342 (10) | |
H27 | 0.4519 | 1.0077 | 0.9903 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0214 (4) | 0.0260 (4) | 0.0186 (4) | 0.000 | 0.0115 (3) | 0.000 |
O1 | 0.0272 (14) | 0.0340 (17) | 0.0230 (13) | −0.0008 (13) | 0.0155 (12) | −0.0029 (13) |
O2 | 0.0259 (15) | 0.0429 (19) | 0.0280 (14) | 0.0089 (13) | 0.0170 (12) | 0.0053 (13) |
N1 | 0.0235 (18) | 0.029 (2) | 0.0212 (16) | 0.0028 (15) | 0.0131 (14) | 0.0027 (15) |
N2 | 0.0260 (17) | 0.0239 (19) | 0.0186 (15) | 0.0032 (15) | 0.0131 (13) | 0.0025 (15) |
C1 | 0.034 (2) | 0.032 (3) | 0.021 (2) | 0.003 (2) | 0.0150 (18) | 0.006 (2) |
C2 | 0.045 (3) | 0.031 (3) | 0.028 (2) | −0.001 (2) | 0.021 (2) | 0.005 (2) |
C3 | 0.039 (3) | 0.038 (3) | 0.027 (2) | −0.016 (2) | 0.020 (2) | −0.005 (2) |
C4 | 0.027 (2) | 0.035 (3) | 0.023 (2) | −0.003 (2) | 0.0144 (18) | −0.007 (2) |
C5 | 0.024 (2) | 0.029 (2) | 0.0179 (18) | −0.003 (2) | 0.0125 (16) | −0.0023 (19) |
C6 | 0.0156 (19) | 0.031 (2) | 0.022 (2) | −0.0003 (17) | 0.0067 (16) | −0.0016 (19) |
C7 | 0.023 (2) | 0.020 (2) | 0.023 (2) | −0.0006 (16) | 0.0138 (17) | 0.0000 (16) |
C8 | 0.026 (2) | 0.027 (2) | 0.027 (2) | −0.0004 (18) | 0.0124 (18) | −0.0006 (19) |
C9 | 0.037 (2) | 0.033 (3) | 0.0168 (19) | 0.0050 (19) | 0.0116 (18) | 0.0022 (18) |
C10 | 0.040 (2) | 0.037 (3) | 0.024 (2) | 0.007 (2) | 0.0197 (19) | 0.002 (2) |
C11 | 0.030 (2) | 0.031 (2) | 0.026 (2) | 0.005 (2) | 0.0168 (17) | 0.001 (2) |
O21 | 0.0333 (16) | 0.044 (2) | 0.0411 (16) | −0.0030 (14) | 0.0264 (13) | −0.0072 (14) |
O22 | 0.0316 (17) | 0.062 (2) | 0.0295 (15) | −0.0064 (15) | 0.0172 (13) | −0.0119 (15) |
C21 | 0.034 (2) | 0.032 (3) | 0.036 (2) | 0.004 (2) | 0.025 (2) | 0.004 (2) |
C22 | 0.028 (2) | 0.031 (3) | 0.027 (2) | 0.0065 (19) | 0.0184 (18) | 0.003 (2) |
C23 | 0.037 (2) | 0.032 (3) | 0.036 (2) | 0.002 (2) | 0.024 (2) | 0.002 (2) |
C24 | 0.046 (3) | 0.046 (3) | 0.032 (2) | 0.002 (2) | 0.028 (2) | 0.002 (2) |
C25 | 0.053 (3) | 0.039 (3) | 0.033 (2) | 0.014 (2) | 0.027 (2) | 0.003 (2) |
C26 | 0.039 (2) | 0.030 (3) | 0.039 (2) | 0.002 (2) | 0.022 (2) | −0.004 (2) |
C27 | 0.036 (2) | 0.034 (3) | 0.042 (2) | 0.004 (2) | 0.028 (2) | 0.004 (2) |
Ni1—N2i | 2.053 (3) | C6—C7 | 1.525 (5) |
Ni1—N2 | 2.053 (3) | C7—C8 | 1.374 (5) |
Ni1—N1 | 2.060 (3) | C8—C9 | 1.383 (5) |
Ni1—N1i | 2.060 (3) | C8—H8 | 0.9500 |
Ni1—O1i | 2.109 (3) | C9—C10 | 1.374 (5) |
Ni1—O1 | 2.109 (2) | C9—H9 | 0.9500 |
O1—C6 | 1.437 (4) | C10—C11 | 1.377 (5) |
O1—H1O | 0.8408 | C10—H10 | 0.9500 |
O2—C6 | 1.378 (4) | C11—H11 | 0.9500 |
O2—H2O | 0.8405 | O21—C21 | 1.267 (4) |
N1—C1 | 1.334 (4) | O22—C21 | 1.247 (4) |
N1—C5 | 1.353 (4) | C21—C22 | 1.506 (5) |
N2—C7 | 1.340 (4) | C22—C27 | 1.388 (5) |
N2—C11 | 1.340 (4) | C22—C23 | 1.393 (5) |
C1—C2 | 1.379 (5) | C23—C24 | 1.373 (5) |
C1—H1 | 0.9500 | C23—H23 | 0.9500 |
C2—C3 | 1.385 (5) | C24—C25 | 1.368 (5) |
C2—H2 | 0.9500 | C24—H24 | 0.9500 |
C3—C4 | 1.379 (5) | C25—C26 | 1.373 (5) |
C3—H3 | 0.9500 | C25—H25 | 0.9500 |
C4—C5 | 1.379 (5) | C26—C27 | 1.393 (5) |
C4—H4 | 0.9500 | C26—H26 | 0.9500 |
C5—C6 | 1.535 (5) | C27—H27 | 0.9500 |
N2i—Ni1—N2 | 172.49 (18) | O2—C6—C7 | 110.0 (3) |
N2i—Ni1—N1 | 95.84 (11) | O1—C6—C7 | 104.5 (3) |
N2—Ni1—N1 | 88.95 (11) | O2—C6—C5 | 113.4 (3) |
N2i—Ni1—N1i | 88.95 (11) | O1—C6—C5 | 107.3 (3) |
N2—Ni1—N1i | 95.84 (11) | C7—C6—C5 | 108.6 (3) |
N1—Ni1—N1i | 100.79 (17) | N2—C7—C8 | 122.8 (3) |
N2i—Ni1—O1i | 76.59 (10) | N2—C7—C6 | 112.6 (3) |
N2—Ni1—O1i | 98.62 (10) | C8—C7—C6 | 124.5 (3) |
N1—Ni1—O1i | 172.42 (10) | C7—C8—C9 | 117.6 (4) |
N1i—Ni1—O1i | 78.91 (11) | C7—C8—H8 | 121.2 |
N2i—Ni1—O1 | 98.62 (10) | C9—C8—H8 | 121.2 |
N2—Ni1—O1 | 76.59 (10) | C10—C9—C8 | 120.5 (3) |
N1—Ni1—O1 | 78.91 (11) | C10—C9—H9 | 119.7 |
N1i—Ni1—O1 | 172.42 (10) | C8—C9—H9 | 119.7 |
O1i—Ni1—O1 | 102.40 (14) | C9—C10—C11 | 118.1 (3) |
C6—O1—Ni1 | 99.7 (2) | C9—C10—H10 | 120.9 |
C6—O1—H1O | 110.2 | C11—C10—H10 | 120.9 |
Ni1—O1—H1O | 118.6 | N2—C11—C10 | 122.3 (3) |
C6—O2—H2O | 109.5 | N2—C11—H11 | 118.8 |
C1—N1—C5 | 118.7 (3) | C10—C11—H11 | 118.8 |
C1—N1—Ni1 | 129.9 (2) | O22—C21—O21 | 124.8 (4) |
C5—N1—Ni1 | 111.5 (3) | O22—C21—C22 | 118.6 (3) |
C7—N2—C11 | 118.6 (3) | O21—C21—C22 | 116.6 (3) |
C7—N2—Ni1 | 112.1 (2) | C27—C22—C23 | 118.4 (4) |
C11—N2—Ni1 | 129.3 (2) | C27—C22—C21 | 121.3 (3) |
N1—C1—C2 | 122.4 (4) | C23—C22—C21 | 120.2 (4) |
N1—C1—H1 | 118.8 | C24—C23—C22 | 120.7 (4) |
C2—C1—H1 | 118.8 | C24—C23—H23 | 119.6 |
C1—C2—C3 | 119.0 (4) | C22—C23—H23 | 119.6 |
C1—C2—H2 | 120.5 | C25—C24—C23 | 120.2 (4) |
C3—C2—H2 | 120.5 | C25—C24—H24 | 119.9 |
C4—C3—C2 | 118.9 (4) | C23—C24—H24 | 119.9 |
C4—C3—H3 | 120.6 | C24—C25—C26 | 120.6 (4) |
C2—C3—H3 | 120.6 | C24—C25—H25 | 119.7 |
C3—C4—C5 | 119.2 (4) | C26—C25—H25 | 119.7 |
C3—C4—H4 | 120.4 | C25—C26—C27 | 119.6 (4) |
C5—C4—H4 | 120.4 | C25—C26—H26 | 120.2 |
N1—C5—C4 | 121.9 (4) | C27—C26—H26 | 120.2 |
N1—C5—C6 | 112.7 (3) | C22—C27—C26 | 120.4 (4) |
C4—C5—C6 | 125.5 (3) | C22—C27—H27 | 119.8 |
O2—C6—O1 | 112.6 (3) | C26—C27—H27 | 119.8 |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O21 | 0.84 | 1.70 | 2.537 (3) | 171 |
O2—H2O···O22 | 0.84 | 1.79 | 2.615 (4) | 167 |
Experimental details
Crystal data | |
Chemical formula | [Ni(C11H10N2O2)2](C7H5O2)2 |
Mr | 705.35 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 173 |
a, b, c (Å) | 24.065 (8), 8.681 (3), 17.718 (6) |
β (°) | 123.526 (5) |
V (Å3) | 3085.7 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.69 |
Crystal size (mm) | 0.08 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1997) |
Tmin, Tmax | 0.959, 0.966 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8329, 3031, 1818 |
Rint | 0.095 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.109, 1.01 |
No. of reflections | 3031 |
No. of parameters | 222 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.34 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O21 | 0.84 | 1.70 | 2.537 (3) | 170.7 |
O2—H2O···O22 | 0.84 | 1.79 | 2.615 (4) | 166.5 |
Acknowledgements
Financial support from the Korea Ministry of the Environment `ET-Human resource development Project' and the Cooperative Research Program for Agricultural Science & Technology Development (20070301–036-019–02) is gratefully acknowledged.
References
Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093–1107. Web of Science CrossRef CAS Google Scholar
Efthymiou, C. G., Raptopoulou, C. P., Terzis, A., Boča, R., Korabic, M., Mrozinski, J., Perlepes, S. P. & Bakalbassis, E. G. (2006). Eur. J. Inorg. Chem. pp. 2236–2252. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, C.-J., Li, W., Tong, M.-L. & Ng, S. W. (2005). Acta Cryst. E61, m229–m231. Web of Science CSD CrossRef IUCr Journals Google Scholar
Papaefstathiou, G. S. & Perlepes, S. P. (2002). Comments Inorg. Chem. 23, 249–274. Web of Science CrossRef CAS Google Scholar
Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parkin, G. (2004). Chem. Rev. 104, 699–767. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658–m659. Web of Science CSD CrossRef IUCr Journals Google Scholar
Stoumpos, C. C., Gass, I. A., Milios, C. J., Lalioti, N., Terzis, A., Aromi, G., Teat, S. J., Brechin, E. K. & Perlepes, S. P. (2009). Dalton Trans. pp. 307–317. Web of Science CSD CrossRef Google Scholar
Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012. Web of Science CrossRef PubMed CAS Google Scholar
Wang, S.-L., Richardson, J. W. Jr, Briggs, S. J., Jacobson, R. A. & Jensen, W. P. (1986). Inorg. Chim. Acta, 111, 67–72. CAS Google Scholar
Yu, S. M., Koo, K., Kim, P.-G., Kim, C. & Kim, Y. (2010). Acta Cryst. E66, m61–m62. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009a). Acta Cryst. E65, m1045–m1046. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yu, S. M., Song, Y. J., Kim, K. C., Kim, C. & Kim, Y. (2009b). Acta Cryst. E65, m678–m679. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The interaction of transition metal ions with biologically active molecules such as amino acids, proteins, sugars, fulvic acids and humic acids is of great importance in the biological systems (Daniele, et al., 2008; Parkin, 2004; Tshuva and Lippard, 2004). As models to examine the interaction, the study on the interaction of the transition metal ions with various acids such as benzoic acid has been intensively examined. Our group have also reported a variety of structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene, and di-2-pyridyl ketone (Lee, et al., 2008; Yu, et al., 2008; Park, et al., 2008; Shin, et al.,2009; Yu, et al., 2009a,b; Yu, et al.,2010).
Di-2-pyridyl ketone ((py)2CO) has been employed to form structurally interesting new complexes with 3 d-metal ions (Stoumpos, et al., 2009). While the neutral ligands (py)2C(OH)2 and (py)2C(OR)(OH) coordinate to the metal centres as N,N',O chelates (Papaefstathiou and Perlepes, 2002), water and alcohols (ROH) have been shown to add to the carbonyl group forming the ligands (2-py)2C(OH)2 [the gem-diol form of (2-py)2CO] and (2-py)2C(OR)(OH) [the hemiacetal form of (2-py)2CO], respectively (Efthymiou et al., 2006). The Ni(II) complexes of the neutral ligand, (py)2C(OH)2 have been characterized (Wang, et al., 1986; Li, et al., 2005; Yu, et al., 2009a,b), but no structure with a benzoate ion as the counter-ion has been reported. We report here another structure of NiII benzoate containing a neutral ligand (2-py)2C(OH)2.
The NiII atom is coordinated by two tridentate chelating (2-py)2C(OH)2 ligand to form a distorted octahedral geometry. The NiII ion is located on a two fold axis. The gem-diol ligand (2-py)2C(OH)2 adopts the coordination mode η1:η1:η1 (Fig.1). There are hydrogen bonds between the gem-diol hydrogen atoms and benzoate oxygen atoms.